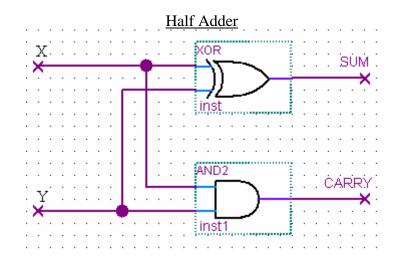
LECTURE #9: Adders, Comparators, and ALU's

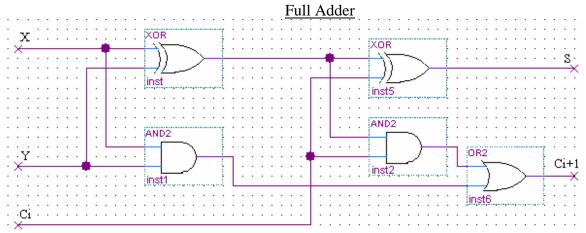
EEL 3701: Digital Logic and Computer Systems


Based on lecture notes by Dr. Eric M. Schwartz

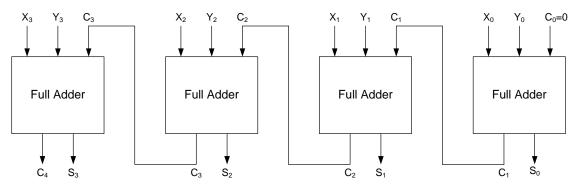
Adders:

-Adding 2-bits (2 input lines)

-4 possible combos: 0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, 1 + 1 = 10-Requires 2 output bits: "Sum" and "Carry."


F					-
	Х	Y	Sum	Carry	
	0	0	0	0	
	0	1	1	0	
	1	0	1	0	
	1	1	0	1	
$Sum = \overline{XY} + X\overline{Y} = X \oplus Y$, $Carry = XY$					

-Half adders "carry out" but do not allow for "carry in" values.


		Sum (S)				Cout		
	XY\C _{in}	0	1		XY\C _{in}	0	1	
	00	0	1		00	0	0	
	01	1	0		01	0	1	
	11	0	1		11	1	1	
	10	1	0		10	0	1	
$S = \overline{X} \ \overline{Y}C_{in} + \overline{X}Y\overline{C}_{in} + X\overline{Y} \ \overline{C}_{in} + XYC_{in}$					$C_{out} = XY + XC_{in} + YC_{in}$			
$S = (\overline{X} \ \overline{Y} + XY)C_{in} + (\overline{X}Y + X\overline{Y})\overline{C}_{in}$					$C_{out} = X$	$XY + X\overline{Y}C$	$C_{in} + \overline{X}YC$	\tilde{C}_{in}
$S = (\overline{X \oplus Y})C_{in} + (X \oplus Y)\overline{C}_{in}$				$C_{out} = XY + (X\overline{Y} + \overline{X}Y)C_{in}$			in	
S = X	$\oplus Y \oplus C$	- in			$C_{out} = X$	$XY + (X \in$	$\oplus Y)C_{in}$	

Note: The first equation under C_{out} can be implemented directly with AND and OR gates. Note 2: The second equation under C_{out} can be constructed simply by not fully reducing the equation from the K-map.

Note: This is made from 2 half adders and an OR gate. Recall: XOR's can be created from other logic gates.

-How do we add larger numbers?

Ripple-Carry 4-Bit Adder

-When adding 1111 to 0001 the carry takes a long time to propagate. -Many adders have "Fast Carry" or "Look-Ahead Carry" to handle this.

Subtractors:

-Similar to adders but have a "borrow" bit rather than a "carry" bit.

Difference (D)					
JK\B _i	0	1			
00	0	1			
01	1	0			
11	0	1			
10 1 0					
$D = J \oplus K \oplus B_i$					

Adder: $Sum = X \oplus Y \oplus C_i$

Borrow (B _{i+1})						
JK\B _i	0	1				
00	0	1				
01	1	1				
11	0	1				
10	0	0				
$R = \overline{I}K + \overline{I}R + KR$						

$$B_{i+1} = JK + JB_i + KB_i$$

Adder:
$$Carry = XY + XC_i + YC_i$$

Letting $X = \overline{J}, Y = K, C_i = B_i$ and substituting into the adder equation:

 $Sum = \overline{J} \oplus K \oplus B_i$ $Carry = \overline{J}K + \overline{J}B_i + KB_i = B_{i+1}$ $\overline{Sum} = J \oplus K \oplus B_i$ $\overline{Sum} = D$

