REU Summer 2005

Dr. A. A. Arroyo

Dr. E. M. Schwartz

Koolio

August 1, 2005

Sara Keen

Table of Contents

Abstract…………………………………………………………………………3

Executive Summary……………………………………………………………..3

Introduction………………………………………………………………………3

Integrated System…………………………………………………………….….4

Mobile Platform………………………………………………………………….6

Actuation………………………………………………………………………….7

Sensors……………………………………………………………………………9

Behaviors…………………………………………………………………………10

Experimental Layout and Results………………………………………………...11

Conclusion………………………………………………………………………..12

Documentation……………………………………………………………………13

Appendices………………………………………………………………………..13

Abstract

Many years ago two students at the University of Florida, Kevin Phillipson and Brian Pietrodangelo, created a robot named Koolio. Koolio is a combination between R2D2 and a vending machine. He can accept orders wirelessly and bring delicious snacks to the correct room. However, Koolio is not as robust as he once was. He is in need of a new motor control system so he can maneuver through the doorways of professor’s offices. I am in the process of implementing this system with the goal of putting Koolio in motion once again.

Executive Summary

Koolio is an efficient and impressive robot. He is equipped with multiple sensors for obstacle avoidance, a compass to determine direction, and two cameras to read room numbers. He even has a docking station where he can recharge every time he is not on a delivery. His behaviors include navigating hallways, reading every room number he passes by and finding his docking station and driving onto it. Koolio is one of the largest robots ever created in the Machine Intelligence Laboratory. He is the result of years of work from several engineers.

The most difficult part of working on him was learning how his creators designed and programmed him. I spent a good deal of time reading old code and taking things apart before I fully understood how to control Koolio. Although it is always tempting to begin a new individual project, I have enjoyed this opportunity to contribute to a group effort, and see more impressive results.

Introduction

Recently Koolio’s inventors graduated and Koolio has been left in the MIL, waiting patiently for an ambitious new student to revive him. I have accepted this task. With a new motor control system Koolio will once again be roaming the halls of Benton, bringing tasty snacks to hardworking students and professors. In this report I will discuss the hardware and software I am using to recreate Koolio.

Integrated System

Koolio uses an Atmega128 to control most of his behavior. It provides PWM outputs for both motors and reads the sonar sensors and compass. This is the board I have used to add behaviors to Koolio. He also has a microcontroller board that uses Linux, which controls the LCD that serves as his face. The entire Linux system operates independently of everything else, and I have not included it in this project.

Below is the driving circuit Koolio uses now.

I have focused only on the motor driver and motors. Koolio is a large, heavy robot, which makes perfectly smooth steering a difficult task. I opted not to install new motors, mainly for economic reasons. With the new optical encoders I have installed, the motors need not be perfect. The software that accompanies these changes will be somewhat complex, and will have to be tested many times before it is perfect. Koolio will be given a motor controller board from Rasta Robotics, which will be easily interfaced with the encoders.

Mobile Platform

Koolio has a round base that contains all of his docking hardware batteries, motors and gearboxes. His metal skirt hides all of this, including his wheels. The refrigerator rests atop this base, and the most of the electronics are contained in a box on its back. Two metal poles mounted on the base support the LCD screen, which is around eye-level. Koolio stands at nearly six feet tall, which means that sensors for obstacle avoidance must be at any different heights as well as on all sides. On either side of his head sonar modules and cameras are mounted. This ensures accurate distance readings, and allows the camera to read every room number along a hallway.

[image: image1.jpg]

Koolio has a low center of gravity, which means balancing is no problem. His Rasta hairpiece is present only for aesthetics. My work on Koolio will be contained within his base, and the outside will not change significantly.

Actuation

Below is a picture of the current motor system in Koolio.

[image: image2.wmf]

Koolio’s wheels are both mounted on one shaft, and are turned by the gearboxes behind them. Only some parts of the motor system will change. I plan to use the LM628 Precision Motor Controller and attach the encoders to the motor shaft with belts. The LM628 will use feedback from the encoders as input to the PID filter. This is what will control Koolio’s movements. The PID algorithm uses three terms to create the control equation. The proportional, or ‘P’ term is the error, or offset from the ideal speed, multiplied by a constant Kprop. The integral, or ‘I’ term is the running total of errors since startup, multiplied by a constant Kint. The derivative, or ‘D’ term is the rate of change in error multiplied by constant Krate. The final control equation is a sum of these terms (some will be negative.) The constants will be determined by trial and error. The equation will determine if the motors need more or less power, and they will steadily approach their target speed. Below is a block diagram of a closed loop control system.

