LECTURE \#7: MSOP, MPOS, K-Maps

EEL 3701: Digital Logic and Computer Systems

Based on lecture notes by Dr. Eric M. Schwartz

Definitions:

Minterm (m_{i}): A conjunctive/product/AND term containing one instance of every variable contained in a Boolean function. It corresponds to True (1) in only one row on an exhaustive truth table.
Maxterm (M_{i}): A disjunctive/sum term/OR containing one instance of every variable contained in a Boolean function. It corresponds to False (0) in only one row of an exhaustive truth table.
Sum of Products: (SOP): A disjunction of conjunctive terms (such as minterms). Product of Sums (POS): A conjunction of disjunctive terms (such as maxterms).

Note: Any function can be written as a sum of products or a product of sums.

$$
f=\sum_{i} \text { Minterm }_{i} \quad f=\prod_{i} \text { Maxterm }_{i}
$$

Example: Given a truth table, synthesize the function (F) as both SOP and POS.

\mathbf{A}	\mathbf{B}	\mathbf{F}
0	0	1
0	1	0
1	0	1
1	1	0

$$
F_{S O P}=\bar{A} \bar{B}+A \bar{B} \quad F_{P O S}=(A+\bar{B})(\bar{A}+\bar{B})
$$

Does $F_{S O P}=F_{P O S}$? Yes, always!

$$
\begin{aligned}
& F_{S O P}=\bar{A} \bar{B}+A \bar{B}=\bar{B} \\
& F_{P O S}=(A+\bar{B})(\bar{A}+\bar{B})=0+A \bar{B}+\bar{A} \bar{B}+\bar{B}=\bar{B}
\end{aligned}
$$

Example: Given a truth table, synthesize the function (f) as both SOP and POS.

\mathbf{a}	\mathbf{b}	\mathbf{c}	$\mathbf{f (a , b , \mathbf { c })}$
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

Minterms: $f_{\text {SOP }}=\bar{a} \bar{b} \bar{c}+\bar{a} b \bar{c}+\bar{a} b c+a \bar{b} c+a b \bar{c}$
Maxterms: $f_{P O S}=(\bar{a}+\bar{b}+\bar{c})(\bar{a}+b+c)(a+b+\bar{c})$

Simplification:

-Often, SOP (w/ minterms) and POS (w/ maxterms) equations can be reduced.
-The irreducible equations are called:
-minimum sum of products (MSOP) or
-minimum product of sums (MPOS)
Example: From above,

$$
\begin{aligned}
& f_{\text {POS }}=(\bar{a}+\bar{b}+\bar{c})(\bar{a}+b+c)(a+b+\bar{c}) \text { is the MPOS, } \\
& f_{S O P}=\bar{a} \bar{b} \bar{c}+\bar{a} b \bar{c}+\bar{a} b c+a \bar{b} c+a b \bar{c} \text { requires some reduction. } \\
& f_{S O P}=\bar{a} \bar{b} \bar{c}+\bar{a} b \bar{c}+\bar{a} b \bar{c}+\bar{a} b \bar{c}+\bar{a} b c+a \bar{b} c+a b \bar{c} \\
& f_{S O P}=\bar{a} b+\bar{a} \bar{c}+a \bar{b} c+b \bar{c} \text { is the MSOP. }
\end{aligned}
$$

=> Which takes less gates? Try them both and find out.

