LECTURE #7: MSOP, MPOS, K-Maps

EEL 3701: Digital Logic and Computer Systems

Based on lecture notes by Dr. Eric M. Schwartz

Definitions:

 $\begin{array}{ll} \mbox{Minterm (m_i): A conjunctive/product/AND term containing one instance of every} \\ \mbox{variable contained in a Boolean function. It corresponds to True (1) in} \\ \mbox{only one row on an exhaustive truth table.} \end{array}$

Maxterm (M_i) : A disjunctive/sum term/OR containing one instance of every variable contained in a Boolean function. It corresponds to False (0) in only one row of an exhaustive truth table.

Sum of Products: (SOP): A disjunction of conjunctive terms (such as minterms). Product of Sums (POS): A conjunction of disjunctive terms (such as maxterms).

Note: Any function can be written as a sum of products or a product of sums.

$$f = \sum_{i} \text{Minterm}_{i}$$
 $f = \prod_{i} \text{Maxterm}_{i}$

Example: Given a truth table, synthesize the function (F) as both SOP and POS.

	Α	В	F	
	0	0	1	
	0	1	0	
	1	0	1	
	1	1	0	
$F_{SOP} =$	$\overline{A}\overline{B} + A\overline{B}$		$F_{POS} =$	$(A+\overline{B})(\overline{A}+\overline{B})$
Does $F_{SOP} = F$	P_{POS} ? Yes,	always!		
$F_{SOP} =$	$\overline{A}\overline{B} + A\overline{B}$	$=\overline{B}$		
$F_{POS} =$	$(A + \overline{B})(\overline{A})$	$\overline{A} + \overline{B}) = 0$	$+A\overline{B}+\overline{A}$	$\overline{B} + \overline{B} = \overline{B}$

Example: Given a truth table, synthesize the function (f) as both SOP and POS.

а	b	С	f(a,b,c)
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

Minterms: $f_{SOP} = \overline{a}\overline{b}\overline{c} + \overline{a}b\overline{c} + \overline{a}bc + a\overline{b}c + ab\overline{c}$

Maxterms:
$$f_{POS} = (\overline{a} + \overline{b} + \overline{c})(\overline{a} + b + c)(a + b + \overline{c})$$

Simplification:

-Often, SOP (w/ minterms) and POS (w/ maxterms) equations can be reduced. -The irreducible equations are called:

-minimum sum of products (MSOP) or *-minimum product of sums* (MPOS)

Example: From above,

 $f_{POS} = (\overline{a} + \overline{b} + \overline{c})(\overline{a} + b + c)(a + b + \overline{c}) \text{ is the MPOS},$ $f_{SOP} = \overline{a}\overline{b}\overline{c} + \overline{a}b\overline{c} + \overline{a}bc + a\overline{b}c + a\overline{b}\overline{c} \text{ requires some reduction.}$ $f_{SOP} = \overline{a}\overline{b}\overline{c} + \overline{a}b\overline{c} + \overline{a}b\overline{c} + \overline{a}b\overline{c} + \overline{a}bc + a\overline{b}c + a\overline{b}\overline{c}$ $f_{SOP} = \overline{a}b + \overline{a}\overline{c} + a\overline{b}c + b\overline{c} \text{ is the MSOP.}$

=> Which takes less gates? Try them both and find out.

Boolean Algebra Theorems and Duality:

-See "Laws and Theorems of Boolean Algebra" on website

Useful Theorems for Simplification:

$XY + X\overline{Y} = X$	\Leftrightarrow	$(X+Y)(X+\overline{Y}) = X$
X + XY = X	\Leftrightarrow	X(X+Y) = X
$(X + \overline{Y})Y = XY$	\Leftrightarrow	$X\overline{Y} + Y = X + Y$
=> These are all special cas	ses of th	e distributive law:
X(Y+Z) = XY + X	Z⇔	X + YZ = (X + Y)(X + Z)

Consensus Theorem: $XY + YZ + \overline{XZ} = XY + \overline{XZ}$ Proof: $XY + YZ + \overline{XZ} = XY + (X + \overline{X})YZ + \overline{XZ}$ $= XY + XYZ + \overline{X}YZ + \overline{XZ}$ $= XY + XYZ + \overline{XZ} + \overline{XYZ}$ $= XY(1 + Z) + \overline{XZ}(1 + Y)$ $= XY + \overline{XZ}$ O.E.D.

Duality is helpful:

Example:
$$(A + B + C)(A + B + \overline{C}) = ???$$

Dual: $ABC + AB\overline{C} = AB$
Therefore: $(A + B + C)(A + B + \overline{C}) = A + B$

Karnaugh Maps (K-Maps):

-Two terms which differ in only one literal can be reduced by that literal

$$\Rightarrow XY + X\overline{Y} = X \quad \Leftrightarrow \quad (X+Y)(X+\overline{Y}) = X$$

-K-maps are a method to aid humans in the generating MSOP or MPOS.

=> K-maps graphically enable a human to perform the above equations.

5	vanabie	IIuuii Iuo	
а	b	С	f(a,b,c)
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

3 Variable Truth Table

$$\Rightarrow f_{SOP} = \overline{a}\overline{b}\overline{c} + \overline{a}b\overline{c} + \overline{a}bc + a\overline{b}c + ab\overline{c} = \overline{a}b + \overline{a}\overline{c} + a\overline{b}c + b\overline{c}$$

<u>3 Va</u>	ariable K-l	<u>Map</u>
ab \c	0	1
00	1	0
01	1	1
11	1	0
10	0	1

=> Notice that only 1 literal changes from square to square.

