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Instruction Register

e 6 bitswide->upto 64 instructions
e Storesinputonarisingedgeif IR_LD

is true
e OnlyloadsinstateO - all other states are
decode/execute states

e Basically samedesignasLab 6
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ALU

e Upto 16 functions (up from 8 in Lab 6)
e MSA/MSB work the same

e ZFlag-trueif REGA ==

e NFlag-trueif REGA < 0 (when

interpreted as a 2s complement number)
Basically same design as Lab 4

Output bus is connected to data bus with
a tri-state buffer (since it is sometimes
driven by memory not the CPU).
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Address Control Unit
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Address Control Unit

o  Extended addressing mode instructions
use the MAR to load in whatever address
they reference.

e Since we can’t change the PC, X, or Y to get
to random addresses, we use the MAR.

e Ex:LDAA $1370loads the address into the
MAR so that it can be accessed

MAR used for “random access” instructions
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Address Control Unit
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Address Control Unit

e Address Source Registers Structure

@)

Since our data is 8 bits, and the address bus
is 16 bits wide, we actually need 2x8-bit
registers for each source

Each sourceis divided into a upper/lower
(U/L) register

Each sub-register is loaded independently
XY also have a displacement register (used
to load the displacement for indexed
instructions)

University of Florida
Department of Electrical & Computer Enginecring

EEL 3701
Revision 0

Drs. Gugeland Schwartz
21-Nov-16

X Reg Block = X displacement Reg + X Reg (H/L)
Y Reg Block = Y displacement Reg + Y Reg (H/L)

u ADDR_SEL1:0

Page 1/1 i
e G-CPU Block Diagram
|Bi-directional Data Bus B T
LI ) 8 8
3
v J y
IR_LD ’
R IR5:0 Controller MUXA MUXB
Register MSALQ
MSB1:0 ALU
IR5:0 st
. e ZFlag p—
— CLK PC_INC —+ N Flag =
PC_LD(UL) f—»
— —» :
(Reset not shown due ZFleg MARMI:};‘R(&C — MUxC
to space constraints) —+ NFlag T x mc’ —»
X_LD(UL) f—»
Y INC f—» RAW
Y LD(UL) f—»
IR_LD [—»
R/-W —
ADDR_SEL1:0 |—+
XD_LD |—» 8 8
YD_LD {—»
REAW
Address By . . : : :
us Program Counter (H/L
A15:0 Mux 0 s ! )—”_ e :‘eg (WL)_JL ke |
- - !
7 2 y I
16 3 -
s so Y Reg Block

1]
¥
E
I
i
f

H

H

i

=




o

O
O
O

Controller

Generates the necessary control signals to
execute each instruction.

INC signals for all address sources
LD_U/LD_L for all address sources

IR_LD toload IR

R/~W to control direction of data on data
bus

Address source select signals

X,Y displacement load signals

ALU controls
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Instruction Set



Instruction Anatomy

e Everyinstruction has at least one byte for its associated machine codes, but there can be up to

three depending on the instruction.
e GCPU document has a key for what each machine code placeholder represents

Ex:
o  LDX#data has machine codes 08 ii jj
o iiisthe low byte of the data
o jjisthe high byte of the data * mm— B-hit immediate data valse
o  LDX#$1370 has machine codes 08 70 13 nT :,Eﬁ;ﬁﬁi o dn

11 — Low-order byte of s 16-bit address

hh — High-order byte of 2 16-hit address

ddd — B-hat displacemsent valise

bl — Low-arder byte of a 16-bit 2ddress for 2 branch instrucsion



Addressing Modes & Effective Addresses

e Five addressing modes:
o Inherent Addressing
o  Immediate Addressing
o  Extended Addressing
o  Indexed Addressing
o Absolute Addressing
e The GCPU document tells you what mode each instruction uses!

e [Effective address = address of location data is fetched from or sent to
o  Some instructions don’t access the memory -> no fetch/send -> no EA



Inherent Addressing

e Used by “ALU-level” instructions
SUM_BA, SHFA L, etc.
e No effective address for these instructions (no memory access)



Immediate Addressing

e Used by instructions that put a given value into a register

e Examples:
o LDAA#$37
e LDX#$3701
e Theseinstruction use the exact data that is provided in the instruction
e Thedataisembedded in the machine codes, so it immediately follows the instruction opcode.
e EA = Address of the instruction itself + 1 (next address after opcode).
o  Need to assemble the program to find this, can’t find it otherwise



