EEL3701 GCPU Review

by Matthew Benda

GCPU Hardware Design

University of Florida EEL 37M Drs. Gugelend Schwartz

Departraent of Electrical & Computer Engineering Revision 0 21-Nov-16
Page 1/1 G-CPU Block Diagram o .
Bi-directional Data Bus s ;
7 j
8 | 8 8
i
6 i
A 4 4 Jr E
RLD —» Rs, MUXA MUXB |
K R5:0 Controller
Register MSALD !
MSBLO ALU
i . MSC3:0 H
E IR5:0 > Z Flag — i
: CLK —pd —» §
6 — 1k PC_INC }—» N Flag !
PC_LD(UL) f—»
—* ZFlag MAR_INC f—» MUXC
(Reset not shown due MAR_LD (/L) |—»
to space constraints) —| NFlag X INC p—»
i X 1D(UL) b—»
| Y INC | R/-W -:
Y_LD (UL} |—» ;
[R_ LD |—> i
R/-W — i
ADDR_SEL1:0 }—s i
XD LD | 8 8
YD LD }—»
R/-W
¥) ¥] +
Address Bus Program Counter (HKL)—’L Mem Addr Reg (H/ L)_” X Reg Block |
Mux o 1™ __———— I :
A0 1
N / 2 [
16 g s L Y Reg Block
Note: PC, MAR, X, Y outputs are 16 bits I |
[: T_ ADDR_SEL1:0 X Reg Block = X displacement Reg + X Reg (H/L)
Y Reg Block = Y displacement Reg + Y Reg (H/L)

Instruction Register

e 6 bitswide->upto 64 instructions
e Storesinputonarisingedgeif IR_LD

is true
e OnlyloadsinstateO - all other states are
decode/execute states

e Basically samedesignasLab 6

University of Florida
Department of Electrical & Computer Engineering

Page 1/1

EEL 3701
Revision 0

G-CPU Block Diagram

Drs. Gugeland Schwartz

21-Nov-16

Bi-directional Data Bus

]
i
E
é
¥
E
i
i

u ADDR_SEL1:0

Note: PC, MAR, X, Y outputs are 16 bits
X Reg Block = X displacement Reg + X Reg (H/L)

Y Reg Block = Y displacement Reg + Y Reg (H/L)

8 8 g
&
y 4
IR5:0 Controller MUXA MUXB
Register MSALQ
MSB1:0 ALU
IR5:0 st
I—+> ZFlag }—»
6 —{ c1k P NG [] NTlag =
PC_LD (UL) |—»
—* ZFl
(Reset not shown due # e MARM&}R(UIELE _n'—b M
to space constraints) — NFlag T x INC f—»
X_LD(UL) f—»
Y INC f—» RAW
Y LD(UL) f—»
IR_LD [—»
REAW — o
ADDR_SEL1:0 |—+ I)
XD_LD |—» 8 8
YD_LD f—
REAW
) i) : i
Address Bus Program Counter (H/L Mem Addr Reg (H/L X
Al50 Mux 0)—”_ IGB(H)_” =
; i
. 2 |
16 3
sl so Y Reg Block

ALU

e Upto 16 functions (up from 8 in Lab 6)
e MSA/MSB work the same

e ZFlag-trueif REGA ==

e NFlag-trueif REGA < 0 (when

interpreted as a 2s complement number)
Basically same design as Lab 4

Output bus is connected to data bus with
a tri-state buffer (since it is sometimes
driven by memory not the CPU).

University of Florida
Department of Electrical & Computer Enginecring

P

e 1/1

EEL 3701
Revision 0

G-CPU Block Diagram

Drs. Gugeland Schwartz
21-Nov-16

|Bi-directional Data Bus

8

T

u ADDR_SEL1:0

4
IR_LD "
K IR5:0 Controller MUXA MUXB
Register MSAL0
MsB1:0 ALU
IR5:0 izt
o ZFlag
— cLk P NG [— | NFlag =
PC_LD (UL) |—»
— . :
(Reset not shown due ZFleg MARM&}Rf UIE.C — MUxC
to space constraints) —+ NFlag X INC, —
X_LD(UL) f—»
Y _INC f—» RAW
Y LD (UL} |—
IR_LD [~
R/-W
ADDR_SEL1:0 |—+)
XD LD —» 8
YD_LD {—»
R-W
J
Adds Bi ' : '
ress Bus Program Counter (H/L
Al5:0 Mux o0 £ !)—“_Mem A"d":‘eg(H’LﬂL ke
- - !
7/ 2
16 3
51 S0
Note: PC, MAR, X, Y outputs are 16 bits

X Reg Block = X displacement Reg + X Reg (H/L)
Y Reg Block = Y displacement Reg + Y Reg (H/L)