Boolean Algebra Theorems and Duality:

-See "Laws and Theorems of Boolean Algebra" on website
Useful Theorems for Simplification:

$$
\begin{array}{lll}
X Y+X \bar{Y}=X & \Leftrightarrow & (X+Y)(X+\bar{Y})=X \\
X+X Y=X & \Leftrightarrow & X(X+Y)=X \\
(X+\bar{Y}) Y=X Y & \Leftrightarrow & X \bar{Y}+Y=X+Y
\end{array}
$$

=> These are all special cases of the distributive law:

$$
X(Y+Z)=X Y+X Z \Leftrightarrow \quad X+Y Z=(X+Y)(X+Z)
$$

Consensus Theorem: $X Y+Y Z+\bar{X} Z=X Y+\bar{X} Z$
Proof: $X Y+Y Z+\bar{X} Z=X Y+(X+\bar{X}) Y Z+\bar{X} Z$

$$
\begin{aligned}
& =X Y+X Y Z+\bar{X} Y Z+\bar{X} Z \\
& =X Y+X Y Z+\bar{X} Z+\bar{X} Y Z \\
& =X Y(1+Z)+\bar{X} Z(1+Y) \\
& =X Y+\bar{X} Z \quad \text { Q.E.D. }
\end{aligned}
$$

Duality is helpful:
Example: $(A+B+C)(A+B+\bar{C})=$???
Dual: $A B C+A B \bar{C}=A B$
Therefore: $(A+B+C)(A+B+\bar{C})=A+B$

Karnaugh Maps (K-Maps):

-Two terms which differ in only one literal can be reduced by that literal

$$
\Rightarrow X Y+X \bar{Y}=X \quad \Leftrightarrow \quad(X+Y)(X+\bar{Y})=X
$$

-K-maps are a method to aid humans in the generating MSOP or MPOS.
=> K-maps graphically enable a human to perform the above equations.

3 Variable Truth Table

\mathbf{a}	\mathbf{b}	\mathbf{c}	$\mathbf{f}(\mathbf{a}, \mathbf{b}, \mathbf{c})$
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

$$
=>f_{S O P}=\bar{a} \bar{b} \bar{c}+\bar{a} b \bar{c}+\bar{a} b c+a \bar{b} c+a b \bar{c}=\bar{a} b+\bar{a} \bar{c}+a \bar{b} c+b \bar{c}
$$

3 Variable K-Map

$\mathbf{a b} \mathbf{~ c}$	0	1
00	1	0
01	1	1
11	1	0
10	0	1

=> Notice that only 1 literal changes from square to square.
=> By circling adjacent implicants, we can directly obtain:

$$
f_{S O P}=\bar{a} b+\bar{a} \bar{c}+a \bar{b} c+b \bar{c}
$$

Definitions:

Implicants: Terms in a K-map that are True (1) iff the function is True (1).
Prime Implicants: Implicants that are as general as possible (cannot be reduced). Essential Prime Implicant: A prime implicant that covers a 1 that no other prime implicant covers.

Solving MSOP Using K-Maps:

Process: 1) Circle the prime implicants.
2) Select a subset that covers the function.

Note: Implicants are formed by clusters of $2^{\mathrm{n}}(1,2,4,8,16 \ldots)$.
Example: Simplify $g=\bar{a} \bar{b} \bar{c}+\bar{a} \bar{b} c+\bar{a} b \bar{c}+a b \bar{c}+a \bar{b} c$ to MSOP form.
K-Map

$\mathbf{a b}$ lc	0	1
00	1	1
01	1	0
11	1	0
10	0	1
$f_{\text {MSOP }}=\bar{a} \bar{b}+\bar{b} c+b \bar{c}$		
OR $f_{\text {MSOP }}=\bar{a} \bar{c}+\bar{b} c+b \bar{c}$		

Solving MPOS Using K-Maps:

-We can also solve for POS by following the same process with 0's.
-Reminder: POS is solved to make the equation true everywhere BUT on the 0 .
This means that you must "flip" the complement such that:

$$
\begin{aligned}
& \text { 1's => Complemented variables } \\
& \text { 0's => Uncomplemented variables }
\end{aligned}
$$

Example: Simplify $g=\bar{a} \bar{b} \bar{c}+\bar{a} \bar{b} c+\bar{a} b \bar{c}+a b \bar{c}+a \bar{b} c$ to MPOS form.
K-Map