[image: image3.png]

This system will prevent any jerky movements or uncontrolled motions.

The LM628 will be placed on a development board for easy use. The encoders will be mounted so theirs shafts run parallel to Koolio’s. The motors have been remounted to keep them from twisting due to torque. The motors were made by Fisher-Price to be used in a Power Wheels vehicle. They work well for Koolio because they have a high torque rating, and move at very slow speeds. Both are powered from one of the two main 12 V batteries. Because his wheel are in the center of his body Koolio is able to turn in place, which makes narrow doorways much less of a problem.

Sensors

The only sensors I have installed in Koolio are S1 Optical Shaft Encoders from US digital. These give 500 counts per rotation using quadrature outputs. The encoders output a digital signal using TTL logic levels that is then used by the LM628 as input to the PID filter. Their shaft rotation is continuous and reversible, and they are capable of reading speeds up to 100 RPM.

[image: image4.jpg]

Koolio also uses six Devantech SRF08 sonar sensors from Acroname. Two are mounted on his head, facing out, two on top of the refrigerator, and two atop the base. These sensors have a range of 3cm to 6m and can be read using I2C. The sonar rangers give Koolio enough information to perform obstacle avoidance, wall follow and pass through doorways.

A Devantech Compass mounted on the refrigerator aids Koolio in navigation. The compass is able to detect the Earth’s magnetic field using a Philips KMZ51 sensor. This sensor can also be read using I2C. The sonar sensors and compass are constantly read during interrupt service routines in the main code.

Behaviors

With a new motor control system Koolio will be able to smoothly roll down hallways and turn into doorways without running into obstacles. When Koolio has completed his deliveries he will return to his docking station and gently redock. Koolio will use data from the encoders and sonar modules to determine his speed and direction. With my additions Koolio will be able to do everything he could before, but with more style. I hope to incorporate other forms of feedback, such as the compass, into Koolio’s navigation program soon.

As of now, the sonar sensors are used for obstacle avoidance, and the compass is not currently used. I have added wall following to Koolio’s main program and a function that allows him to circle items blocking his path. Koolio can correct his steering when he comes too close to an object, and redirect himself until he no longer is headed towards something. He also will speed up when there are no obstacles in sight, and slow down for turns or circling objects.

Experimental Layout and Results

Originally I planned install new motors in Koolio. However, after looking at various options, I decided new motors are more time and trouble than they are worth. Instead I chose to improve the motor control system by constantly recording feedback with the LM628 chips. I also originally tried to mount the encoders using gears connected to the gearbox. I found that after the gear reduction, I would be reading several thousand counts per rotation. I settled for using a pulley connected directly to the motor shaft instead. This installation also turned out to be much easier.

I also contemplated eliminating the single shaft that both wheels are mounted on. However, after closely inspecting the motor setup, I realized the wheels would not be able to support Koolio’s weight without it.

[image: image5.jpg]

Conclusion

With new hardware, software, and a little bit of elbow grease, Koolio will once again be gliding through the halls of Benton. I look forward to continuing my work with Koolio next semester, and eventually integrating all of his sensors. Soon, Koolio will be a staple in every office building in America.

Documentation

Resources:

Building Robot Drive Trains by Dennis Clark and Michael Owings.

Published by McGraw-Hill, 2003.

http://www.mil.ufl.edu/~brian/Koolio/Koolio.htm

Created by Brian Pietrodangelo and Kevin Philipson.

Appendices

Sources for Parts:

