Basic image processing

Basic image display and conversion

Matrix to Mathematica Image object

ImageObject[m_, size_:1, max_:255, min_:0] := Module[{sz, dimx, dimy, cf}, If[ ... d[sz * dimy]}, PlotRange {{0, dimx}, {0, dimy}}, AspectRatioAutomatic] ] ;

Display Mathematica image object

ShowImage[m_, size_:1, max_:255, min_:0, opts___] := Show[ImageObject[m, size, max, min], opts] ;

Read image file to matrix

ReadImage[file_] := Import[file][[1, 1]] ;

Save matrix to image file

SaveImage[file_, m_, format_:"PPM"] := Export[file, ImageObject[m], format] ;

Color to grayscale

RowBox[{RowBox[{ColorToGrayScale[m_], :=,  , RowBox[{Map, [, RowBox[{RowBox[{RowBox[{(, RowBox[{(#[[1]] + #[[2]] + #[[3]]), /, 3.}], )}], &}], ,,  , m, ,,  , {2}}], ]}]}], ;}]

Grayscale to color (data conversion)

GrayScaleToColor[m_] := Map[{#, #, #} &, m, {2}] ;

Simple image creation

Create single color image

SingleColorImage[rgb_, {dimx_, dimy_}] := Table[rgb, {dimy}, {dimx}] ;

Clip single pixel/channel image values

Clip[v_, max_:255, min_:0] := If[Length[v] 0, Min[Max[v, min], max], Min[Max[#, min], max] & /@ v] ;

Create Gaussian noise image

GaussianNoiseImage[{μ_, σ_}, {dimx_, dimy_}, max_:255, min_:0] := Module[{m, ... n[μ, σ]], {dimx}, {dimy}] + offset ; Map[Clip[#, max] &, m, {2}] ] ;

Histogram modifications

Support function for histogram plotting

HistogramListPlot[data_, color_:Black, opts___] := Module[{g1}, g1 = Line[{{#[[1]], 0}, {#[[1]], #[[2]]}}] & /@ data ; Show[Graphics[{color, g1}], opts] ] ;

Plot image histogram

ShowHistogram[m_, max_:255, opts___] := Module[{mi, vals, histogram}, mi = Rou ... t[{vals, histogram} // Transpose, Blue, FrameTrue, PlotRangeAll, opts] ] ;

Histogram equalization

HistogramEqualization[m_, max_:255] := Module[{mi, histogram, step1, map}, mi  ... #62371;map = Round[step1/Last[step1] * max] ; Map[map[[# + 1]] &, mi, {2}] ] ;

Histogram stretch

HistogramStretch[m_, min_:0, max_:255] := Module[{imin, imax}, imin = Min[m] ; ... x = Max[m] ; Map[((# - imin)/(imax - imin) * (max - min) + min) &, m, {2}] ] ;

Histogram slide

HistogramSlide[m_, offset_, max_:255] := Map[Clip[#, max] &, m + offset, {2}] ;

Pixel modifications (apply function to individual pixels)

Gray scale: f : ℛ^1ℛ^1such that i^* = f(i)

Color: f : ℛ^3ℛ^3such that (r^*, g^*, b^*) = f(r, g, b)

PixelModification[m_, f_, max_:255] := Round[Map[Clip[#, max] &, Map[f, m, {2}], {2}]] ;

2D convolution with masks

Mask operators

Smoothing

MeanFilter[n_] := Table[1, {n}, {n}]/(n * n) // N ;

GaussianFilter[n_, σ_:1] := Module[{nc, gf1}, nc = (n - 1)/2 ; gf ... /(2σ^2)], {x, 0, n - 1}, {y, 0, n - 1}] // N ; gf1/(Plus @@ Flatten[gf1]) ] ;

Edges

PrewittRow[] := {{-1, -1, -1}, {0, 0, 0}, {1, 1, 1}} ; PrewittColumn[] := PrewittRow[]//Transpose ;

SobelRow[] := {{-1, -2, -1}, {0, 0, 0}, {1, 2, 1}} // N ; SobelColumn[] := SobelRow[] // Transpose ;

