
EEL3701 GCPU Review

by Matthew Benda

GCPU Hardware Design

Instruction Register

● 6 bits wide -> up to 64 instructions

● Stores input on a rising edge if IR_LD

is true

● Only loads in state 0 - all other states are

decode/execute states

● Basically same design as Lab 6

ALU

● Up to 16 functions (up from 8 in Lab 6)

● MSA/MSB work the same

● Z Flag- true if REGA == 0

● N Flag - true if REGA < 0 (when

interpreted as a 2s complement number)

● Basically same design as Lab 4

● Output bus is connected to data bus with

a tri-state buffer (since it is sometimes

driven by memory not the CPU).

Address Control Unit

● Only 4 possible sources for an address
○ PC, MAR, X, Y

● PC used to keep track of program execution
○ Only loaded by branch instructions or

Incremented by all instructions

● X,Y used as pointers to data- treat them as

variables
○ Used for indexed addressing mode

instructions

Address Control Unit

● MAR used for “random access” instructions
○ Extended addressing mode instructions

use the MAR to load in whatever address

they reference.

● Since we can’t change the PC, X, or Y to get

to random addresses, we use the MAR.

● Ex: LDAA $1370 loads the address into the

MAR so that it can be accessed

Address Control Unit

● Address Bus Mux
○ Actually selects what source we are using

for an instruction

○ Extended will use the MAR

○ Indexed will use X, Y

○ Absolute/Immediate will use PC

○ Inherent doesn’t use memory -> default to

PC

Address Control Unit

● Address Source Registers Structure
○ Since our data is 8 bits, and the address bus

is 16 bits wide, we actually need 2x8-bit

registers for each source

○ Each source is divided into a upper/lower

(U/L) register

○ Each sub-register is loaded independently

○ X,Y also have a displacement register (used

to load the displacement for indexed

instructions)

Controller

● Generates the necessary control signals to

execute each instruction.
○ INC signals for all address sources

○ LD_U/LD_L for all address sources

○ IR_LD to load IR

○ R/~W to control direction of data on data

bus

○ Address source select signals

○ X,Y displacement load signals

○ ALU controls

Instruction Set

Instruction Anatomy

● Every instruction has at least one byte for its associated machine codes, but there can be up to

three depending on the instruction.

● GCPU document has a key for what each machine code placeholder represents

● Ex:
○ LDX #data has machine codes 08 ii jj

○ ii is the low byte of the data

○ jj is the high byte of the data

○ LDX #$1370 has machine codes 08 70 13

Addressing Modes & Effective Addresses

● Five addressing modes:
○ Inherent Addressing

○ Immediate Addressing

○ Extended Addressing

○ Indexed Addressing

○ Absolute Addressing

● The GCPU document tells you what mode each instruction uses!

● Effective address = address of location data is fetched from or sent to
○ Some instructions don’t access the memory -> no fetch/send -> no EA

Inherent Addressing

● Used by “ALU-level” instructions

● SUM_BA, SHFA_L, etc.

● No effective address for these instructions (no memory access)

Immediate Addressing

● Used by instructions that put a given value into a register

● Examples:
● LDAA #$37

● LDX #$3701

● These instruction use the exact data that is provided in the instruction

● The data is embedded in the machine codes, so it immediately follows the instruction opcode.

● EA = Address of the instruction itself + 1 (next address after opcode).
○ Need to assemble the program to find this, can’t find it otherwise

Extended Addressing

● Used by instructions that fetch/store data to a particular address

● Examples:
● LDX $1000

● LDAA $FF

● Notice no ‘#’ before the number in the above examples.

● These instruction go to the given address and either store or fetch data from there.
○ We cannot assume anything about the data there unless we put it there ourselves.

● EA = the address given in the instruction
○ $1000, $00FF for the above examples

Indexed Addressing

● Used by instructions that fetch/store data to a particular address relative to the address in X,Y
● Examples:

● LDAA 0,X

● STAB 3,Y

● Like extended addressing, these instructions go to an address and either store or fetch data from

there.