LM629 Precision Motor Controller

National Semiconductor

SI Optical Shaft Encoder

US Digital

Devantech SRF08 Sonar Sensors ad Compass

Acroname

Source Code

/*

Kevin Phillipson

12/6/03

Modified by Sara Keen

7/24/05

Robot: Koolio

MCU: Atmega128

*/

#define F_CPU

16000000L

#define
CMP_SMP
2

#define
SNR_SMP
2

#define TURN_R
1

#define TURN_L
-1

#define
CENTER
0

// CMD

#define
IDL
0

#define
SNR
1

#define
SNL
2

#define
FWD
4

#define
REV
8

#define
RRT
9

#define
RLT
10

#define
AI
16

#define
FRT
5

#define
FLT
6

#define
DOCK
12

#define
BRK
32

// Sara's Code

#define FORWARD

0x40

#define REVERSE

0x80

#define IDLE

0x00

#define
RIGHT_TURN

0x10

#define
LEFT_TURN

0x20

#define VEER_RIGHT

0x50

#define VEER_LEFT

0x60

#define
REVERSE_RIGHT
0x90

#define REVERSE_LEFT
0xC0

#define
tr_thresh

15

#define br_max

60

#define
tl_thresh

15

#define bl_max

60

#define
cr_thresh

20

#define
cl_thresh

20

#define
bl_thresh

25

#define
br_thresh

25

#define bl_mid

45

#define
br_mid

45

// I2C addresses

#define SNR_BR

0xE2

#define SNR_BL

0xE0

#define SNR_CR

0xE4

#define SNR_CL

0xE6

#define SNR_TR

0xE8

#define SNR_TL

0xEA

/* mem_map addresses */

#define CON

0xFF

#define ENCR0

0XE0

#define ENCR1

0XE1

#define ENCR_SP

0XE2

#define ENCL0

0XD0

#define ENCL1

0XD1

#define ENCL_SP

0XD2

#define PWM_X

0XC0

#define PWM_Y

0XB0

#define RC

0XA0

// State defines

#define BOOTUP

0

#define DOCKED

1

#define UNDOCK

2

#define LEAVE

3

#define MANUAL

4

// Includes

#include <avr/io.h>

#include <lcd.h>

#include "srf08.h"

#include "compass.h"

#include "i2c.h"

#include <avr/interrupt.h>

#include <avr/signal.h>

#include <stdlib.h>

typedef unsigned char u08;

typedef char s08;

typedef unsigned short u16;

typedef short s16;

typedef u08 bool;

// Prototypes

void init_uart(void);

char rec(void);

void send (char data);

void send_str (const char *p);

char get_ser(void);

char check_ser(void);

void set_pwm_x(signed int a);

void set_pwm_y(signed int a);

void stop(void);

void init_memmap(void);

void delay_ms(unsigned long int ms);

void delay(unsigned long us);

void mem_wr(unsigned char byte, unsigned int add);

unsigned char mem_rd(unsigned int add);

void send_hex(unsigned char a);

//unsigned int read_ir(unsigned char a);

void lcd_send_dec(unsigned int a);

void lcd_out(void);

void lcd_label(void);

void clr_enc(void);

unsigned char dir2bearing(unsigned char dir, unsigned char range);

void spin2bearing(unsigned char dir, unsigned char range);

void execmd(void);

void fwd_oa(unsigned int len, unsigned char thold);

//Gobal Variables

volatile unsigned char pstate=BOOTUP,nstate=BOOTUP,flag=0,ramp=0;

volatile unsigned char snr_num=0,snr_ping=0,relay=0;

volatile unsigned char bearing,time,time2,con,cmd=0,old_cmd=0;

volatile unsigned int tr,tl,cr,cl,br,bl,ldis=0,rdis=0,dis=0;

volatile unsigned char cmp_avg[CMP_SMP];

volatile char rsp=0,lsp=0,chg_dir=0,dir=0,old_dir=0;// speed of wheels

volatile int rpwm=0,lpwm=0,t_rpwm=0,t_lpwm=0,t_pwm=0,t_rate=0,old_t_pwm=0;

// current pwm for motors

uint16_t demo_count;

/*

while(1)

{

switch (pstate)

{

case BOOTUP:

t_pwm=90;

t_rate=60;

cmd=IDL;

if (mem_rd(RC)==1)

{

delay_ms(200);

relay = 0x03;

mem_wr(relay,RC);

delay_ms(200);

relay = 0x0F;

mem_wr(relay,RC);

delay_ms(50);

nstate=DOCKED;

} else

{

nstate=MANUAL;

}

break;

case DOCKED: // Wait for job

cmd=IDL;

if (con==(DOCK|AI))

nstate=UNDOCK;

if (check_ser())

{

nstate=UNDOCK;

while(check_ser())

a=get_ser();

}

break;

case UNDOCK: // Undock and rev to door

relay = 0x03;

mem_wr(relay,RC);

delay_ms(200);

relay = 0x00;

mem_wr(relay,RC);

delay_ms(50);

nstate=LEAVE;

break;

case LEAVE:

t_pwm=90;

