
EEL3701: Digital Logic and
Computer Systems

Fundamentals of Computer Engineering:
Logic Design and Microprocessors

Chapters 1-7

by
Herman Lam, John O'Malley, and A. Antonio Arroyo

Eric M. Schwartz: "This document was generously made
available by the author Herman Lam, after if was found
to be illegally available on other websites for a fee."

Chapters 8-12 have
been intentionally
removed from this

packet.

CONTENTS

CHAPTER 1 NUMBER SYSTEMS AND REPRESENTATIONS 1

I. I Introduction 1
1.2 Binary Number Syszcm 2

1.2.1 Addition and SubD"action 3
1.2.2 Multiplication :and Division 4

1.3 Positional Number Systems 6
1.4 Bin:uy•to--Occimal Conversion 7
1.5 OccimaJ-to,.Binary Conversion 8
1.6 Octal Number Sys1em 10
1.7 Hex:idecimal Number Syszem 12
1.8 Representing Neg:alivc Binary Numbers 14
I. 9 Binary.Ceded Dccim:il (BCD) Reprcscnc:.ition 15

CHAPTER 2 BOOLEAN ALGEBRA 19

2.1 Introduction 19
2.2 Boolean V:ui:ables and Logic V:tlucs 19
2.3 Fundamental Operations 19

2.3.l AND Operation 20
2.3.2 OR Operation 21
2.3.3 NOT Operation 22
2.3.4 Operation Hier:ui:hy 22
2.3.S Summary 23

2.4 Logic Expressions from Truth Tables 24
2.4.1 SOP Expression from 3 Truth Table 24
2.4.2 PCS Expression from :i Truth T:iblc 26

xi

Xii CONTENTS

2.5 Equivalent Expressions 27
2.6 Boolean Identities 28
2. 7 Simplification Using Boole:in Identities 30
2.8 Kamaugh Maps 32

2.8.1 Obt:1ining an MSOP from a K-Map 34
2.8.2 Obtaining an MPOS from a K-Map 40

2.9 Don't-Care Outputs 42
2.10 Minimiz.:ttion Summary 43
2.11 Other Common Logic Operations 43

2.11.1 NANO Operation 43
2.11.2 NOR Oper.uiou 44
2.11.3 Exclusi'.t'e OR Oper.uion 45
2.11.4 EquivaJ.::nce Operation 46

CHAPTER 3 DIGITAL DESIGN WITH SMALL-SCALE INTEGRATED
CIRCUIT ELEMENTS 52

3.1 Introduction 52
3.2 Transistor-Transistor Logic 52
3.3 Logic Conventions 53

3.3.1 74•00 59
3.3.2 74'02 62
3.3.3 74•04 63
3.3.4 SSI Basic Gate Summary 66

3.4 Synthesis of Digital Circuits 67
3.4.1 Synthesis Based on the Positive-Logic Convention 67
3..4.2 Synthesis Based on the Negative-Logic Convention 70
3.4.3 Synthesis Based on the Mixed-Logic Convention 71

3.S Summary-Logic Conventions 77

CHAPTER 4 COMBINATIONAL MSI CIRCUIT ELEMENTS 87

4.1 Introduction 87
4.2 Binary Adder and Subrr.ictor 88

4.2.1 Half Adder and Full Adder 88

4.2.2 Parallel Adder 90
4.2.3 MS(Parallc:1 Adders 91
4.2.4 Binary Subtractor 92

4.3 Magnitude Comparator 94
4.4 Decoder 97

4.4.1 BCO.to-7-Segment Decoder 99
4.5 Encoder 102

4.S. I Priority Encoder 103
4.6 Multiplexer 1.04

4.6.1 Three-State Logic Element 106
4. 7 Demultiplexer 110

CONTENTS Xiii

4.8 Design Considc:r:uions for lntegr::ued Circuit (IC) Elements 111
4.8.1 1'TL Difital Logic F:imily 113
4 .8 .2 Par:unc:tcrs for Static Ch::1t::1cteristics 114
4.8.3 P:ir:unctcrs for Switching Churac:tcristics 117

