Some Equations Useful in AC Power Calculations

Notation: All bold-face letters represent complex numbers.
RMS Value of a Sinusoid
$V_{\text {rms }}=V_{p} / \sqrt{ } 2$
$\mathrm{I}_{\mathrm{rms}}=\mathrm{I}_{\mathrm{p}} / \sqrt{ } 2$
Impedance
$\mathbf{Z}=\mathbf{R}+\mathrm{j} \mathbf{X}=|\mathbf{Z}| \angle \theta$
$|\mathbf{Z}|=\left(\mathrm{R}^{2}+\mathrm{X}^{2}\right)^{1 / 2}$
$\theta=\tan ^{-1}(\mathrm{X} / \mathrm{R})$
Note: θ is the angle of the load impedance (We have suppressed the subscript z.)

Ohm's Law in Frequency Domain

$$
\mathbf{V}=\mathbf{I Z}
$$

$V_{p}=I_{p}|\mathbf{Z}|$
$\mathbf{V}_{\mathrm{rms}}=\mathbf{V} / \sqrt{ } 2$
$\mathbf{I}_{\mathrm{rms}}=\mathbf{I} / \sqrt{ } 2$
$\mathrm{V}_{\mathrm{rms}}=\mathrm{I}_{\mathrm{rms}}|\mathbf{Z}|$
$\theta_{\mathrm{v}}-\theta_{\mathrm{i}}=\theta$
$\theta>0$ when $\mathrm{X}>0$ (Inductive impedance)
$\theta<0$ when $\mathrm{X}<0$ (Capacitive impedance)
Average Power
(W)

$$
\mathrm{P}=\mathrm{V}_{\mathrm{rms}} \mathrm{I}_{\mathrm{rms}} \cos \theta=\mathrm{I}_{\mathrm{rms}}^{2} \mathrm{R}=\left(\mathrm{V}_{\mathrm{rms}}{ }^{2} \cos \theta\right) /|\mathrm{Z}|
$$

Power Factor

$$
\mathrm{pf}=\cos \theta=\mathrm{R} /\left(\mathrm{R}^{2}+\mathrm{X}^{2}\right)^{1 / 2}, \quad 1 \geq \mathrm{pf} \geq 0 .
$$

If $\theta>0$ (inductive impedance), $\theta_{\mathrm{i}}<\theta_{\mathrm{v}}$, pf lagging
If $\theta<0$ (capacitive impedance), $\theta_{\mathrm{i}}>\theta_{\mathrm{v}}$, pf leading
If $\theta=0$ for purely resistive load and the pf is unity
Reactive Power
(VAR)

$$
\mathrm{Q}=\mathrm{V}_{\mathrm{rms}} \mathrm{I}_{\mathrm{rms}} \sin \theta=\mathrm{I}_{\mathrm{rms}}{ }^{2} \mathrm{X}
$$

Apparent Power
(VA)

$$
\mathrm{S}=\mathrm{V}_{\mathrm{rms}} \mathrm{I}_{\mathrm{rms}}=\mathrm{I}_{\mathrm{rms}}^{2}|\mathbf{Z}|=\mathrm{V}_{\mathrm{rms}}{ }^{2} /|\mathbf{Z}|
$$

Complex Power
(VA)

$$
\mathbf{S}=\mathbf{V}_{\mathrm{rms}}\left(\mathbf{I}_{\mathrm{rms}}\right)^{*}=\mathrm{V}_{\mathrm{rms}} \mathrm{I}_{\mathrm{rms}} \angle \theta=\mathrm{P}+\mathrm{j} \mathbf{Q}=\mathrm{I}_{\mathrm{rms}}^{2} \mathbf{Z}=\left(\mathrm{V}_{\mathrm{rms}}\right)^{2} / \mathbf{Z}^{*}
$$

Note: The only quantities that can be complex are impedance, phasor, RMS phasor, and complex power.