//

clr_enc();

cmd=REV;

execmd();

while (dis<16)

{

if ((lsp==0) && (rsp==0))

t_pwm=125;

else

t_pwm=90;

}

spin2bearing(100,1);

fwd_oa(20,12);

spin2bearing(10,1);

nstate=MANUAL;

break;

case MANUAL:

//
lcd_gotoxy(10,3);

//lcd_puts("test");

t_pwm=125;

t_rate=60;

cmd=(mem_rd(CON)&0x0F);

if (cmd==DOCK)

nstate=BOOTUP;

break;

default:

nstate=BOOTUP;

break;

}

pstate=nstate;

}*/

/*

//
t_speed=12;

t_pwm=150;

t_rate=100;

cmd=mem_rd(CON);

if (cmd==DOCK)

{

if (mem_rd(RC)==0)

{

while (tl > 15)

{

t_pwm=100;

cmd=FWD;

}

while (tl < 20)

{

t_pwm=75;

cmd=FWD;

}

cmd=BRK;

while (dir2bearing(145,1)!=BRK)

{

t_pwm=75;

cmd=dir2bearing(145,1);

}

while (mem_rd(RC)==0)

{

t_rate=50;

if ((lsp+rsp)==0)

t_pwm=160;

else

t_pwm=90;

if (br<14)

{
if (bearing<145)

cmd=FRT;

}

else

cmd=FWD;

}

}

cmd=BRK;

while(cmd!=DOCK)

{

if (mem_rd(RC)==1 && relay==0)

{

cmd=IDL;

stop();

delay_ms(200);

relay = 0x03;

mem_wr(relay,RC);

delay_ms(200);

relay = 0x0F;

mem_wr(relay,RC);

delay_ms(50);

}

cmd=mem_rd(CON);

}

cmd=IDL;

relay = 0x03;

mem_wr(relay,RC);

delay_ms(200);

relay = 0x00;

mem_wr(relay,RC);

delay_ms(50);

}

*/

 // End of While(1)

// Delay (increments of about ~1ms).

void delay_ms(unsigned long int ms)

{

ms=ms*2000;

while (ms)

{

asm volatile("nop\n\t"::);

asm volatile("nop\n\t"::);

ms--;

} /* 8 cpu cycles per loop */

}

void delay(unsigned long us)

{

us= us*2;

while (us)

{

asm volatile("nop\n\t"::);

asm volatile("nop\n\t"::);

us--;

} /* 8 cpu cycles per loop */

}

/*

unsigned int read_ir(unsigned char a) {

unsigned int ir;

//
ADMUX = 0X40;

//
ADCSRA = 0XE0;

//ACSR=0x80;

ir=0;

ADMUX=(0x40+a-1); //Selects voltage range and channel

ADCSRA=0xE0; //Enables A/D, Starts Conversion, Selects Free Running

//for(a=0; a<=10; a++)

ir=ADC;

//ir=ir/10;

return ir;

return 0;

}

*/

void lcd_send_dec(unsigned int a) {

unsigned char cnt, exp;

unsigned int x,y;

for (cnt=3; cnt>=1; cnt--) {

y=1;

for(exp=cnt; exp>1; exp--)

y=y*10;

x=a/y;

x=x%10;

lcd_putc(x+48);

}

}

void lcd_label(void)

{

lcd_gotoxy(0,0);

lcd_puts("EL:");

lcd_gotoxy(7,0);

lcd_puts("ER:");

lcd_gotoxy(14,0);

lcd_puts("CP:");

lcd_gotoxy(0,1);

lcd_puts("TL:");

lcd_gotoxy(7,1);

lcd_puts("CL:");

lcd_gotoxy(14,1);

lcd_puts("BL:");

lcd_gotoxy(0,2);

lcd_puts("TR:");

lcd_gotoxy(7,2);

lcd_puts("CR:");

lcd_gotoxy(14,2);

lcd_puts("BR:");

lcd_gotoxy(15,3);

lcd_puts("S:");

}

void lcd_out(void)