Extended Addressing

e Used by instructions that fetch/store data to a particular address

e Examples:
e LDX$1000
e LDAASFF

e Notice no‘# before the number in the above examples.

e Theseinstruction go to the given address and either store or fetch data from there.
o We cannot assume anything about the data there unless we put it there ourselves.

e EA=theaddressgivenintheinstruction

o  $1000, $00FF for the above examples



Indexed Addressing

Used by instructions that fetch/store data to a particular address relative to the address in X,Y

e Examples:
e |[DAAOX
e STAB3Y
e Like extended addressing, these instructions go to an address and either store or fetch data from
there.
e EA=X/Y +displacement value
Commonly used to point to tables/arrays (as you have seen/will see in Lab 7)



Absolute Addressing

e Used by branch instructions

e BEQ$08,BPLOOP

e Evaluatesthe branch condition, it is is met, it loads PC_L with the given address
o  Does not affect PC_H -> there is a limited range for branches

e EA=none! Nodatais moved with this instruction, like inherent addressing.



Labels and Assembler Directives



Labels!

e Labels are placed all the way to the left of instructions or assembler directives
e Usedtoreference the address of the line at which they are placed
e Veryuseful for organizing and writing clean assembly code

e Tobeexploredlater



Assembler Directives

e EQU
o  Similar to #define in C-like programming languages
Equates a string to some value

COUNT EQU 15 - When assembling the code, replace every instance of count with 15 before converting to
machine codes

o  Does not actually get put anywhere in memory since it is not code- just a tool for the assember (YOU!) when
writing complex programs.



Assembler Directives

o Tellsthe assembler at what addresses to put the code that follows it
o  Usedto establish some frame of reference for where t put the program
o  Example:
ORG $0000
LDAA #3
In this case, ORG tells the assembler that the LDAA instruction should be placed at address O.
o  Useful for if we want to write programs at different addresses, or to initialize data somewhere separate from
programs.
o  Does not actually get put anywhere in memory since it is not code- just a tool for the assember (YOU!) when
writing complex programs.



Assembler Directives

o  Defines a constant byte at some address
Used to initialize some data in memory
Example:
ORG $1FFO
DATA DC.B1,2,3,45,6
o Inthis case, DATA is a label for the address $1FFO. Starting there, the values 1,2,3,4,5,6 are initialized in
memory
o  Useful for if we want to provide a program with some starting data
Can be used for either ROM or RAM address spaces



Assembler Directives

e DSB

o  Defines a storage byte at some address
o  Example:
ORG $1FFO
DATA DS.B3
DATA2 DSB 1
o Inthiscase, DATA is a label for the address $1FFO. Since DS.B allocates 3 bytes, DATA2 is a label for address
$1FF3.
o  Useful for allocating memory for variables that we will generate during program execution (loop counters,
running totals, etc)
o  Should be used in RAM address range, since we will want to write to it (that is the whole point)



Lets Look At Some Flowcharts



In the beginning...
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Inherent Addressing Example

.
e Theseinstructions just use the one base decode/execute state ooy ooy
e No memory access requires so no need for extra states.

e We'vealready seenthat computationsin the ALU only require 1 cycles, so re s

this works.




Immediate Addressing Example

These instruction use one extra execute state

@)

@)

Have to increment PC to point to the immediate value
Then one cycle to store the input

LOAA Sdss LOAR ddara
LOET i1
LLeiHh] 0aL
il == g =B
INC_PC THC_PC




Extended Addressing Example

LA addr
DErLEn

l

e Thisinstruction uses three extra execute states ©00100
adidrl =z MARL

o  Onetoload MARL e B
o  Onetoload MARL (MAR now points to the given address)
o  Onetoload the value and store. 00101

ki == MARH
T P

e

acki] | = &
Addrie] = MAR,

Back o
Sitabeh



Indexed Addressing Example

These instructions uses two extra execute states

@)

@)

One to load the displacement value
One to load the value and store.

LDAA dd. X LDAA dd ¥
Q01106 i1
011100 oI EIn
dd = Xdisp i = Yilizp
INC PO HC PC
LI ol |
Al]==aA -4
Aciiriel =X ﬁ,:E,ESH:‘f [

|

|



Absolute Addressing Example

These instructions uses one extra execute state

@)

@)

One mealy decision based on the condition
Then it either continues by incrementing the PC,
or it loads the branch address to the PC.

BEC addr
100000

:BNEISG'
100901

TO1 Lo

addr == PCL

<>

PELLED
addr == PCL

10LILE
INC PC

|

hJ
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