● EA = X/Y + displacement value

● Commonly used to point to tables/arrays (as you have seen/will see in Lab 7)

Absolute Addressing

● Used by branch instructions

● BEQ $08, BP LOOP

● Evaluates the branch condition, it is is met, it loads PC_L with the given address
○ Does not affect PC_H -> there is a limited range for branches

● EA = none! No data is moved with this instruction, like inherent addressing.

Labels and Assembler Directives

Labels!

● Labels are placed all the way to the left of instructions or assembler directives

● Used to reference the address of the line at which they are placed

● Very useful for organizing and writing clean assembly code

● To be explored later

Assembler Directives

● EQU
○ Similar to #define in C-like programming languages

○ Equates a string to some value

○ COUNT EQU 15 - When assembling the code, replace every instance of count with 15 before converting to

machine codes

○ Does not actually get put anywhere in memory since it is not code- just a tool for the assember (YOU!) when

writing complex programs.

Assembler Directives

● ORG
○ Tells the assembler at what addresses to put the code that follows it

○ Used to establish some frame of reference for where t put the program

○ Example:

ORG $0000

LDAA #3

○ In this case, ORG tells the assembler that the LDAA instruction should be placed at address 0.

○ Useful for if we want to write programs at different addresses, or to initialize data somewhere separate from

programs.

○ Does not actually get put anywhere in memory since it is not code- just a tool for the assember (YOU!) when

writing complex programs.

Assembler Directives

● DC.B
○ Defines a constant byte at some address

○ Used to initialize some data in memory

○ Example:

ORG $1FF0

DATA DC.B 1,2,3,4,5,6

○ In this case, DATA is a label for the address $1FF0. Starting there, the values 1,2,3,4,5,6 are initialized in

memory

○ Useful for if we want to provide a program with some starting data

○ Can be used for either ROM or RAM address spaces

Assembler Directives

● DS.B
○ Defines a storage byte at some address

○ Example:

ORG $1FF0

DATA DS.B 3

DATA2 DS.B 1

○ In this case, DATA is a label for the address $1FF0. Since DS.B allocates 3 bytes, DATA2 is a label for address

$1FF3.

○ Useful for allocating memory for variables that we will generate during program execution (loop counters,

running totals, etc)

○ Should be used in RAM address range, since we will want to write to it (that is the whole point)

Lets Look At Some Flowcharts

In the beginning...

● Every instruction starts with an instruction fetch and a

decode/execute state.

● Depending on the instruction, more execute states will be used

Inherent Addressing Example

● These instructions just use the one base decode/execute state

● No memory access requires so no need for extra states.

● We’ve already seen that computations in the ALU only require 1 cycles, so

this works.

Immediate Addressing Example

● These instruction use one extra execute state
○ Have to increment PC to point to the immediate value

○ Then one cycle to store the input

Extended Addressing Example

● This instruction uses three extra execute states
○ One to load MARL

○ One to load MARL (MAR now points to the given address)

○ One to load the value and store.

Indexed Addressing Example

● These instructions uses two extra execute states
○ One to load the displacement value

○ One to load the value and store.

Absolute Addressing Example

● These instructions uses one extra execute state
○ One mealy decision based on the condition

○ Then it either continues by incrementing the PC,

or it loads the branch address to the PC.

	EEL3701 GCPU Review
	GCPU Hardware Design
	Slide Number 3
	Instruction Register
	ALU
	Address Control Unit
	Address Control Unit
	Address Control Unit
	Address Control Unit
	Controller
	Instruction Set
	Instruction Anatomy
	Addressing Modes & Effective Addresses
	Inherent Addressing
	Immediate Addressing
	Extended Addressing
	Indexed Addressing
	Absolute Addressing
	Labels and Assembler Directives
	Labels!
	Assembler Directives
	Assembler Directives
	Assembler Directives
	Assembler Directives
	Lets Look At Some Flowcharts
	In the beginning...
	Inherent Addressing Example
	Immediate Addressing Example
	Extended Addressing Example
	Indexed Addressing Example
	Absolute Addressing Example