{

lcd_gotoxy(3,0);

lcd_send_dec(ldis);

lcd_gotoxy(10,0);

lcd_send_dec(rdis);

lcd_gotoxy(17,0);

lcd_send_dec(bearing);

lcd_gotoxy(3,1);

lcd_send_dec(tl);

lcd_gotoxy(10,1);

lcd_send_dec(cl);

lcd_gotoxy(17,1);

lcd_send_dec(bl);

lcd_gotoxy(3,2);

lcd_send_dec(tr);

lcd_gotoxy(10,2);

lcd_send_dec(cr);

lcd_gotoxy(17,2);

lcd_send_dec(br);

lcd_gotoxy(0,3);

if ((con&0x10)==AI)

lcd_puts("AI:");

else

lcd_puts("OV:");

switch (cmd)

{

case FWD:

lcd_puts("FWD");

break;

case REV:

lcd_puts("REV");

break;

case FLT:

lcd_puts("FLT");

break;

case FRT:

lcd_puts("FRT");

break;

case RLT:

lcd_puts("RLT");

break;

case RRT:

lcd_puts("RRT");

break;

case SNR:

lcd_puts("SNR");

break;

case SNL:

lcd_puts("SNL");

break;

case BRK:

lcd_puts("BRK");

break;

case DOCK:

lcd_puts("DOCK");

break;

default:

lcd_puts("IDL");

break;

}

lcd_gotoxy(7,3);

lcd_send_dec(lsp);

lcd_gotoxy(11,3);

lcd_send_dec(rsp);

lcd_gotoxy(17,3);

lcd_send_dec(pstate);

}

unsigned char dir2bearing(unsigned char dir, unsigned char range)

{

// turn right
= 1

// centered

= 0

// turn left
= -1

signed char a;

unsigned char b,c;

b=bearing;

c=abs(b-dir);

if (c<=range)

return IDL;

if(b<dir)

a=SNR;

else

a=SNL;

if (c>128)

{

if (a==SNR)

a=SNL;

else

a=SNR;

}

return a;

}

void spin2bearing(unsigned char dir, unsigned char range)

{

unsigned char a,temp,p;

unsigned int error;

a=ramp;

ramp=0;

temp=t_pwm;

t_pwm=0;

cmd=BRK;

execmd();

while((lsp>0) || (rsp>0));

while(dir2bearing(dir,range)!=IDL)

{

cmd=dir2bearing(dir,0);

t_pwm=45;

while(cmd!=BRK)

{

delay_ms(5);

if ((lsp==0) || (rsp==0))

{

t_pwm=t_pwm+1;

p=t_pwm;

}

else

{

error=abs(bearing-dir);

if (error>20)

error=20;

error=20-error;

t_pwm=p-error;

}

if (dir2bearing(dir,range)!=cmd)

cmd=BRK;

execmd();

}

while((lsp>0) || (rsp>0));

}

ramp=a;

t_pwm=temp;

}

void execmd(void)

{

flag=1;

while(flag);

}

void fwd_oa(unsigned int len, unsigned char thold)

{

clr_enc();

while(dis<=len)

{

if ((br<=10) || (bl<=10))

{

cmd=BRK;

while ((con&DOCK)!=DOCK);

}

else

{

if ((br<thold) || (bl<thold))

{

if (br<bl)

cmd=FLT;

else

cmd=FRT;

}

else

{

cmd=FWD;

}

}

}

cmd=IDL;

}

void clr_enc(void)

{

mem_wr(0,ENCL0);

mem_wr(0,ENCL1);

mem_wr(0,ENCR0);

mem_wr(0,ENCR1);

ldis=0;

rdis=0;

dis=0;

}

//enters interupt every .016384 sec

SIGNAL(SIG_OVERFLOW0)

{

unsigned char a;

unsigned int total,snr_rd;

//demo_count++;

//
if(demo_count == 100)

//
{

//
PORTD |= RIGHT_TURN;

//
}

flag=0;

//------------------------------------Read controller

con=mem_rd(CON);

//enters here every .049152 sec

time++;

if (time==3)

{

flag=0;

time=0;

lcd_out();

// Update lcd

//------------------------------------Sample compass

/*for (a=0; a<CMP_SMP-1; a++)

cmp_avg[a]=cmp_avg[a+1];

cmp_avg[CMP_SMP-1]=bearing_8();

total=0;

for (a=0; a<CMP_SMP; a++)

total=total+cmp_avg[a];

bearing=total/CMP_SMP;*/

bearing=bearing_8();

lsp=mem_rd(ENCL_SP);

rsp=mem_rd(ENCR_SP);

ldis=(mem_rd(ENCL1)<<8)|(mem_rd(ENCL0));

rdis=(mem_rd(ENCR1)<<8)|(mem_rd(ENCR0));

dis=(ldis+rdis)/2;