CHAPTER 5 SEQUENTIAL MSI CIRCUIT ELEMENTS 123

S.1 Introduction 123
5 .! The: Clock Sign::il 123
5.3 Flip-Flops 125

5.3.1 The J.K Flip-Flop 125
S.3.2 The D Flip-Flop 128
S.3.3 The T Flip-Flop 132
5.3.4 Flip-FJop Conversion 133

5.4 The Uncloc:kcd S·R FJip-Aop 139
S.S Re::lliz:uion of FJip-Aops 141

5.S. l J.K FJip-Flops 143
5.6 Counters 144

.S.6.1 The Design and Re::dization of Synchronous Counters 146
5.6.:? MSl Counters 156

5.7 Registers 157
S.7.1 Saorage Registers 157
S. 7 .:? Shif1 Registers 160

5.8 Synchronous versus Asynchronous Designs 163

CHAPTER 6 LSI .CIRCUIT ELEMENTS 174

6.1 Introduction 174
6.:? Arithmetic Logic Unit 175
6.J Look-Ahead Cmy Circuits for Adders :ind ALUs 177

6.3.1 Modified Look•Ahc:id C.my Approaches 180
6A Programmable Logic: Arr:iy (PLA) and Progr:unmablc Arr.iy Logic (PAL) 183

6.4.1 Programmable Logic Arr:iy 184
6.4.l Progr::imm:iblc Arr:iy Logic 191

6.S Memories 197
6.S. I St1tic: RAM 199
6.S.2 R0d-Only Memory 204
6.S.3 Dynamic RAM 209

CHAPTER 7 DIGIT AL CIRCUIT DESIGN 222

7. I ln1roduc:1ion 222
7 .2 A Model for Oigit;il Cin:uit Ck;sign 223
7 .3 Digit:il Circuit 0:sign Process 224
7 .4 Algorithmic: S1:ue M::achinc: (ASM) 225
7 .S Tr:msl;ition from ASM Chan to H;irdw:m: Rc::tliz:ation 221!:

xiv CONTENTS

7.5.1 Code Assignment 228
. 7.5.2 Traditional Method with D Flip-Flops 229
7 .5.3 PLAIPAL Method of ASM Realization 233
7.5.4 ROM Method of ASM Realization 233

7 .6 An Additional Controller Design 238
7. 7 Traditional State Machines 241

7. 7. I Mealy State Machine 242
7. 7 .2 Moore State Machine 243

7 .8 Design Examples 244
7.8. l Simplified Dynamic ~'A Controller 245
7 .8.2 Modified Counter 255
7.8.3 Alternative Design for the Modified Counter 260
7 .8.4 Hardware Multiplier 262

1.1 INTRODUCTION

Chapter 1

Number Systems and
Representations

The major topics of this chapter are the number systems and the number representations
that are useful in the study of computer engineering. First introduced is the binary number
system, which is the number system used in digital computers and other digital appli
cations. After this introduction to the binary number system we will consider the foun
dation for a positional number system. such as the binary number system and the more
familiar decimal number system. Then we will relate the binary and decimal number
systems. Next we will briefly consider the octal and hexadecimal number systems since
they are used as shorthand systems for the binary number system. After that we will
consider three different ways of representing signed binary numbers. Finally, we will
consider the binary-coded decimal (BCD) representation.

We are well familiar with the decimal number system. Probably its popularity
results from humans having ten fingers. If God had endowed us with, say, eight fingers
instead. then perhaps the octal number system would have been the one we studied in
grade school. In other words. the extensive use of the decimal number system is mostly
a matter of chance and not because it is best for calculations.

Only one number system-the binary number system-is well suited, at present.
for direct use in digital applications, including digital computers. In an electronic digital
computer application. each different symbol of a number system is represented by a
different physical quantity such as a different voltage level. Consequently, the direct use
of. say, the decimal number system requires components that utilize ten different physical
quantities. Other considerations require these components to be small, light, inexpensive,
and also very fast in ope·ration. Components satisfying these latter requirements seldom
possess the necessary ten distinct physical quantities. In fact, many of these components
have just two distinct physical quantities and therefore are binary components.

1

2 1/NUMBER SYSTEMS AND REPRESENTATIONS

To better appreciate the need for the binary number system for digital applications,
consider some of the important components used in electronic digital systems. The flip
flop, a storage circuit, is popular because its output voltages can be change~ very rapidly.
In~erently, a flip-flop produces just two voltage levels and thus is a binary component.
Another even more basic component, the transistor, is usually operated in digital appli
cations in just two conditions-saturation and cutoff-and hence it is a binary device.
In a magnetic storage element, typically there are just two physical conditions-the two
possible directions of residual .magnetic flux.