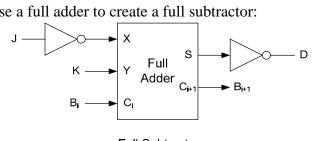
Aside: Proof that $\overline{Z} = X \oplus \underline{Y} \leftrightarrow Z = \overline{X} \oplus Y$:

$$1: Z = X \oplus Y$$

$$2: Z = \overline{X} \ \overline{Y} + XY$$

$$3: \overline{Z} = \overline{\overline{X} \ \overline{Y} + XY}$$

$$4: \overline{Z} = \overline{\overline{X} \ \overline{Y} + \overline{XY}}$$

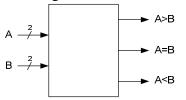

$$5: \overline{Z} = (X + Y)(\overline{X} + \overline{Y})$$

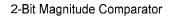
$$6: \overline{Z} = X\overline{X} + X\overline{Y} + \overline{XY} + Y\overline{Y}$$

$$7: \overline{Z} = X\overline{Y} + \overline{XY}$$

$$8: \overline{Z} = X \oplus Y$$

Therefore, we can use a full adder to create a full subtractor:

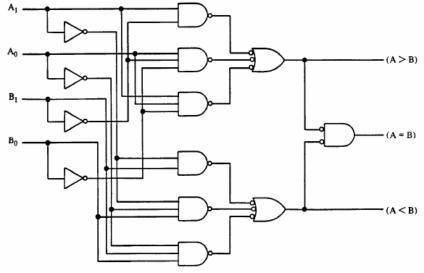



Full Subtractor

Magnitude Comparators:

-Input: Two binary numbers (A and B).

-Output: Three signals indicating A>B, A=B, and A<B.

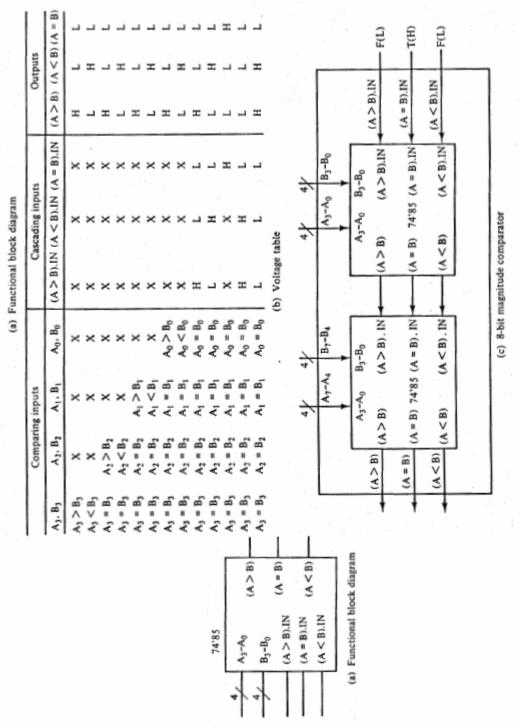

A ₁	A ₀	B ₁	Bo	A>B	A=B	A <b< th=""></b<>
0	0	0	0	0	1	0
0	0	0	1	0	0	1
0	0	1	0	0	0	1
0	0	1	1	0	0	1
0	1	0	0	1	0	0
0	1	0	1	0	1	0
0	1	1	0	0	0	1
0	1	1	1	0	0	1
1	0	0	0	1	0	0
1	0	0	1	1	0	0
1	0	1	0	0	1	0
1	0	1	1	0	0	1
1	1	0	0	1	0	0
1	1	0	1	1	0	0
1	1	1	0	1	0	0
1	1	1	1	0	1	0

A>B					
$A_1A_0B_1B_0$	00	01	11	10	
00	0	0	0	0	
01	1	0	0	0	
11	1	1	0	1	
10	1	1	0	0	
$(A > B) = A_1 \overline{B}_1 + A_0 \overline{B}_1 \overline{B}_0 + A_1 A_0 \overline{B}_0$					

		A=B		
A ₁ A ₀ \B ₁ B ₀	00	01	11	10
00	1	0	0	0
01	0	1	0	0
11	0	0	1	0
10	0	0	0	1

 $(A = B) = A_1A_0B_1B_0 + A_1A_0B_1B_0 + A_1A_0B_1B_0 + A_1A_0B_1B_0$ Note: This equation is not reducible.

A <b< th=""></b<>						
A ₁ A ₀ \B ₁ B ₀	00	01	11	10		
00	0	1	1	1		
01	0	0	1	1		
11	0	0	0	0		
10	0	0	1	0		
$(A < B) = \overline{A}_1 B_1 + \overline{A}_1 \overline{A}_0 B_0 + \overline{A}_0 B_1 B_0$						


2-Bit Magnitude Comparator

(Figure 4.7 from Fundamentals of Computer Engineering: Logic Design and Microprocessors by Lam, O'Malley, and Arroyo)

-Comparing 4-bit numbers:

-Requires a $2^4 \times 2^4 = 256$ square K-map

-Can use two 2-bit comparators and basic logic

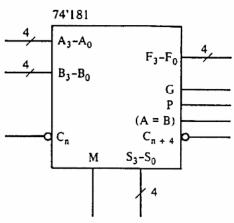
-Cascading comparators exist so that you can easily expand comparator size

University of Florida

ECE Department

4-Bit Cascading Magnitude Comparator (74'85)

(Figure 4.8 from Fundamentals of Computer Engineering: Logic Design and Microprocessors by Lam, O'Malley, and Arroyo)

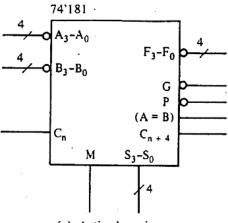

-A 32-bit processor would require 8 of these

Arithmetic Logic Units (ALU's):

-ALU's are combinational logic circuits that perform basic calculations including:

- 1) Arithmetic operations (addition, subtraction, etc.)
- 2) Logic operations (OR, AND, complement, etc.).