Laplace1[] := {{0, -1, 0}, {-1, 4, -1}, {0, -1, 0}} ; Laplace2[] := {{1, -2, 1}, {-2, 4, -2}, {1, -2, 1}} ; Laplace3[] := {{-1, -1, -1}, {-1, 8, -1}, {-1, -1, -1}} ;

Texture example

(L = Level, E = Edge, S = Spot, R = Ripple) TexureMasks: (EL, RL, ES, RR, SL, EE, ER, SR)

L5T[] := {1, 4, 6, 4, 1} ; E5T[] := {-1, -2, 0, 2, 1} ; S5T[] := {-1, 0, 2, 0, -1} ; R5T[] :=  ... Outer[Times, S5T[], R5T[]] ; R5S5[] := Outer[Times, R5T[], S5T[]] ; SR[] := (S5R5[] + R5S5[])/2 ;

2D convolution

Pad image with border rows so that 2D convolution does not shrink image

PadImage[m_] := Module[{mout}, mout = Join[{First[m]}, m] ; mout = Joi ... rst[mout]}, mout] ; mout = Join[mout, {Last[mout]}] ; mout // Transpose] ;

2D convolution of a single channel

MaskOneChannel[mc_, kernel_] := Module[{m2}, m2 = Nest[PadImage, mc, (First[Dimensions[kernel]] - 1)/2] ; Round[Abs[ListConvolve[kernel, m2]]] ] ;

2D convolution of an image w/kernel (image dimensions unaffected for square masks with odd-numbered dimensions)

Mask[m_, kernel_] := Module[{r, g, b}, If[MatrixQ[m], MaskOneChannel[m ... [3]] &, m, {2}], kernel] ; Transpose /@ ({r, g, b} // Transpose) ] ] ;

Median filtering

Filter one channel with (2n+1) x (2n+1) median filter

MedianFilterOneChannel[mc_, n_] := Module[{ker, m1, m2}, ker = Table[0, {2 * n ... olve[ker, m1, {-1, 1}, 0, Plus, List] ; Map[Median[Flatten[#]] &, m2, {2}] ] ;

Filter image with (2n+1) x (2n+1) median filter

MedianFilter[m_, n_] := Module[{r, g, b}, If[MatrixQ[m], MedianFilterO ... ap[#[[3]] &, m, {2}], n] ; Transpose /@ ({r, g, b} // Transpose) ] ] ;

Image thresholding

Simple thresholding

ThresholdImage[m_, t_, max_:255] := Module[{m1}, m1 = If[MatrixQ[m], m, ColorToGrayScale[m]] ; Map[If[# < t, 0, max] &, m1, {2}] ] ;

Gaussian thresholding (defined only for color images)

Mahalanobis distance from point to Gaussian distribution

Mahalanobis[x_, μ_, Σi_] :=  (x - μ) . Σi . (x - μ) ;

Gaussian threshold an image

GaussianThresholdImage[m_, t_, {μ_, Σ_}, max_:255] := Module[{Σi}, > ... #931;] ; Map[If[Mahalanobis[#, μ, Σi] > t, 0, max] &, m, {2}] ] ;

Create Gaussian distance image

GaussianDistanceImage[m_, μ_, Σ_] := Module[{Σi}, Σi = Inverse[Σ] ; Map[Mahalanobis[#, μ, Σi] &, m, {2}] ] ;

Hough transform (straight lines)

Hough transform helper function

ConvertEdgePixel[{xc_, yc_}, θt_, {ρmax_, dρ_}] := Module[{t1, t2},  ... (# + ρmax)/dρ] & /@ t1 ; Table[{t2[[i]], i}, {i, 1, Length[t2]}] ] ;

From binary image, generate a sorted list of scaled line parameters

RowBox[{RowBox[{HoughEngine[mb_, n_: {100, 100}], :=, , RowBox[{Module, [, RowBox[{{ep ... 961;}] & /@ ep, ;, , Reverse[Sort[Frequencies[Join @@ ha1]]]}]}], , ]}]}], ;}]

From binary image, generate Hough accumulator matrix

HoughAccumulator[mb_, n_: {100, 100}] := Module[{tmp, ha}, tmp = HoughEngine[m ... , {n[[2]]}, {n[[1]]}] ; Fold[ReplacePart[#1, #2[[1]], #2[[2]]] &, ha, tmp] ] ;