Although the binary number system is best for. digital systems, it has the disad
vantage of requiring more digits than the decimal number system-generally, more than
three times as many: Fortunately, though, having more binary digits is not a serious
problem, and can be avoided for hand calculations by using an octal or hexadecimal
shorthand. Using octal reduces the number of digits by a factor of approximately three,
and using hexadecimal reduces it by a factor of approximately four. As will be seen,
using either of these number systems for a shorthand is convenient because it is very
easy to convert a binary number into either its octal or hexadecimal equivalent.

1.2 BINARY NUMBER SYSTEM

The binary number system is simpler, in most respects, than the decimal number system
because it has only two distinct symbols, 0 and 1, which is much fewer than the ten
distinct symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9 of the decimal number system.
Table 1.1 has the first 18 nonnegative binary integers and the corresponding decimal
integers.

TABLE 1.1 DECIMAL•BINARY EQUIVALENCE

Decimal Binary Decimal Binary

0 0 9 1001
1 10 1010

2 IO II 1011
3 11 12 I 100
4 100 13 I IOI
5 IOI 14 1110
6 110 15 1111
7 I I I 16 10000
8 1000 17 10001

We can derive the binary contents of this table by starting with 0, and continually
adding 1, using the rules for binary addition given in Table 1.2. Starting with 0. we add
1 to get the next binary entry of Table 1.1:

Then, add 1 to get the next number.

0
+1

1

1.2 BINARY NUMBER SYSTEM

+I
2

3

(wrong!)

Wrong! In the binary system, the only valid digits are 0 and I. From the rules for binary
addition in Table 1.2, we see that the next number should be

+ 1 .

10 (sum of 0 and a carry of I)

Continuing counting in this manner, we obtain more table entries.

10
.±_l

11
.±...J.

100

.±...J.
IOI

And so forth.

TABLE 1.2 BINARY ADDITION

a b Sum Carry

0 0 0 0
0 l 1 0 a

0 l 0 +b

0

In order to avoid any ambiguity, we will often use a subscript to specify the number
system of a particular number. As an illustration,

1310 = 11012

The subscript 2 is used for the binary system, 10 for the decimal system, 8 for the octal
system, and 16 for the hexadecimal system. Alternatively, a letter B, D, 0, or H can
be used. respectively, instead of a subscript.

1.2.1 Addition and Subtraction

Addition in binary is quite simple, as is evident from Tab]e 1.2. Some examples follow.

I I

I I I
1110(610)

I I I I I I

1010 (IOIO) IOI (5 10) 111 (7IO) l] (3 IO) 11011.101 (27.62510)

+ 100 (410) + 101 (510) ±_il(310) .±..lll (710) + 1010.111 (10.87510)

1110(1410) 1010 0010) 1010 (10_10) 10000 (1610) 100110. 100 (38.510)

4 1/NUMBER SYSTEMS AND REPRESENTATIONS

TABLE 1.3 BINARY SUBTRACTION

a b Difference Borrow

0 0 0 0
0 l I l a (minuend)
l 0 l 0 -b (subtrahend)

0 0

Notice in the third example that the second column has the addition of two Is plus a I
carry from the first column of addition. The sum of 11 2 = 310 is shown as a I in the
sum plus a I carry in the third column from the right. The fourth example shows that
one difficulty in adding binary numbers is the large number of carries that often occur.
In this example, the carry from the second column of addition (I + I + l + 1 = I 00)
extends over two places. Such an extension is not unusual in the addition of more than
two binary numbers. but is rare in the addition of decimal numbers. The last example
shows that the addition rules are the same for numbers that are not integers. In other
words, the presence of the binary point (not decimal point) has no effect on the addition
rules.

Binary subtraction is more difficult than addition, but no more so than decimal
subtraction is more difficult than decimal addition. Table 1.3 specifies the rules for binary
subtraction. A simple example of binary subtraction is the following:

11 IO (1410)

- 100 (410)

1010 0010)

Just as in decimal subtraction, the principal difficulty in binary subtraction occurs
when a borrow is required. This happens in the subtraction of a I from a 0. Then. it is
necessary to borrow a l from the "next" digit. If this digit is a I, then it is changed to
a 0, and the borrow taken, as in the following example:

1101 (13!0)

_JQ (210)

~
10101 borrow

IO

1011

If the "next" digit in the minuend is a 0, then the borrow must extend over several
digits. just as in decimal subtraction. As an illustration.