//-------------------------------------Set pwm

if ((con&0x10)!=AI)

cmd=con;

if ((cmd!=old_cmd) || (old_t_pwm!=t_pwm))

{

old_cmd=cmd;

old_t_pwm=t_pwm;

switch (cmd)

{

case FWD:

dir=0;

if (t_pwm>110)

t_lpwm=t_pwm+10;

else

t_lpwm=t_pwm;

t_rpwm=t_pwm;

break;

case FRT:

dir=0;

t_lpwm=t_pwm;

t_rpwm=t_pwm-t_rate;

break;

case FLT:

dir=0;

t_lpwm=t_pwm-t_rate;

t_rpwm=t_pwm;

break;

case REV:

dir=1;

t_lpwm=-t_pwm;

t_rpwm=-t_pwm;

break;

case RRT:

dir=1;

t_lpwm=-t_pwm;

t_rpwm=-t_pwm+t_rate;

break;

case RLT:

dir=1;

t_lpwm=-t_pwm+t_rate;

t_rpwm=-t_pwm;

break;

case SNR:

dir=2;

t_lpwm=t_pwm;

t_rpwm=-t_pwm;

break;

case SNL:

dir=3;

t_lpwm=-t_pwm;

t_rpwm=t_pwm;

break;

case BRK:

dir=4;

t_lpwm=0;

t_rpwm=0;

break;

default:

t_rpwm=0;

t_lpwm=0;

break;

}

}

if (dir!=old_dir)

{

old_dir=dir;

chg_dir=1;

}

if (chg_dir==0) // If neither wheel is changing direction

{

if (t_lpwm >= 0) //Target pwm and Current pwm postive

{

if(ramp==1)

{

if (abs(t_lpwm-lpwm) <= 8)

{

lpwm=t_lpwm;

}

else

{

if (t_lpwm < lpwm) //If deceleration dec pwm

lpwm=t_lpwm;

else

lpwm=lpwm+8; //If acceleration inc pwm

}

}

else

{

lpwm=t_lpwm;

}

}

else //Target pwm and Current pwm negative

{

if(ramp==1)

{

if (abs(t_lpwm-lpwm) <= 8)

{

lpwm=t_lpwm;

}

else

{

if (t_lpwm > lpwm) //If deceleration dec pwm

lpwm=t_lpwm;

else

lpwm=lpwm-8; //If acceleration inc pwm

}

}

else

{

lpwm=t_lpwm;

}

}

if (t_rpwm >= 0) //Target pwm and Current pwm postive

{

if(ramp==1)

{

if (abs(t_rpwm-rpwm) <= 8)

{

rpwm=t_rpwm;

}

else

{

if (t_rpwm < rpwm) //If deceleration dec pwm

rpwm=t_rpwm;

else

rpwm=rpwm+8; //If acceleration inc pwm

}

}

else

{

rpwm=t_rpwm;

}

}

else //Target pwm and Current pwm negative

{

if(ramp==1)

{

if (abs(t_rpwm-rpwm) <= 8)

{

rpwm=t_rpwm;

}

else

{

if (t_rpwm > rpwm) //If deceleration dec pwm

rpwm=t_rpwm;

else

rpwm=rpwm-8; //If acceleration inc pwm

}

}

else

{

rpwm=t_rpwm;

}

}

set_pwm_x(lpwm);

set_pwm_y(rpwm);

}

else // If either wheel changes direction wait to stop

{

rpwm = 0;

lpwm = 0;

stop();

if ((lsp == 0) && (rsp == 0))

chg_dir = 0;

}

//------------------------------------Read I2C devices

if (snr_ping==0)

{

srf08_select_unit(0xE0+snr_num);

start_ping(SRF08_INCHES);

snr_ping=1;

} else

{

if (check_ping()==1)

{

snr_rd=read_ping();

if (snr_rd!=0) {

switch(0xE0+snr_num)

{

case
SNR_TR:

tr=snr_rd;

break;

case
SNR_TL:

tl=snr_rd;

break;

case
SNR_CR:

cr=snr_rd;

break;

case
SNR_CL:

cl=snr_rd;

break;

case
SNR_BR:

br=snr_rd;

break;

case
SNR_BL:

bl=snr_rd;

break;