From binary image, returns the (ρ, θ) parameters for the top n_lines, where ρ = x cos(θ) + y sin(θ)

RowBox[{RowBox[{StraightLines[mb_, nlines_:1, n_: {100, 100}], :=, , RowBox[{Module, [ ... 960;/nθ} & /@ Take[Last /@ HoughEngine[mb, n], {1, nlines}] //N}]}], , ]}]}], ;}]

Visualize detected straight lines over some image

ShowStraightLines[m_, sl_, opts___] := Module[{xdim, ydim, g1}, xdim = Dimensi ... nIdentity] ; Show[g2, g1, DisplayFunction$DisplayFunction, opts] ]

Visualize Hough accumulator

ShowHoughAccumulator[m_, ha_, opts___] := Module[{ρmax}, ρmax = Sqrt ...  MeshRange {{0, π}, {-ρmax, ρmax}}, PlotRangeAll, opts] ] ;

Blob finding ("Connected Component Labeling")

Identify foreground neighbors of pixel (x, y) in image

NonZeroNeighbors[m_, {x_, y_}] := DeleteCases[{m[[y - 1]][[x - 1]], m[[y - 1]][[x]], m[[y]][[x - 1]]}, 0]

First pass of blob finding algorithm

BlobPass1[mc_] := Module[{d1, m2, m3, label, nzn, new}, d1 = Dimensions[mc] ;  ... 2}, {d1[[1]] + 1, d1[[2]] + 1}] ; Map[If[#0, #, # - 1] &, m3, {2}] ] ;

Unify adjacencies of labels after first pass of blob finding algorithm: support functions

PartialAdjacency[l_] := (Union /@ (Flatten /@ Table[l[[First /@ Position[l, i]]], {i, 1, Max[l]}])) ;

AdjacencyRules[l_] := Table[l[[i]] Last[l], {i, 1, Length[l] - 1}] ;

Second pass of blob finding algorithm

BlobPass2[mc_] := Module[{tmp1, tmp2, tmp3, tmp4}, tmp1 = ListConvolve[{{0, 0} ... PartialAdjacency, Union[DeleteCases[tmp3, Null]]] ; mc /. Flatten[Union[tmp4]] ] ;

Label all blobs with unique label in a binary image

BlobFind[mc_] := BlobPass2[BlobPass1[mc]] ;

Count the number of blobs in a labeled blob image (after BlobFind[ ])

BlobCount[mb_] := Length[Union[Flatten[mb]]] - 1 ;

Eliminate all but the largest blob from a labeled blob image (after BlobFind[ ])

KeepLargestBlob[mb_] := Module[{tmp1}, tmp1 = Last /@ Drop[Reverse[Sort[Frequencies[DeleteCases[mb // Flatten, 0]]]], 1] ; mb /.((#0) & /@ tmp1) ] ;

Display a blob image with different random color assigned to each blob

BlobImage[mb_] := Module[{levels, colors}, levels = Drop[Sort[Union[Flatten[mb ... Integer, {50, 255}], Random[Integer, {50, 255}]}, {i, 1, Length[levels]}]] ; mb/.colors] ;

Morphological operators for binary images

Dilation

Dilation[mc_, kernel_, max_:255] := Module[{m2, d1, d2}, d1 = Dimensions[mc] ; ... 1 + 2 * d2] ; ListConvolve[kernel, m2, {-1, 1}, 0, BitAnd, Max] /. 1max] ;

Erosion

Erosion[mc_, kernel_, max_:255] := Module[{m2, d1, d2}, d1 = Dimensions[mc] ;  ... elate[kernel, m2, {1, -1}, 0, BitOr[BitAnd[#1, #2], 1 - #1] &, Min] /. 1max] ;

Closing

Closing[mc_, kernel_, max_:255] := Erosion[Dilation[mc, kernel, max], kernel, max] ;

Opening

Opening[mc_, kernel_, max_:255] := Dilation[Erosion[mc, kernel, max], kernel, max] ;


Created by Mathematica  (February 5, 2004)