I 100001
- 100011 -+-

~
10111 101 borrow

}000 11

1111 IO

Note that the second. third. fourth. and fifth digits of the minuend change in the gen
eration of the borrow for the sixth digit.

1.2.2 Multiplication and Division

Table 1.4 specifies the rules for binary multiplication. As is evident. 0 times a digit is
0. and I times a digit is that digit. Not shown by the table is the fact that the rule for

1.2 BINARY NUMBER SYSTEM

TABLE 1.4 BINARY MULTIPLICATION

a

0
0

b

0
I
0

Product

0
0
0

a
X b

5

positioning the binary point in a product is the same as that for the decimal point in the
decimal number system.

EXAMPLE 1.1 ----------------------------

Multiply 1101. I by 1010. l.

Solution.

1101.I
X 10)0.1

11011
00000

I IO 11
00000

I IOI 1

multiplicand
multiplier

1000 I 10 I. 11 product ••

From Example I. I, we see that. in general, for each I in the multiplier we write
the multiplicand and then shift left one position before writing again. For each O in the
multiplier. we just shift left.

Division in binary is much simpler than in decimal. The process of binary division
is best illustrated by an example. We will check the result of the last example by dividing
the multiplier into the product to see whether the quotient is the original multiplicand.

EXAMPLE 1.2 ----------------------------

Divide 10001 IOI. I I by 1010.1.

Solution.

110 l . 1 quotient
divisor IOIO. I_h_OO_O_l_IO __ l __ . l_l dividend

10101

11100
10I01

11111
10101

10101
10101
00000 ••

6 1 /NUMBER SYSTEMS AND REPRESENTATIONS

In general, the first step in binary division is to mark off, starting from the left in
the dividend, a number of digits equal to the number of digits in the divisor. If the
number marked off is larger, then the divisor divides into this number ·exactly once. If
the number marked off is smaller, we include another digit of the dividend. Then, the
divisor always divides into this number exactly once. -We subtract, and then continue
the process just as in decimal division. We position the binary point of the quotient in
the same way as in decimal division.

1.3 POSITIONAL NUMBER SYSTEMS

Now that we have studied the binary number system, we will provide a foundation for
what we have done by briefly considering positional number systems, starting with the
familiar decimal number system.

As we know, the decimal number system has ten different symbols: 0, 1, 2, 3, 4,
5, 6, 7, 8, and 9. The number of symbols of a number system is the base or radix. So,
the base of the decimal system is IO. Note that the symbol for the base is a combination
of the first two symbols; there is no single symbol for the 10 base of _the decimal system.

In a positional number system (and all the number systems we will study are
positional number systems), the value of a number depends not only on the symbols
used but also on the positions of the symbols. For example, 367410 and 374610 contain
the same symbols but have entirely different values. The significance of the positions is
that they correspond to different powers of the base, even though we do not show these
powers because we write these numbers in contracted form. As an illustration, 3674 10 is
a contraction of 3 x 103 + 6 x 102 + 7 x 101 + 4 x 10°. Graphically, it can be
shown as follows:

3t3 ~ :~

'\: X 103

Although we do not show the radix point (e.g., decimal point) for integer numbers,
we assume it to be just to the right of the rightmost digit. Then, the first position to the
left of the radix point corresponds to the base raised to the power of 0, the second position
corresponds to the base raised to the power of 1 , the third position corresponds to the
base raised to the power of 2, and so on.

This concept of powers also applies to digits positioned to the right of a radix
point, except the powers are negative powers of the base. The first position to the right
corresponds to the base raised to the power of - 1, the second position to the base raised
to the power of - 2, and so on. So, a radix point in a number designates the separation
of the negative powers of the base from the nonnegative powers. As an illustration,
consider the number 642.391 10, which is a contraction of 6 x 102 +
4 X 101 + 2 X 10° + 3 X 10- 1 + 9 X 10- 2 + 1 X 10- 3_ Graphically, it can be
shown as follows:

1.4 BINARY-TO-DECIMAL CONVERSION

10-3
10-2
10-1
100

X 10 1

X 102

7

The decimal point in the contracted number is between digits 2 and 3-the multipliers
of 10° and 10- 1

, respectively. The digit just to the left of the decimal point is the
multiplier of the zero power of the base, and the digit just to the right is the multiplier
of the negative one power of the base.