Y Reg Block

Address Control Unit

University of Florida

Department of Electrical & Computer Engineesing ‘E:v[].’s?:::' Drs. Gugeland Schwartz
[G-CPU Block Diagram Ao
i-directio: ita Bus e sormenasoey
LI) 8 8 ;
i
. “éfifcn IRS5:0 Controller M'[JIXA MUX’B I
e Only4 possible sources for an address) Register wsato ;
o ALU i
o PC,MAR,X,Y s oo
‘ ‘ - ZFlag {
e PCused to keep track of program execution T — 1 I
o Onlyloaded by branch instructions or : z:g Mﬁnﬁﬁf — MUXC
Incremented by all instructions * xwun — i
. Y INC f—» RA-W H
e X,Y used as pointers to data- treat them as Ry e 5
R -
variables "DDR'SLE&% — 8 : ;
. . YD LD |—»
o Used forindexed addressing mode o - |
instructions | i I 7 7 T
» Add;ﬁi Bt;s | Program Counter L) |[Mem Addr Reg 1) || XRegBlock |
“ ! L—] I
3
i %0 Note: PC, MAR, X, Y outputs are 16 bits Y Ree Bloc
N outputs are
&ADDRJ'EL]:U X RES Block = X lill;placement RIEE +X R"E lgh
g L)

Address Control Unit

o Extended addressing mode instructions
use the MAR to load in whatever address
they reference.

e Since we can’t change the PC, X, or Y to get
to random addresses, we use the MAR.

e Ex:LDAA $1370loads the address into the
MAR so that it can be accessed

MAR used for “random access” instructions

University of Florida

Department of Electrical & Computer Engineering
Page 1/1

EEL 3701
Revision 0

G-CPU Block Diagram

Drs. Gugeland Schwartz
21-Nov-16

|Bi-directional Data Bus

IR_LD
CLK

8

IR5:0
Register

(Reset not shown due
to space constraints)

Controller
MSAL0Q

MSBI:G

IR5:0 A

CLK —pf
CLK PC_INC
PC_LD (U/L)

Z Flag MAR_INC

MAR_LD (UrL)

Z Flag
N Flag [—* i

MUXC

N Flag X_INC
X_LD (UML)
Y _INC
Y_LD(UL)
IR_LD
R/-W

ADDR_SELI:0
XD LD
YD_LD

HITHITTT

Address Bus
Al5:0 Mux 0

)
| Program Counter (H;‘L)—”_ Mem AddrReg (W) || X Reg Block
]

2

3

81 S0

i

u ADDR_SEL1:0

Note: PC, MAR, X, Y outputs are 16 bits

X Reg B]ock X displacement Reg + X Re;)]
T m!ﬂﬂ!ﬂd ; Reg ﬁi L)

e

Y Reg Block

Address Control Unit

University of Florida

Department of Electrical & Computer Engineering]EF‘L.’ ??OI Drs. Gugeland Schwartz
Page 1/1 evision O 21-Nov-16
G-CPU Block Diagram
|Bi-directional Data Bus - —
|
LI) 8 8 |
i
IR_LD IRS:0 Controller \{LJD(A MU);B E
CLK A
e Address Bus Mux Register wsaio ;
. MSBID ALU ‘
o Actually selects what source we are using IR5:0 M5C3 2R !
. . ' ag —» ;
for an instruction CLK YR My NFlag =+ i
. PC_LD(UL) f—»
o Extended will use the MAR T e MUXC
. to space constraints) — NFlag X INCG
o Indexed will use X, Y XD ‘
. . Y _INC H
o Absolute/Immediate will use PC v DUy — Rv |
IR LD [—» I
) B RI-W _—
o Inherent doesn’t use memory -> default to ADDR sEL10 [i
XD LD
PC YD_LD — § £ i
-~ i
il | — — T
Add;Ei B:s | Program Counter L) |[Mem Addr Reg 1) || XRegBlock
Al5:0 I—-———l |
- 2 I
3
S1 S0 Y Reg Block
—T Note: PC, MAR, X, Y outputs are 16 bits
LADDR,SEU:U X ‘%%W\
N g L)

Address Control Unit

e Address Source Registers Structure

@)

Since our data is 8 bits, and the address bus
is 16 bits wide, we actually need 2x8-bit
registers for each source

Each sourceis divided into a upper/lower
(U/L) register

Each sub-register is loaded independently
XY also have a displacement register (used
to load the displacement for indexed
instructions)