}

}

snr_ping=0;

snr_num=snr_num+2;

if (snr_num==12)

snr_num=0;

}

}

}

}

int main(void){

/* change sonar's I2C address NOTE: make sure only one sonar is plugged in!

delay(1000000);

srf08_select_unit(0XE8);

delay(1000000);

srf08_change_i2c_address(0XE4);

delay(100000);

while(1)

{

}

*/

// Global variable init

// Main fucntion Variables

unsigned char a,b;

// Start timer for interupt

TCCR0=0x05;

TCNT0=0x00;

TIMSK=0x01;

//Initialize demo interrupt

// Init Devices

// LCD

lcd_init(LCD_DISP_ON);

delay(0x1600);

lcd_clrscr();

lcd_label();

// Memory Map

init_memmap();

// Serial uart

init_uart();

//Encoders

//
clr_enc();

//Sonars

for (a=0; a<=5; a++) {

srf08_select_unit(0xE0+(a*2));

srf08_init();

srf08_set_gain(20);

srf08_set_range(3000); // Set range to 3000mm

}

//
DDRD |= 0xFC;

//
PORTD &= 0x00; //(PORTD & 0x03);

//Start interrupt routine

sei();

ramp=1;

//Main while loop

t_pwm=90;

t_rate=60;

cmd = IDL;

while(1)

{

if ((con&0x10)==AI)

{

//stay in middle of hallway

while((br_max > br) && (br > tr_thresh) && (bl_max > bl) && (bl > bl_thresh)

&& (cr > cr_thresh) && (cl > cl_thresh))

{

t_pwm = 100;

// Alignment Code

if(br > (bl + 12))

{

//closer to left

cmd = FRT;

delay_ms(10);

cmd = FWD;

delay_ms(25);

//cmd = FWD;

}

else if(bl > (br + 12))

{

//closer to right

cmd = FLT;

delay_ms(10);

cmd = FWD;

delay_ms(25);

//cmd = FWD;

}

else

cmd = FWD;

}

// Wall following on right side

if((br_max > br) && (br > br_thresh) && (bl > bl_thresh)

&& (cr > cr_thresh) && (cl > cl_thresh))

{

while((br > br_thresh) && (bl > bl_thresh) && (cr > cr_thresh) && (cl > cl_thresh))

{

if(br < br_mid)

// if too close to right walls

{

cmd = FLT;

delay_ms(1);

cmd = FWD;

delay_ms(3);

}

if(br > br_max)

//too far from right wall

{

cmd = FRT;

delay_ms(1);

cmd = FWD;

delay_ms(3);

}

}

}

// Wall following on leftt side

if((bl_max > bl) && (bl > bl_thresh) && (br > br_thresh)

&& (cr > cr_thresh) && (cl > cl_thresh))

{

while((br > br_thresh) && (bl > bl_thresh) && (cr > cr_thresh) && (cl > cl_thresh))

{

if(bl < bl_mid)

// too close to left wall

{

cmd = FRT;

delay_ms(1);

cmd = FWD;

delay_ms(3);

}

if(bl > bl_max)

//too far from left wall

{

cmd = FLT;

delay_ms(1);

cmd = FWD;

delay_ms(3);

}

}

}

if((cr > cr_thresh) && (br > br_thresh) && (cl > cl_thresh) && (bl > bl_thresh))

{
//not close to anything

t_pwm = 100;

cmd = FWD;

}

else if((bl > bl_thresh) && (br > br_thresh) && (cl > cl_thresh) && !(cr > cr_thresh))

{
//object on right

t_pwm = 90;

while(!(cr > cr_thresh))

{

cmd = SNL;

}

cmd = FWD;

while(br < br_thresh)

{

cmd = FWD;

}

delay_ms(75);

cmd = SNR;

delay_ms(100);

cmd = FWD;

}

else if((bl > bl_thresh) && (br > br_thresh) && !(cl > cl_thresh) && (cr > cr_thresh))

{
//object on

t_pwm = 90;

while(!(cl > cl_thresh))

{

cmd = SNR;

}

cmd = FWD;

while(bl < bl_thresh)

{

cmd = FWD;

}

delay_ms(75);

cmd = SNL;

delay_ms(100);

cmd = FWD;

}

else if((bl > bl_thresh) && (br > br_thresh) && !(cl > cl_thresh) && !(cr > cr_thresh))