-ALU's are LSI because they can perform many MSI fuctions. -ALU's are at the core of CPU's (Central Processing Units)


(a) Active-high view

	Active-high data						
Select	tion	Mall	M = L; Arithr	nmetic operations			
S3 S2	S1 S0	M = H logic functions	C _n = H (no carry)	C _n = L (with carry)			
L L L L L H L H L H L H L H L H L H L H	L L L H H L H H L L H H L L H H L L H H L L H H H L H H H H	$F = \overline{A}$ $F = \overline{A}B$ $F = \overline{A}B$ $F = \overline{B}$ $F = \overline{A}B$ $F = \overline{A} \oplus B$ $F = \overline{A} \oplus B$ $F = \overline{A} \oplus B$ $F = A \oplus B$ $F = A$ $F = A$ $F = A + B$ $F = A + B$ $F = A$	F = A F = A + B F = MINUS 1 (2's COMP) $F = A PLUS A\overline{B}$ $F = (A + B) PLUS A\overline{B}$ F = A MINUS B MINUS 1 $F = A \overline{B} MINUS 1$ F = A PLUS AB F = A PLUS B $F = (A + \overline{B}) PLUS AB$ F = A PLUS A F = A PLUS A F = (A + B) PLUS A $F = (A + \overline{B}) PLUS A$ $F = (A + \overline{B}) PLUS A$ F = A MINUS 1	F = A PLUS 1 $F = (A + B) PLUS 1$ $F = (A + B) PLUS 1$ $F = ZERO$ $F = A PLUS AB PLUS 1$ $F = (A + B) PLUS AB PLUS 1$ $F = A MINUS B$ $F = AB$ $F = A PLUS AB PLUS 1$ $F = (A + B) PLUS AB PLUS 1$ $F = AB$ $F = A PLUS A PLUS 1$ $F = AB$ $F = A PLUS A PLUS 1$ $F = AB$ $F = A PLUS A PLUS 1$ $F = AB$ $F = A PLUS A PLUS 1$ $F = (A + B) PLUS A PLUS 1$ $F = (A + B) PLUS A PLUS 1$ $F = A$			

74'181 Arithmetic Logic Unit

(Figure 6.1a, b from Fundamentals of Computer Engineering: Logic Design and Microprocessors by Lam, O'Malley, and Arroyo)

Note: Some of these functions may not be very useful. They just happen to be the resulting output of the ALU. Perhaps some of these outputs were treated as "Don't Cares" during design and implementation of this circuit.

(c) Active-low view

				Active-low data			
Sel	Selection		M = H	M = L; Arithmetic operations			
S3 S2	S 1	S0	logic functions	C _n = L (no carry)	$C_n = H$ (with carry)		
L L L L L L L L L H L H L H L H L H L H	L L H H L L H H L L H H L L H H L L H H	L H L H L H L H L H L H L H	$F = \overline{A}$ $F = \overline{A} + B$ $F = \overline{A} \oplus B$ $F = \overline{A} \oplus B$ $F = \overline{A} \oplus B$ $F = A \oplus $	$F = A MINUS 1$ $F = AB MINUS 1$ $F = A\overline{B} MINUS 1$ $F = MINUS 1 (2'S COMP)$ $F = A PLUS (A + \overline{B})$ $F = AB PLUS (A + \overline{B})$ $F = A MINUS B MINUS 1$ $F = A + \overline{B}$ $F = A PLUS (A + B)$ $F = A PLUS B$ $F = A\overline{B} PLUS (A + B)$ $F = (A + B)$ $F = A PLUS A$ $F = A\overline{B} PLUS A$	$F = A$ $F = AB$ $F = A\overline{B}$ $F = ZERO$ $F = A PLUS (A + \overline{B}) PLUS 1$ $F = A PLUS (A + \overline{B}) PLUS 1$ $F = A MINUS B$ $F = (A + \overline{B}) PLUS 1$ $F = A PLUS (A + B) PLUS 1$ $F = A PLUS B PLUS 1$ $F = AB PLUS (A + B) PLUS 1$ $F = (A + B) PLUS 1$ $F = A PLUS A PLUS 1$ $F = AB PLUS 1$		

74'181 Arithmetic Logic Unit

(Figure 6.1c, d from Fundamentals of Computer Engineering: Logic Design and Microprocessors by Lam, O'Malley, and Arroyo)

If the ALU receives an instruction to complement A, the system must:

- 1) Connect register A to the correct ALU input
- 2) Send the correct control signals to the ALU

(i.e. M = H, $S_3 = L$, $S_2 = L$, $S_1 = L$, $S_0 = L$)

3) Delay long enough for ALU to process the result properly

4) Load the ALU output into register A