University of Florida
Department of Electrical & Computer Enginecring

EEL 3701
Revision 0

Drs. Gugeland Schwartz
21-Nov-16

X Reg Block = X displacement Reg + X Reg (H/L)
Y Reg Block = Y displacement Reg + Y Reg (H/L)

u ADDR_SEL1:0

Page 1/1 i
e G-CPU Block Diagram
|Bi-directional Data Bus B T
LI) 8 8
3
v J y
IR_LD ’
R IR5:0 Controller MUXA MUXB
Register MSALQ
MSB1:0 ALU
IR5:0 st
. e ZFlag p—
— CLK PC_INC —+ N Flag =
PC_LD(UL) f—»
— —» :
(Reset not shown due ZFleg MARMI:};‘R(&C — MUxC
to space constraints) —+ NFlag T x mc’ —»
X_LD(UL) f—»
Y INC f—» RAW
Y LD(UL) f—»
IR_LD [—»
R/-W —
ADDR_SEL1:0 |—+
XD_LD |—» 8 8
YD_LD {—»
REAW
Address By . . : : :
us Program Counter (H/L
A15:0 Mux 0 s !)—”_ e :‘eg (WL)_JL ke |
- - !
7 2 y I
16 3 -
s so Y Reg Block

1]
¥
E
I
i
f

H

H

i

=

o

O
O
O

Controller

Generates the necessary control signals to
execute each instruction.

INC signals for all address sources
LD_U/LD_L for all address sources

IR_LD toload IR

R/~W to control direction of data on data
bus

Address source select signals

X,Y displacement load signals

ALU controls

University of Florida

Department of Electrical & Computer Engineering

Page 1/1

G-CPU Block Diagram

EEL 3701
Revision 0

Drs. Gugeland Schwartz

|Bi-directional Data Bus

IR_LD
CLK

8

IR5:0
Register

(Reset not shown due
to space constraints)

pa—

IR5:0
CLK
Z Flag
N Flag

Controller

PC_INC
PC_LD (U/L)
MAR_INC
MAR_LD (U/L)
X_INC

X_LD (UL)
Y_INC

ADDR_SELI:0
XD LD
YD_LD

MUXC

Address Bus

I:‘ + i)
Program Counter em &
"t - ter (/L) |[M Addr:lg(HfL)_iL

81 S0

X Reg Block

2

3

u ADDR_SEL1:0

Note: PC, MAR, X, Y outputs are 16 bits

X Reg Block = X displacement Reg + X Reg (H/L)
Y Reg Block = Y displacement Reg + Y Reg (H/L)

Y Reg Block

21-Nov-16

1]
H
E
I
{
i

H

H

i

Instruction Set

Instruction Anatomy

e Everyinstruction has at least one byte for its associated machine codes, but there can be up to

three depending on the instruction.
e GCPU document has a key for what each machine code placeholder represents

Ex:
o LDX#data has machine codes 08 ii jj
o iiisthe low byte of the data
o jjisthe high byte of the data * mm— B-hit immediate data valse
o LDX#$1370 has machine codes 08 70 13 nT :,Eﬁ;ﬁﬁi o dn

11 — Low-order byte of s 16-bit address

hh — High-order byte of 2 16-hit address

ddd — B-hat displacemsent valise

bl — Low-arder byte of a 16-bit 2ddress for 2 branch instrucsion

Addressing Modes & Effective Addresses

e Five addressing modes:
o Inherent Addressing
o Immediate Addressing
o Extended Addressing
o Indexed Addressing
o Absolute Addressing
e The GCPU document tells you what mode each instruction uses!

e [Effective address = address of location data is fetched from or sent to
o Some instructions don’t access the memory -> no fetch/send -> no EA

Inherent Addressing

e Used by “ALU-level” instructions
SUM_BA, SHFA L, etc.
e No effective address for these instructions (no memory access)

Immediate Addressing

e Used by instructions that put a given value into a register

e Examples:
o LDAA#$37
e LDX#$3701
e Theseinstruction use the exact data that is provided in the instruction
e Thedataisembedded in the machine codes, so it immediately follows the instruction opcode.
e EA = Address of the instruction itself + 1 (next address after opcode).
o Need to assemble the program to find this, can’t find it otherwise

Extended Addressing

e Used by instructions that fetch/store data to a particular address

e Examples:
e LDX$1000
e LDAASFF

e Notice no‘# before the number in the above examples.

e Theseinstruction go to the given address and either store or fetch data from there.
o We cannot assume anything about the data there unless we put it there ourselves.

e EA=theaddressgivenintheinstruction

o $1000, $00FF for the above examples

Indexed Addressing

Used by instructions that fetch/store data to a particular address relative to the address in X,Y

e Examples:
e |[DAAOX
e STAB3Y
e Like extended addressing, these instructions go to an address and either store or fetch data from
there.
e EA=X/Y +displacement value
Commonly used to point to tables/arrays (as you have seen/will see in Lab 7)

Absolute Addressing

e Used by branch instructions

e BEQ$08,BPLOOP

e Evaluatesthe branch condition, it is is met, it loads PC_L with the given address
o Does not affect PC_H -> there is a limited range for branches

e EA=none! Nodatais moved with this instruction, like inherent addressing.