This number representation applies not only to the decimal number system but also
to all number systems we will consider. In general, a number anan-l • • • a1a0.a_ 1a_ 2
· · ·. in which the a/s are digits of a positional number system with radix r, is repre
sentab]e as

a r 11 + a rn- l + · · · + a r2 + a r1 + n-r0 + a r- 1 + a r- 2 + · · · 11 n-1 2 I -u - I -2

in which O s ai s r - I. In using this representation in our following considerations
of the binary, octal. and hexadecimal number systems, we will, for convenience. always
express the rs and their powers in decimal.

Let us now see how this representation applies to the binary number system. The
base or radix, r, is 2. Thus, this system has just two distinct digits O and I since

0 s: a; s r - I

0 s a; s 2 - I
0 :s; a; s I

An example of a binary number is 1101.011, which is a contraction of

l X 23 + l X 22 + 0 X 21 + l X 2° + 0 X 2- 1 + l X 2- 2 + l X 2- 3

Graphically. it can be shown as

1.4 BINARY-TO-DECIMAL CONVERSION

2-3
X 2- 2

X 2- 1

X 20
X 21

X 22

X 23

In our study we will often want to convert a binary number into its decimal equivalent.
One easy way of doing this is to express the binary number in expanded form as powers
of the base 2 expressed in decimal. and then add in decimal. For example. 11101.011 1

8 1 /NUMBER SYSTEMS AND REPRESENTATIONS

is in decimal: I X 24 + 1 X 23 + 1 X 22 + 0 X 21 + 1 X 2° + 0 X 2 - I +
I x 2-2 + I X 2-3 = 29.375. Graphically,

l llOllll! ; ;=: : : ; t : ~:~5

~'G X 2-I = 0-X i = 0
X 2o = 1 X 1 = 1
X 21 0 X 2 = 0
X 22 = 1 X 4 = 4
X 23 = 1 X 8 = 8
X 24 = 1 X 16 = _16 __

29.375

Although some convenient algorithms exist for rapid conversion from binary to
decimal, they are not wonh the effort to learn unless we do a considerable amount of
binary-to-decimal conversion.

1.5 DECIMAL-TO-BINARY CONVERSION

Frequently, we will need to convert a decimal integer into an equivalent binary integer.
To do this, we repeatedly divide in decimal by the base 2, saving the remainders which
wil1 form the desired binary number. Specifically, using decimal division, we divide the
decimal integer.by 2. Next, we place the remainder of O or I to one side. and then divide
the integer part of the quotient by 2. Again, we place the remainder from this second
division to one side. and divide 2 into the integer pan of the second quotient. and so
on. We repeat this process until we obtain a zero quotient. Then. by arranging the
remainders in reverse order, we obtain the desired binary equivalent.

EXAMPLE 1.3 ---------------------------

Convert the decimal number 117 into its binary equivalent.

Solution.

remainder
2 II 17

2~ 1

2~ 0
2 l!:! I

2tz. 0

2~

2l1
0

1.5 DECIMAL~TO~BINARY CONVERSION 9

By arranging the remainders in the reverse order in which we obtained them, we
have the result that 1110101 is the binary equivalent of decimal 117. • •

The justification for this rule is that in converting a decimal integer into its binary
equivalent, we are finding the a/s of

· · · a3 x 23 + a2 x 22 + a 1 x-2 1 + a0 x 2°

in which each a; is either O or L The first division by 2 results in

···a~ x 22 + a1 x 21 + a1 + a~emainder

With a little thought. we see that the part of the quotient including a 1 and to the left is
an integer. and a0 is the remainder of the division. Similarly, when we divide this integer
part by 2. the remainder from this second division is a 1, and so on. So, the remainders
from the repeated divisions are the a/s with an order beginning with the least significant.
which means that we must reverse this order to get the equivalent binary number.

We must use a different rule for convening the fractional part of a decimal number
into an equivalent binary fraction. For it. we multiply by 2, instead of divide. and we
save the integer parts of the products. Specifically, using decimal multiplication, we
multiply the decimal fraction by 2. Next, we place the integer part of the product, which
is O or I, to one side. and then multiply the fractional part of the product by 2. Again,
we place the resulting integer part to one side, and multiply the fractional part by 2, and
so on. We repeat this procedure until the fractional part of the product is zero or until
the number of binary digits is that desired. The integer parts of the products form the
corresponding binary fraction, with the integers arranged in the order in which we ob
tained them.

EXAMPLE 1.4 ----------------------------

Convert decimal 0.8125 to binary.

Solution.

