
University of Florida Joel D. Schipper
ECE Department Summer 2007

 Page 1 of 7

LECTURE #9: Adders, Comparators, and ALU’s
EEL 3701: Digital Logic and Computer Systems

Based on lecture notes by Dr. Eric M. Schwartz

Adders:
 -Adding 2-bits (2 input lines)
 -4 possible combos: 000 =+ , 110 =+ , 101 =+ , 1011 =+

-Requires 2 output bits: “Sum” and “Carry.”
X Y Sum Carry
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

YXYXYXSum ⊕=+= , XYCarry =

Half Adder

 -Half adders “carry out” but do not allow for “carry in” values.

 Sum (S) Cout
XY\Cin 0 1 XY\Cin 0 1

00 0 1 00 0 0
01 1 0 01 0 1
11 0 1 11 1 1
10 1 0 10 0 1

 inininin XYCCYXCYXCYXS +++= ininout YCXCXYC ++=

in

inin

inin

CYXS
CYXCYXS

CYXYXCXYYXS

⊕⊕=
⊕+⊕=

+++=

)()(

)()(

inout

inout

ininout

CYXXYC
CYXYXXYC
YCXCYXXYC

)(
)(

⊕+=
++=

++=

Note: The first equation under Cout can be implemented directly with AND and OR gates.
Note 2: The second equation under Cout can be constructed simply by not fully reducing

the equation from the K-map.

University of Florida Joel D. Schipper
ECE Department Summer 2007

 Page 2 of 7

Full Adder

 Note: This is made from 2 half adders and an OR gate.
 Recall: XOR’s can be created from other logic gates.

 -How do we add larger numbers?

Full Adder Full Adder Full Adder Full Adder

C4 C3 C2 C1

C0=0

S1S2S3 S0

X2 X1 X0X3 Y2Y3 Y1 Y0C3 C2 C1

Ripple-Carry 4-Bit Adder

 -When adding 1111 to 0001 the carry takes a long time to propagate.
 -Many adders have “Fast Carry” or “Look-Ahead Carry” to handle this.

Subtractors:
 -Similar to adders but have a “borrow” bit rather than a “carry” bit.
 Difference (D) Borrow (Bi+1)

JK\Bi 0 1 JK\Bi 0 1
00 0 1 00 0 1
01 1 0 01 1 1
11 0 1 11 0 1
10 1 0 10 0 0

iBKJD ⊕⊕= iii KBBJKJB ++=+1
Adder: iCYXSum ⊕⊕= Adder: ii YCXCXYCarry ++=

University of Florida Joel D. Schipper
ECE Department Summer 2007

 Page 3 of 7

Letting ii BCKYJX === ,, and substituting into the adder equation:
 iBKJSum ⊕⊕= 1+=++= iii BKBBJKJCarry

DSum

BKJSum i

=

⊕⊕=

Aside: Proof that YXZYXZ ⊕=↔⊕= :

XYYXZ

XYYXZ

XYYXZ
YXZ

+=

+=

+=

⊕=

:4

:3

:2
:1

YXZ
YXYXZ

YYYXYXXXZ
YXYXZ

⊕=

+=

+++=

++=

:8
:7
:6

))((:5

Therefore, we can use a full adder to create a full subtractor:

Magnitude Comparators:
 -Input: Two binary numbers (A and B).
 -Output: Three signals indicating A>B, A=B, and A<B.

A1 A0 B1 B0 A>B A=B A<B
0 0 0 0 0 1 0
0 0 0 1 0 0 1
0 0 1 0 0 0 1
0 0 1 1 0 0 1
0 1 0 0 1 0 0
0 1 0 1 0 1 0
0 1 1 0 0 0 1
0 1 1 1 0 0 1
1 0 0 0 1 0 0
1 0 0 1 1 0 0
1 0 1 0 0 1 0
1 0 1 1 0 0 1
1 1 0 0 1 0 0
1 1 0 1 1 0 0
1 1 1 0 1 0 0
1 1 1 1 0 1 0

University of Florida Joel D. Schipper
ECE Department Summer 2007

 Page 4 of 7

A>B
A1A0\B1B0 00 01 11 10

00 0 0 0 0
01 1 0 0 0
11 1 1 0 1
10 1 1 0 0

00101011)(BAABBABABA ++=>

A=B
A1A0\B1B0 00 01 11 10

00 1 0 0 0
01 0 1 0 0
11 0 0 1 0
10 0 0 0 1

0101010101010101)(BBAABBAABBAABBAABA +++==
Note: This equation is not reducible.

A<B

A1A0\B1B0 00 01 11 10
00 0 1 1 1
01 0 0 1 1
11 0 0 0 0
10 0 0 1 0

01000111)(BBABAABABA ++=<

2-Bit Magnitude Comparator

(Figure 4.7 from Fundamentals of Computer Engineering: Logic Design and Microprocessors by Lam, O’Malley, and Arroyo)

 -Comparing 4-bit numbers:
 -Requires a 24×24 = 256 square K-map
 -Can use two 2-bit comparators and basic logic

University of Florida Joel D. Schipper
ECE Department Summer 2007

 Page 5 of 7

 -Cascading comparators exist so that you can easily expand comparator size

4-Bit Cascading Magnitude Comparator (74’85)

(Figure 4.8 from Fundamentals of Computer Engineering: Logic Design and Microprocessors by Lam, O’Malley, and Arroyo)

 -A 32-bit processor would require 8 of these

University of Florida Joel D. Schipper
ECE Department Summer 2007

 Page 6 of 7

Arithmetic Logic Units (ALU’s):
 -ALU’s are combinational logic circuits that perform basic calculations including:
 1) Arithmetic operations (addition, subtraction, etc.)
 2) Logic operations (OR, AND, complement, etc.).

 -ALU’s are LSI because they can perform many MSI fuctions.
 -ALU’s are at the core of CPU’s (Central Processing Units)

74’181 Arithmetic Logic Unit

(Figure 6.1a, b from Fundamentals of Computer Engineering: Logic Design and Microprocessors by Lam, O’Malley, and Arroyo)

Note: Some of these functions may not be very useful. They just happen to be the

resulting output of the ALU. Perhaps some of these outputs were treated as
“Don’t Cares” during design and implementation of this circuit.

University of Florida Joel D. Schipper
ECE Department Summer 2007

 Page 7 of 7

74’181 Arithmetic Logic Unit

(Figure 6.1c, d from Fundamentals of Computer Engineering: Logic Design and Microprocessors by Lam, O’Malley, and Arroyo)

 If the ALU receives an instruction to complement A, the system must:
 1) Connect register A to the correct ALU input
 2) Send the correct control signals to the ALU
 (i.e. M = H, S3 = L, S2 = L, S1 = L, S0 = L)
 3) Delay long enough for ALU to process the result properly
 4) Load the ALU output into register A