Labels and Assembler Directives

Labels!

e Labels are placed all the way to the left of instructions or assembler directives
e Usedtoreference the address of the line at which they are placed
e Veryuseful for organizing and writing clean assembly code

e Tobeexploredlater

Assembler Directives

e EQU
o Similar to #define in C-like programming languages
Equates a string to some value

COUNT EQU 15 - When assembling the code, replace every instance of count with 15 before converting to
machine codes

o Does not actually get put anywhere in memory since it is not code- just a tool for the assember (YOU!) when
writing complex programs.

Assembler Directives

o Tellsthe assembler at what addresses to put the code that follows it
o Usedto establish some frame of reference for where t put the program
o Example:
ORG $0000
LDAA #3
In this case, ORG tells the assembler that the LDAA instruction should be placed at address O.
o Useful for if we want to write programs at different addresses, or to initialize data somewhere separate from
programs.
o Does not actually get put anywhere in memory since it is not code- just a tool for the assember (YOU!) when
writing complex programs.

Assembler Directives

o Defines a constant byte at some address
Used to initialize some data in memory
Example:
ORG $1FFO
DATA DC.B1,2,3,45,6
o Inthis case, DATA is a label for the address $1FFO. Starting there, the values 1,2,3,4,5,6 are initialized in
memory
o Useful for if we want to provide a program with some starting data
Can be used for either ROM or RAM address spaces

Assembler Directives

e DSB

o Defines a storage byte at some address
o Example:
ORG $1FFO
DATA DS.B3
DATA2 DSB 1
o Inthiscase, DATA is a label for the address $1FFO. Since DS.B allocates 3 bytes, DATA2 is a label for address
$1FF3.
o Useful for allocating memory for variables that we will generate during program execution (loop counters,
running totals, etc)
o Should be used in RAM address range, since we will want to write to it (that is the whole point)

Lets Look At Some Flowcharts

In the beginning...

Instruction
IR_LD Purc

Speeial Notes;

e Everyinstruction starts with an instruction fetch and a
1. MSALLO] & MSB(1 0§,
protect r!ll\!llui“.'\;.ﬁ wehen these

decode/execute state. by

ASM chart.
000008

Depending on the instruction, more execute states will be used A —
annct the FE o the Addrss Bus Instruction

[l.e. ADDR_SEL = 00} txil
buise peciied inthe AGSL, e pe * Decode/Execution

Instructions Listed an Next Pages. ..

Inherent Addressing Example

.
e Theseinstructions just use the one base decode/execute state ooy ooy
e No memory access requires so no need for extra states.

e We'vealready seenthat computationsin the ALU only require 1 cycles, so re s

this works.

Immediate Addressing Example

These instruction use one extra execute state

@)

@)

Have to increment PC to point to the immediate value
Then one cycle to store the input

LOAA Sdss LOAR ddara
LOET i1
LLeiHh] 0aL
il == g =B
INC_PC THC_PC

Extended Addressing Example

LA addr
DErLEn

l

e Thisinstruction uses three extra execute states ©00100
adidrl =z MARL

o Onetoload MARL e B
o Onetoload MARL (MAR now points to the given address)
o Onetoload the value and store. 00101

ki == MARH
T P

e

acki] | = &
Addrie] = MAR,

Back o
Sitabeh

Indexed Addressing Example

These instructions uses two extra execute states

@)

@)

One to load the displacement value
One to load the value and store.

LDAA dd. X LDAA dd ¥
Q01106 i1
011100 oI EIn
dd = Xdisp i = Yilizp
INC PO HC PC
LI ol |
Al]==aA -4
Aciiriel =X ﬁ,:E,ESH:‘f [

|

|

Absolute Addressing Example

These instructions uses one extra execute state

@)

@)

One mealy decision based on the condition
Then it either continues by incrementing the PC,
or it loads the branch address to the PC.

BEC addr
100000

:BNEISG'
100901

TO1 Lo

addr == PCL

<>

PELLED
addr == PCL

10LILE
INC PC

|

hJ

	EEL3701 GCPU Review
	GCPU Hardware Design
	Slide Number 3
	Instruction Register
	ALU
	Address Control Unit
	Address Control Unit
	Address Control Unit
	Address Control Unit
	Controller
	Instruction Set
	Instruction Anatomy
	Addressing Modes & Effective Addresses
	Inherent Addressing
	Immediate Addressing
	Extended Addressing
	Indexed Addressing
	Absolute Addressing
	Labels and Assembler Directives
	Labels!
	Assembler Directives
	Assembler Directives
	Assembler Directives
	Assembler Directives
	Lets Look At Some Flowcharts
	In the beginning...
	Inherent Addressing Example
	Immediate Addressing Example
	Extended Addressing Example
	Indexed Addressing Example
	Absolute Addressing Example

