

Special Sensor Report:

CMUcam

University of Florida
Department of Electrical and Computer Engineering

EEL5666
Intelligent Machines Design Laboratory

Brian Ruck
April 22, 2003

Instructor: Dr. Arroyo
TAs: Uriel Rodriguez

Jason Plew

Introduction

 Nigel uses the CMUcam to find people wearing the color blue or have blue

somewhere on there person. The camera, made by Carnegie Mellon University, was

purchased at Seattle robotics, (www.seattlerobtics.com) for $109.00, pre-assembled.

Acroname also sells the cam but it doesn’t come pre-assembled. After looking at a

classmate’s unassembled CMUcam from Acroname it is my personal recommendation to

just get it pre-assembled. The cam from Seattle robotics also comes with a built in IR-

filter, which proves useful when tracking colors when outside light is emitting through.

CMUcam
The CMUcam’s abilities include, position and size tracking of colorful or bright

objects, measure the RGB and YUV characteristics of an image region, display images

and bitmap of objects via serial port. For Nigel’s purpose, the use of the CMUcam is

quite simple, Nigel will utilize the color tracking feature and interface with the board to

control its servos to approach a person wearing the color blue. The images “dumped” by

the camera had a very dark red tint thus discoloring objects placed in front of it. A

picture of a stuffed bear displaying a variety of colors is shown below to demonstrate the

images on the cam.

The bear is white, with a red bowtie around its neck, black glasses and a blue hat. This

picture was taken under bright lighting conditions in my room. As you can see, this type

of lighting is not good and tracking a color like blue would prove to be difficult. The best

images were obtained when I was under fluorescent lighting, colors were more distinct

and the picture was much clearer.

Camera Integration

 The CMUcam itself uses a SX28 microcontroller that communicates either

through a RS-232 or a TTL serial port. To integrate with my AVR-MEGA progressive

development board I communicated through the RS-232 and level shifted serial port.

Communication through this port uses the following parameters:

• 115,200 baud

• 8 data bits

• 1 Stop bit

• No Parity

• No Flow control

These parameters are ideal for communication with a computer, i.e. hyper terminal.

However, one can interface it with a board just the same. The camera has several

commands that are rather easy to use; the command that was relevant for Nigel was the

track color command or “TC”. By using the CMUcam software that came with the cam,

I was able to easily dump a frame, get color coordinates and obtain values for the

minimum and maximum intensities of the camera’s main colors red, blue, and green.

Once those values are entered, the track color function can be assessed and the once the

colored object is placed in front of the cam the green light will blink indicating that the

color being tracked is found, what is being returned from the camera is an M-type packet

which consists of:

M mx my x1 y1 x2 y2 pixels confidence

This string is what I will use to calibrate Nigel to chase the color blue.

M=represents M type packet

mx=middle mass x

my=middle mass y

x1, y1, x2, y2 represent the coordinates of the box that the camera sees when it is

tracking.

For Nigels purposes, I am only concerned with the middle mass x (mx) where he will

turn left, right or go straight depending on where the color goes.

 This method of obtaining “min and max” RGB color coordinates was extremely

easy, but communicating with the board proved to be rather tedious. The problem was

that I was able to send commands to the camera but not able to receive packets of info

back. After much frustration and collaboration, a method of communication was

established. Before communication between the cam and the board can be established it

is necessary to figure out where the Tx, Rx pins are located on the cam. As shown

below:

To receive packets from the camera, the Tx and Rx pins on the cam must be crossed to

connect properly to the Rx and Tx pins of the board. In other words, pins 2 and 3 from

the camera need to be crossed so the transfer (pin2) of the cam is the receive pine of the

board (pin 3) and the receive pin of the cam (pin3) is connected to the transfer of the

board (pin 2). By doing this and cutting all the other wires we were able to establish a

clean and steady communication system. Thus, I was able to send a string of commands

and receive the middle x packet byte and display it on PortC. The following code was

originally written by Kyle Tripician (see Aluminator/Spring2003) and modified to fit

Nigel’s tracking coordinates for the color blue.

//C code used to test the track color command and get middle x value on PortC.
/*
Brian Ruck
CMUcam code

Courtesy of
Kyle Tripician
*/

#include <io.h>
#include <sig-avr.h>
#include <stdlib.h>
#include <interrupt.h>
#include <progmem.h>
typedef unsigned char u08;
typedef unsigned int u8;
typedef char s08;
typedef unsigned short u16;
typedef short s16;
#include "uart.h"
#include "delay.h"
volatile u8 temp;
volatile u8 i=0;
volatile u8 cmudat[9];

SIGNAL(SIG_UART_RECV){
 temp=inp(UDR);
 if(temp != 0x3A){
 if(temp == 0x20 || i==9){
 i=0;
 }
 else if(i==0){
 if(temp == 0xFF){
 cmudat[i]=temp;
 i++;
 }
 }
 else if(temp !=0x20 && i<9){
 cmudat[i]=temp;
 i++;
 }
 }

}
void blink(void){
 uartstring("L1 1\r");
 delay(1500);
 delay(1500);
 delay(15000);
 uartstring("L1 0\r");

 delay(15000);
 delay(1500);
 delay(1500);

 }
int main(void){
 outp(0xFF,DDRC);
 delay(10000);
 uartinit();
 delay(10000);
 uartstring("PM 1\r");
 delay(1000);
 uartstring("RM 3\r");
 delay(1000);
 sei();
 delay(1000);

 while(1){
 uartstring("TC 42 62 33 53 40 90\r");
 outp(cmudat[2],PORTC);
 delay(20000);
// blink();
 }
}