{
//object ahead

t_pwm = 90;

while((!(cl > cl_thresh)) | (!(cr > cr_thresh)))

{

cmd = SNR;

}

cmd = FWD;

while(bl < bl_thresh)

{

cmd = FWD;

}

cmd = SNL;

delay_ms(100);

cmd = FWD;

}

else if((bl > bl_thresh) && !(br > br_thresh) && (cl > cl_thresh) && (cr > cr_thresh))

{
//object on right

t_pwm = 100;

cmd = FLT;

delay_ms(50);

//cmd = FRT;

//delay_ms(25);

cmd = FWD;

}

else if((bl > bl_thresh) && !(br > br_thresh) && (cl > cl_thresh) && !(cr > cr_thresh))

{
//object on right

t_pwm = 90;

while(!(cr > cr_thresh))

{

cmd = SNL;

}

cmd = FWD;

while(br < br_thresh)

{

cmd = FWD;

}

delay_ms(75);

cmd = SNR;

delay_ms(100);

cmd = FWD;

}

else if((bl > bl_thresh) && !(br > br_thresh) && !(cl > cl_thresh) && !(cr > cr_thresh))

{
//object on ahead and on right

t_pwm = 90;

while(!(cr > cr_thresh))

{

cmd = SNL;

}

cmd = FWD;

while(br < br_thresh)

{

cmd = FWD;

}

delay_ms(75);

cmd = SNR;

delay_ms(100);

cmd = FWD;

}

else if(!(bl > bl_thresh) && (br > br_thresh) && (cl > cl_thresh) && (cr > cr_thresh))

{
//object on left

t_pwm = 90;

cmd = FRT;

delay_ms(50);

cmd = FLT;

delay_ms(25);

cmd = FWD;

}

else if(!(bl > bl_thresh) && (br > br_thresh) && (cl > cl_thresh) && !(cr > cr_thresh))

{
//object on ahead and on left

t_pwm = 90;

while(!(cl > cl_thresh))

{

cmd = SNR;

}

cmd = FWD;

while(bl < bl_thresh)

{

cmd = FWD;

}

delay_ms(75);

cmd = SNL;

delay_ms(100);

cmd = FWD;

}

else if(!(bl > bl_thresh) && (br > br_thresh) && !(cl > cl_thresh) && !(cr > cr_thresh))

{
//object on ahead and on left

t_pwm = 90;

while(!(cl > cl_thresh))

{

cmd = SNR;

}

cmd = FWD;

while(bl < bl_thresh)

{

cmd = FWD;

}

delay_ms(75);

cmd = SNL;

delay_ms(100);

cmd = FWD;

}

else if(!(bl > bl_thresh) && (br > br_thresh) && !(cl > cl_thresh) && !(cr > cr_thresh))

{
//object on ahead and on left

t_pwm = 90;

while(!(cl > cl_thresh))

{

cmd = SNR;

}

cmd = FWD;

while(bl < bl_thresh)

{

cmd = FWD;

}

delay_ms(75);

cmd = SNL;

delay_ms(100);

cmd = FWD;

}

else if(!(bl > bl_thresh) && !(br > br_thresh) && (cl > cl_thresh) && (cr > cr_thresh))

{
//objects on both sides

t_pwm = 100;

cmd = FWD;

}

else if(!(bl > bl_thresh) && !(br > br_thresh) && (cl > cl_thresh) && !(cr > cr_thresh))

{
//objects on both sides and front right

t_pwm = 100;

cmd = FLT;

}

else if(!(bl > bl_thresh) && !(br > br_thresh) && (cl > cl_thresh) && !(cr > cr_thresh))

{
//objects on both sides and front right

t_pwm = 100;

cmd = FLT;

}

else if(!(bl > bl_thresh) && !(br > br_thresh) && !(cl > cl_thresh) && (cr > cr_thresh))

{
//objects on both sides and front left

t_pwm = 100;

cmd = FRT;

}

else if(!(bl > bl_thresh) && !(br > br_thresh) && !(cl > cl_thresh) && !(cr > cr_thresh))

{
//objects on both sides and front

while(!(cl > cl_thresh) && !(cr > cr_thresh))

{

t_pwm = 90;

cmd = SNR;

}

}

}

}

}

PAGE
4

_1184762486.doc
[image: image1.png]