$\mathbf{a b}$ lc	0	1
00	1	1
01	1	0
11	1	0
10	0	1

$f_{\text {MPOS }}=(\bar{a}+b+c)(\bar{b}+\bar{c})$

Which is better $f_{\text {MSOP }}=\bar{a} \bar{b}+\bar{b} c+b \bar{c}$ OR $f_{\text {MPOS }}=(\bar{a}+b+c)(\bar{b}+\bar{c})$?
-MSOP => 4 gates, 9 inputs -MPOS => 3 gates, 7 inputs
-Depends on your design criteria.
-Heuristic (rule of thumb): In general, use whatever has the least, 0's or 1's.
-Must do both and compare to know for sure.
Observation: K-maps give us 2-level logic such that the maximum propagation delay is 2 gates. Sometimes, it is possible to utilize a more logic levels to save gates, but the delay will be longer. (Note that 2-level logic is the fastest logic possible.)

Examples with 4 Inputs:

Example \#1: Determine the MSOP for the following K-map.

ablcd	00	01	11	10
00	1	0	0	0
01	0	0	0	0
11	1	0	0	0
10	1	1	0	1
$f_{\text {MSOP }}=a \bar{b} \bar{c}+a \bar{b} \bar{d}+a \bar{c} \bar{d}+\bar{b} \bar{c} \bar{d}$				

Example \#2: Determine the MSOP for the following K-map.

ablcd	00	01	11	10
00	0	1	0	0
01	0	1	1	1
11	1	1	1	0
10	0	0	1	0
$f_{\text {MSOP }}=\bar{a} b c+\bar{a} \bar{c} d+a b \bar{c}+a c d$				

Note: Term $b d$ is redundant, so it was left out.

Example \#3: Determine the MSOP for the following K-map.

ablcd	00	01	11	10
00	0	0	0	0
01	1	1	1	1
11	0	1	1	0
10	0	0	0	0
$f_{\text {MSOP }}=\bar{a} b+b d$				

Example \#4: Determine the MSOP and MPOS for the following K-map.

ablcd	00	01	11	10
00	0	1	1	0
01	1	0	0	1
11	1	0	0	1
10	0	1	1	0
$f_{\text {MSOP }}=\bar{b} d+b \bar{d}=b \oplus d$				
$f_{\text {MPOS }}=(\bar{b}+\bar{d})(b+d)=b \oplus d$				

"Don’t Care" Values:

-Some systems do not use every possible combination of every input.
-We handle these inputs using "don't care" values of X.

- X can equal 0 or 1 , whatever is most convenient for reducing equations.
- X cannot equal both 0 and 1 in the same design.

Example: A 4-input system where combos 0101, 1101, and 1011 are not used.

ablcd	00	01	11	10
00	0	0	1	1
01	1	X	0	1
11	1	\times	0	0
10	0	0	X	0
$f_{\text {MSOP }}=\bar{a} \bar{b} c+\bar{a} c \bar{d}+b \bar{c}$				
$f_{\text {MPOS }}=(\bar{a}+\bar{c})(\bar{b}+\bar{d})(b+c)$				

Note: When using "don't cares," $\mathrm{f}_{\text {MSOP }}$ does not necessarily equal $\mathrm{f}_{\text {MPOS }}$.

K-Maps with 5 or 6 Variables:

$=>$ Create multiple 4 -variable K-maps with static conditions for the $5^{\text {th }}$ (and $6^{\text {th }}$) variable.
Example: A 5 variable K-map with inputs a, b, c, d, and e.

ablcd	00	01	11	10
00	0	1	1	0
01	0	0	0	1
11	0	0	0	1
10	0	1	1	0

ablcd	00	01	11	10
00	0	0	0	0
01	1	1	0	1
11	0	0	0	1
10	0	1	0	0

$$
f_{\text {MSOP }}=\bar{a} b \bar{c} e+a \bar{c} \bar{c} d+\bar{b} d \bar{e}+b c \bar{d}
$$