=> By circling adjacent implicants, we can directly obtain:

$$f_{SOP} = \overline{a}b + \overline{a}\overline{c} + a\overline{b}c + b\overline{c}$$

Definitions:

Implicants: Terms in a K-map that are True (1) iff the function is True (1).*Prime Implicants*: Implicants that are as general as possible (cannot be reduced).*Essential Prime Implicant*: A prime implicant that covers a 1 that no other prime implicant covers.

Solving MSOP Using K-Maps:

Process:

1) Circle the prime implicants.

2) Select a subset that covers the function.

Note: Implicants are formed by clusters of 2^n (1, 2, 4, 8, 16...).

Example: Simplify $g = \overline{a}\overline{b}\overline{c} + \overline{a}\overline{b}c + \overline{a}b\overline{c} + a\overline{b}c$ to MSOP form.

	К-Мар	
ab \c	0	1
00	1	1
01	1	0
11	1	0
10	0	1
f_{MSOP}	$=\overline{a}\overline{b}+\overline{b}\overline{b}$	$c + b\overline{c}$
OR f_{MS}	$_{OP} = \overline{a}\overline{c} +$	$\overline{b}c + b\overline{c}$

Solving MPOS Using K-Maps:

-We can also solve for POS by following the same process with 0's.

-Reminder: POS is solved to make the equation true everywhere BUT on the 0.

This means that you must "flip" the complement such that:

- 1's => Complemented variables
- 0's => Uncomplemented variables

Example: Simplify $g = \overline{a}\overline{b}\overline{c} + \overline{a}\overline{b}c + \overline{a}b\overline{c} + a\overline{b}c$ to MPOS form.

	K-Map	
ab \c	0	1
00	1	1
01	1	0
11	1	0
10	0	1
$f_{MPOS} =$	$(\overline{a} + \overline{b} + c$	$(\overline{b} + \overline{c})$

Which is better $f_{MSOP} = \overline{a}\overline{b} + \overline{b}c + b\overline{c}$ OR $f_{MPOS} = (\overline{a} + b + c)(\overline{b} + \overline{c})$?

-MPOS => 3 gates, 7 inputs

-Depends on your design criteria.

-MSOP => 4 gates, 9 inputs

-Heuristic (rule of thumb): In general, use whatever has the least, 0's or 1's. -Must do both and compare to know for sure.

Observation: K-maps give us 2-level logic such that the maximum propagation delay is 2 gates. Sometimes, it is possible to utilize a more logic levels to save gates, but the delay will be longer. (Note that 2-level logic is the fastest logic possible.)

Examples with 4 Inputs:

Example #1: Determine the MSOP for the following K-map.

ab\cd	00	01	11	10
00	1	0	0	0
01	0	0	0	0
11	1	0	0	0
10	1	1	0	1
f	$a\overline{b}$	$\overline{c} + a\overline{b}\overline{d} + c$	$a\overline{c}\overline{d} + \overline{b}\overline{c}$	\overline{d}

Example #2: Determine the MSOP for the following K-map.

			Ŭ	.
ab\cd	00	01	11	10
00	0	1	0	0
01	0	1	1	1
11	1	1	1	0
10	0	0	1	0
	a — 1	1	1 -	1

 $f_{MSOP} = \overline{a}bc + \overline{a}\overline{c}d + ab\overline{c} + acd$

Note: Term bd is redundant, so it was left out.

			<u> </u>	
ab\cd	00	01	11	10
00	0	0	0	0
01	1	1	1	1
11	0	1	1	0
10	0	0	0	0
	f_{MS}	$_{SOP} = \overline{a}b +$	bd	

Example #3: Determine the MSOP for the following K-map.

Example #4: Determine the MSOP and MPOS for the following K-map.

ab\cd	00	01	11	10
00	0	1	1	0
01	1	0	0	1
11	1	0	0	1
10	0	1	1	0
	$f_{MSOP} =$	$=\overline{b}d+b\overline{d}$	$= b \oplus d$	

$$f_{MPOS} = (b+d)(b+d) = b \oplus d$$

"Don't Care" Values:

-Some systems do not use every possible combination of every input.

-We handle these inputs using "don't care" values of X.

-X can equal 0 or 1, whatever is most convenient for reducing equations.

-X cannot equal both 0 and 1 in the same design.

ΔA input system where combos 0101, 1101, and 1011 are not used.

ab\cd	00	01	11	10					
00	0	0	1	1					
01	1	Х	0	1					
11	1	Х	0	0					
10	0	0	Х	0					
$f_{MSOP} = \overline{a}\overline{b}c + \overline{a}c\overline{d} + b\overline{c}$									

$$f_{MPOS} = (\overline{a} + \overline{c})(\overline{b} + \overline{d})(b + c)$$

Note: When using "don't cares," f_{MSOP} does not necessarily equal f_{MPOS} .

K-Maps with 5 or 6 Variables:

=> Create multiple 4-variable K-maps with static conditions for the 5^{th} (and 6^{th}) variable.

Example: A 5 variable K map with inputs a;						i, 0, c, u,				
ab\cd	00	01	11	10		ab\cd	00	01	11	10
00	0	1	1	0		00	0	0	0	0
01	0	0	0	1		01	1	1	0	1
11	0	0	0	1		11	0	0	0	1
10	0	1	1	0		10	0	1	0	0
e = 0				-	e = 1					

Example: A 5 variable K-map with inputs a, b, c, d, and e.

 $f_{\rm MSOP} = \overline{a}b\overline{c}e + a\overline{b}\overline{c}d + \overline{b}d\overline{e} + bc\overline{d}$