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GCPU Hardware Design





Instruction Register

● 6 bits wide -> up to 64 instructions

● Stores input on a rising edge if IR_LD

is true

● Only loads in state 0 - all other states are

decode/execute states

● Basically same design as Lab 6



ALU

● Up to 16 functions (up from 8 in Lab 6)

● MSA/MSB work the same

● Z Flag- true if REGA == 0

● N Flag - true if REGA < 0 (when 

interpreted as a 2s complement number)

● Basically same design as Lab 4

● Output bus is connected to data bus with

a tri-state buffer (since it is sometimes

driven by memory not the CPU).



Address Control Unit

● Only 4 possible sources for an address
○ PC, MAR, X, Y

● PC used to keep track of program execution
○ Only loaded by branch instructions or

Incremented by all instructions

● X,Y used as pointers to data- treat them as

variables
○ Used for indexed addressing mode

instructions



Address Control Unit

● MAR used for “random access” instructions
○ Extended addressing mode instructions

use the MAR to load in whatever address

they reference.

● Since we can’t change the PC, X, or Y to get

to random addresses, we use the MAR.

● Ex: LDAA $1370 loads the address into the

MAR so that it can be accessed



Address Control Unit

● Address Bus Mux
○ Actually selects what source we are using

for an instruction

○ Extended will use the MAR

○ Indexed will use X, Y

○ Absolute/Immediate will use PC

○ Inherent doesn’t use memory -> default to

PC



Address Control Unit

● Address Source Registers Structure
○ Since our data is 8 bits, and the address bus

is 16 bits wide, we actually need 2x8-bit

registers for each source

○ Each source is divided into a upper/lower 

(U/L) register 

○ Each sub-register is loaded independently

○ X,Y also have a displacement register (used

to load the displacement for indexed

instructions)



Controller

● Generates the necessary control signals to

execute each instruction.
○ INC signals for all address sources

○ LD_U/LD_L for all address sources

○ IR_LD to load IR

○ R/~W to control direction of data on data

bus

○ Address source select signals

○ X,Y displacement load signals

○ ALU controls



Instruction Set



Instruction Anatomy

● Every instruction has at least one byte for its associated machine codes, but there can be up to 

three depending on the instruction.

● GCPU document has a key for what each machine code placeholder represents

● Ex:
○ LDX #data has machine codes 08 ii jj

○ ii is the low byte of the data

○ jj is the high byte of the data

○ LDX #$1370 has machine codes 08 70 13



Addressing Modes & Effective Addresses

● Five addressing modes:
○ Inherent Addressing

○ Immediate Addressing

○ Extended Addressing

○ Indexed Addressing

○ Absolute Addressing

● The GCPU document tells you what mode each instruction uses!

● Effective address = address of location data is fetched from or sent to
○ Some instructions don’t access the memory -> no fetch/send -> no EA



Inherent Addressing

● Used by “ALU-level” instructions

● SUM_BA, SHFA_L, etc.

● No effective address for these instructions (no memory access)



Immediate Addressing

● Used by instructions that put a given value into a register

● Examples: 
● LDAA #$37

● LDX #$3701

● These instruction use the exact data that is provided in the instruction

● The data is embedded in the machine codes, so it immediately follows the instruction opcode.

● EA = Address of the instruction itself + 1 (next address after opcode).
○ Need to assemble the program to find this, can’t find it otherwise



Extended Addressing

● Used by instructions that fetch/store data to a particular address

● Examples:
● LDX $1000

● LDAA $FF

● Notice no ‘#’ before the number in the above examples.

● These instruction go to the given address and either store or fetch data from there.
○ We cannot assume anything about the data there unless we put it there ourselves.

● EA = the address given in the instruction
○ $1000, $00FF for the above examples



Indexed Addressing

● Used by instructions that fetch/store data to a particular address relative to the address in X,Y
● Examples:

● LDAA 0,X 

● STAB 3,Y

● Like extended addressing, these instructions go to an address and either store or fetch data from 

there.

● EA = X/Y + displacement value

● Commonly used to point to tables/arrays (as you have seen/will see in Lab 7)



Absolute Addressing

● Used by branch instructions

● BEQ $08, BP LOOP

● Evaluates the branch condition, it is is met, it loads PC_L with the given address
○ Does not affect PC_H -> there is a limited range for branches

● EA = none! No data is moved with this instruction, like inherent addressing.



Labels and Assembler Directives



Labels!

● Labels are placed all the way to the left of instructions or assembler directives

● Used to reference the address of the line at which they are placed

● Very useful for organizing and writing clean assembly code

● To be explored later



Assembler Directives

● EQU
○ Similar to #define in C-like programming languages

○ Equates a string to some value

○ COUNT EQU 15 - When assembling the code, replace every instance of count with 15 before converting to 

machine codes

○ Does not actually get put anywhere in memory since it is not code- just a tool for the assember (YOU!) when 

writing complex programs.



Assembler Directives

● ORG
○ Tells the assembler at what addresses to put the code that follows it

○ Used to establish some frame of reference for where t put the program

○ Example:

ORG $0000

LDAA #3

○ In this case, ORG tells the assembler that the LDAA instruction should be placed at address 0.

○ Useful for if we want to write programs at different addresses, or to initialize data somewhere separate from 

programs.

○ Does not actually get put anywhere in memory since it is not code- just a tool for the assember (YOU!) when 

writing complex programs.



Assembler Directives

● DC.B
○ Defines a constant byte at some address

○ Used to initialize some data in memory

○ Example:

ORG $1FF0

DATA   DC.B 1,2,3,4,5,6

○ In this case, DATA is a label for the address $1FF0. Starting there, the values 1,2,3,4,5,6 are initialized in 

memory

○ Useful for if we want to provide a program with some starting data

○ Can be used for either ROM or RAM address spaces



Assembler Directives

● DS.B
○ Defines a storage byte at some address

○ Example:

ORG $1FF0

DATA     DS.B 3

DATA2  DS.B 1

○ In this case, DATA is a label for the address $1FF0. Since DS.B allocates 3 bytes, DATA2 is a label for address 

$1FF3.

○ Useful for allocating memory for variables that we will generate during program execution (loop counters, 

running totals, etc)

○ Should be used in RAM address range, since we will want to write to it (that is the whole point)



Lets Look At Some Flowcharts



In the beginning...

● Every instruction starts with an instruction fetch and a

decode/execute state.

● Depending on the instruction, more execute states will be used



Inherent Addressing Example

● These instructions just use the one base decode/execute state

● No memory access requires so no need for extra states.

● We’ve already seen that computations in the ALU only require 1 cycles, so

this works.



Immediate Addressing Example

● These instruction use one extra execute state
○ Have to increment PC to point to the immediate value

○ Then one cycle to store the input



Extended Addressing Example

● This instruction uses three extra execute states
○ One to load MARL

○ One to load MARL (MAR now points to the given address)

○ One to load the value and store.



Indexed Addressing Example

● These instructions uses two extra execute states
○ One to load the displacement value

○ One to load the value and store.



Absolute Addressing Example

● These instructions uses one extra execute state
○ One mealy decision based on the condition

○ Then it either continues by incrementing the PC,

or it loads the branch address to the PC.
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