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LECTURE #9: Adders, Comparators, and ALU’s 
EEL 3701: Digital Logic and Computer Systems 

Based on lecture notes by Dr. Eric M. Schwartz 
 
Adders: 
 -Adding 2-bits (2 input lines) 
  -4 possible combos: 000 =+ , 110 =+ , 101 =+ , 1011 =+  

-Requires 2 output bits: “Sum” and “Carry.” 
X Y Sum Carry
0 0 0 0 
0 1 1 0 
1 0 1 0 
1 1 0 1 

YXYXYXSum ⊕=+= , XYCarry =  
 

Half Adder 

 
 
  -Half adders “carry out” but do not allow for “carry in” values. 
 

       Sum (S)           Cout 
XY\Cin 0 1   XY\Cin 0 1 

00 0 1   00 0 0 
01 1 0   01 0 1 
11 0 1   11 1 1 
10 1 0   10 0 1 

       inininin XYCCYXCYXCYXS +++=     ininout YCXCXYC ++=  
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Note: The first equation under Cout can be implemented directly with AND and OR gates. 
Note 2: The second equation under Cout can be constructed simply by not fully reducing  

the equation from the K-map. 
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Full Adder 

 
 Note: This is made from 2 half adders and an OR gate. 
 Recall: XOR’s can be created from other logic gates. 
 
 -How do we add larger numbers? 

Full Adder Full Adder Full Adder Full Adder

C4 C3 C2 C1

C0=0

S1S2S3 S0

X2 X1 X0X3 Y2Y3 Y1 Y0C3 C2 C1

Ripple-Carry 4-Bit Adder
 

 
 -When adding 1111 to 0001 the carry takes a long time to propagate. 
  -Many adders have “Fast Carry” or “Look-Ahead Carry” to handle this. 
 
Subtractors: 
 -Similar to adders but have a “borrow” bit rather than a “carry” bit. 
     Difference (D)    Borrow (Bi+1) 

JK\Bi 0 1   JK\Bi 0 1 
00 0 1   00 0 1 
01 1 0   01 1 1 
11 0 1   11 0 1 
10 1 0   10 0 0 

iBKJD ⊕⊕=        iii KBBJKJB ++=+1  
Adder: iCYXSum ⊕⊕=       Adder: ii YCXCXYCarry ++=  
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Letting ii BCKYJX === ,,  and substituting into the adder equation: 
 iBKJSum ⊕⊕=   1+=++= iii BKBBJKJCarry  

DSum

BKJSum i

=

⊕⊕=  

 
Aside: Proof that YXZYXZ ⊕=↔⊕= : 
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Therefore, we can use a full adder to create a full subtractor: 

 
 
Magnitude Comparators: 
 -Input: Two binary numbers (A and B). 
 -Output: Three signals indicating A>B, A=B, and A<B. 

 
A1 A0 B1 B0 A>B A=B A<B 
0 0 0 0 0 1 0 
0 0 0 1 0 0 1 
0 0 1 0 0 0 1 
0 0 1 1 0 0 1 
0 1 0 0 1 0 0 
0 1 0 1 0 1 0 
0 1 1 0 0 0 1 
0 1 1 1 0 0 1 
1 0 0 0 1 0 0 
1 0 0 1 1 0 0 
1 0 1 0 0 1 0 
1 0 1 1 0 0 1 
1 1 0 0 1 0 0 
1 1 0 1 1 0 0 
1 1 1 0 1 0 0 
1 1 1 1 0 1 0 
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A>B 
A1A0\B1B0 00 01 11 10 

00 0 0 0 0 
01 1 0 0 0 
11 1 1 0 1 
10 1 1 0 0 

00101011)( BAABBABABA ++=>  
 

A=B 
A1A0\B1B0 00 01 11 10 

00 1 0 0 0 
01 0 1 0 0 
11 0 0 1 0 
10 0 0 0 1 

0101010101010101)( BBAABBAABBAABBAABA +++==  
Note: This equation is not reducible. 

 
A<B 

A1A0\B1B0 00 01 11 10 
00 0 1 1 1 
01 0 0 1 1 
11 0 0 0 0 
10 0 0 1 0 

01000111)( BBABAABABA ++=<  
 

 
2-Bit Magnitude Comparator 

(Figure 4.7 from Fundamentals of Computer Engineering: Logic Design and Microprocessors by Lam, O’Malley, and Arroyo) 
 
 -Comparing 4-bit numbers: 
  -Requires a 24×24 = 256 square K-map 
  -Can use two 2-bit comparators and basic logic 
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 -Cascading comparators exist so that you can easily expand comparator size 
 

 
4-Bit Cascading Magnitude Comparator (74’85) 

(Figure 4.8 from Fundamentals of Computer Engineering: Logic Design and Microprocessors by Lam, O’Malley, and Arroyo) 
 
 -A 32-bit processor would require 8 of these  
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Arithmetic Logic Units (ALU’s): 
 -ALU’s are combinational logic circuits that perform basic calculations including: 
  1) Arithmetic operations (addition, subtraction, etc.) 
  2) Logic operations (OR, AND, complement, etc.). 
 
 -ALU’s are LSI because they can perform many MSI fuctions.   
 -ALU’s are at the core of CPU’s (Central Processing Units) 
 

 

 
74’181 Arithmetic Logic Unit 

(Figure 6.1a, b from Fundamentals of Computer Engineering: Logic Design and Microprocessors by Lam, O’Malley, and Arroyo) 
 
Note:  Some of these functions may not be very useful.  They just happen to be the  

resulting output of the ALU.  Perhaps some of these outputs were treated as 
“Don’t Cares” during design and implementation of this circuit. 
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74’181 Arithmetic Logic Unit 

(Figure 6.1c, d from Fundamentals of Computer Engineering: Logic Design and Microprocessors by Lam, O’Malley, and Arroyo) 
 

 If the ALU receives an instruction to complement A, the system must: 
  1) Connect register A to the correct ALU input 
  2) Send the correct control signals to the ALU 
   (i.e. M = H, S3 = L, S2 = L, S1 = L, S0 = L) 
  3) Delay long enough for ALU to process the result properly 
  4) Load the ALU output into register A 
 


