Vision for Koolio Autonomous Robot
A Room Plate Recognition Algorithm

By: Wenxing Ye

I. Background Instruction

The purpose of this program is to endow Koolio the ability of recognizing room number. The program acquires sequence of images from the camera installed on the top of the robot. Once an image has arrived, the program will locate the room number plate in the image and segment it into several digit blocks. Then it will use standard digit templates stored in memory to match the segmented blocks to get a most likely room number. After that, it will compare it with the desired room number and give an output of matched or not matched.
Due to great changes in physical environment and some flaws in the old algorithm, this program uses absolute new method in locating room number plates. For the digits segmentation and matching parts, it doesn’t need to change much.
II. Developing Environment

So far, it is developed with MATLAB because it is much easier and faster to modify the algorithm for test and analysis needs. When tested with a standard image database (it is no set up yet), the algorithm will finally be implemented in C codes and debugged online.
III. Problem Description

Following are three images (size 352×288) taken from different distances:
[image: image1.jpg]


 (1)

[image: image2.jpg]


 (2)

[image: image3.jpg]MACHINE
| INTELLIGENCE
- LABORATORY




 (3)

There are many disturbing factors in the images:

1. Images are not very clear due to the resolution and focus setting of the camera and maybe lighting condition.
2. The size lean of the number plates differs greatly.

3. The lab name plates have some similar features with the number plates. It can be a big disturbance.

4. Some other objects like the door’s frame or something in the room.

Useful information includes:

1. The color of the plate.

2. The fixed width-to-height ratio.
3. The sharp color contrast between the plate and the wall as well as the numbers on the plate.

4. The physical distribution of the plates and the door.

IV. Room Number Plate Recognition Algorithm
This is the first step, most important and most difficult part of the algorithm, because it suffers from all the disturbing factors listed above and its result directly influence later digit segmentation and matching steps.
The old algorithm uses direct template matching to locate the plate. It totally depends on the selection of the template. But we don’t have much information about the template such as its size and lean or so on. And in the new environment, the lab name plates can very easily mislead the template matching method.
In this algorithm, some prior knowledge and color information are taken into consider. According to real world knowledge, we can make some assumptions:
1. The number plate is not located on the border of the image. We can easily make it by adjusting the location of the camera.

2. There is no big area with same color with the number plate under the room number. It is always true according to my observation.

3. The width-to-height ratio is fixed for both the plate and the digits.

4. The number plate doesn’t lean too much.

5. The color of the number plate doesn’t change.

First of all, in order to use the plate color information, we need to define what is the color of the plate in a way that computer can understand. A covariance matrix c is introduced to represent the core of the color. The value of c is a learning result from some marked images. 

[image: image4.png]


 

[image: image5.png]



[image: image6.png]MACHINE
INTELLIGENC
LABORATORY

.

M.LL.




 Marked image

All the RGB values of pixels in the white areas are our training data. With supervised training, we can get a rather reliable covariance matrix c using follow expression:


[image: image7.wmf][

]

1

()

()()()(),

()

1

()

i

iiiii

i

N

i

i

rmeanr

cgmeangrmeanrgmeangbmeanbwhere

bmeanb

meanxx

N

=

-

éù

êú

=----

êú

êú

-

ëû

=

å


Finally, we have:


[image: image8.wmf]1

1

1

N

i

i

cc

N

-

=

éù

=

êú

ëû

å


Secondly, we cut the border of the images in order to get rid of edge effect caused by the camera.

Then, a threshold 
[image: image9.wmf]d

t

 is set. All pixels with 
[image: image10.wmf][

]

d

r

drgbcgt

b

éù

êú

=>

êú

êú

ëû

 are set to be background. Take image (3) as an example, the following image is generated:
[image: image11.emf]
In this step, some procedure of noise control can also be introduced. In this algorithm, we calculate all the connected areas and throw away those with fewer pixels than a set threshold. And for more precise color definition, we can use an ANN as a color classifier.
In the fourth step, the image is converted into grayscale. Then sum of the grayscale values of pixels is calculated for every line. Following is the plot of the values. [image: image12.emf]0 0.5 1 1.5 2 2.5 3

x 10

4

0

20

40

60

80

100

120

140

160

180

200


It is easy to find that the number plate corresponds to the first peak form down to up. By locating the peak, we locate the vertical position of the number plate as follow:

[image: image13.emf]
The fifth step, in the image above, we sum up the gray values for every column and get the plot as follow:

[image: image14.emf]0 20 40 60 80 100 120 140 160 180 200

0

1000

2000

3000

4000

5000

6000

7000

8000


Similar to locating the vertical position, we can locate the horizontal position of the number plate. Then the position of the plate is fixed. The plate locating part ends here.
[image: image15.emf]
For digits segmentation, we can still sum up pixel values for every column, get the plot:

[image: image16.emf]0 10 20 30 40 50 60 70

0

1000

2000

3000

4000

5000

6000


It is obvious that every peak in the plot represents a digit. So we can easily segment the digits as follow:

[image: image17.emf]
Then, according to the knowledge that every digit has a fixed width-to-height ratio, we can get exact digit areas. In these areas, with simple template matching method, we can figure out the room number.
V. Future Works

· Build up an image database to test the algorithm. Find flaws and improve it.

· Implement the algorithm in C codes when it passes all the tests.

· Do some online debugging.
· Optimize codes and get some statistical result.
_1203825967.unknown

_1203826404.unknown

_1203826394.unknown

_1203825914.unknown