2 X 0.8125 = 1.625
2 X 0.625 = 1.25
2 X 0.25 = 0.5
2 X 0.5 = 1

So. 0.8125 in decimal is 0.1 IO l in binary.

integer
1
1
0
1

••
This procedure is easy to justify. We conven a decimal fraction into binary by

finding the a/s of

in which each a; is either O or 1. Multiplying this expression by 2 results in

a_ 1 + a_ 2 x 2- 1 + a_ 3 x 2- 2 + · · •

fraction

10 1/NUMBER SYSTEMS AND REPRESENTATIONS

Note that the portion of the product to the right of a_ 1 is less than I and so is a fraction.
Also. a_ 1 is the integer part of the product. If the product has an integer part of 1. then
a_, is 1. If the integer part is 0. then a_ 1 is 0.

To find a _ 2, we us·e only the fractional part of the first product:

X ,_-_ I + a X ?-2 + ... a_:z -3 -

Multiplying this by 2 gives

a_ 2 + a 3 x 2- 1 +

fraction

The portion of the product to the right of a_ 2 is the fraction part of the second product.
and a_ 2 is the integer part. Repetition of this process gives the remainder of the bi
nary digits. Incidentally, a tenninating fraction in decimal may not be tenninating in
binary (for example. 0.6 10 = 0.10011001100110011 · · ·2), but a tenninating fraction
in binary is always tenninating in decimal.

For u decimal number with both integer and fraction parts, we use the integer rule
on the integer part and the fraction rule on the fraction part. Then, we combine parts
into one number. For example. for the binary equivalent of 27.875 10, we apply the integer
rule to obtain 11011 2 = 27w and the fraction rule to obtain 0.111 2 = 0.875w, and then
combine the binary parts to obtain 27.875 10 = 11011.111 2•

1.6 OCTAL NUMBER SYSTEM

Since the base of the octal number system is 8, this system has eight symbols. which
are 0. I. 2. 3. 4. 5. 6. and 7. Table 1.5 has the correspondences among the decimal.
binary. and octal number systems for the first 20 nonnegative integers.

As to be expected. to count in the octal number system, we simply add l to the
current number to obtain the next number:

.... 5 + 1 = 6, 6 + l = 7, 7 + 1 = 10, 10 + I = 11. ... , 16 + 1 =
17, 17 + 1 = 20, 20 + l = 21, . . .

TABLE 1.5 DECIMAL-BINARY-OCTAL EQUIVALENCE

Decimal Binary Octal Decimal Binary Octal

0 0 0 10 1010 12
I 11 1011 13

2 10 2 12 1100 14
3 11 3 13 1101 15
4 100 4 14 1110 16
5 101 5 15 1111 17
6 l JO 6 16 10000 20
7 111 7 17 10001 21
8 1000 10 18 10010 22
9 1001 II 19 10011 23

1.6 OCTAL NUMBER SYSTEM 11

Note that 7 + 1 = 10. Since this is a base 8 system, adding 1 to 7 generates a carry
to the next digit in an addition of two octal numbers. With this in mind, we can readily
add and subtract in octal. In our use of octal as a binary shorthand, we will never have
to multipJy or divide in octal.

In octal-to-binary conversion, we replace each octal digit with its three-digit binary
equivalent. In the resulting binary number, we can, of course, ignore any leading zeros
in the integer part or trailing zeros in the fraction part.

EXAMPLE 1.5 ----------------------------""'"'!'"'-
Convert 345.5602l:! into its binary equivalent.

Solution.

3 4 5 5 6 0 2
t t t t t t t t

011 100 IOI · 101 110 000 010

So. 345.56028 = 11100101. 10111000001 2. ••
The conversion from binary to octal is just the reverse of the above. Specifically,

we group the binary digits (called bits for short) by threes from the right and from the
left of the binary point. Then, we replace each group by its octal equivalent. In the
binary fraction part. we add zeros, if needed, to complete the rightmost group.

EXAMPLE 1.6 -----------------------------

Determine the octal equivalent of 11001 l 10.010ll012.

Solution. We group the bits by threes as follows:

011 001 110. 010 110 100

We do not really need to add the leading zero in the integer part, but we do need
to add the two trailing zeros to the fraction part to complete the last group. After
making this grouping, we replace each group with its octal equivalent.

01 I 001 110
t t t t
3 6

010 110 100
t t t
2 6 4

So. the equivalent octal number is 3 I 6.264. If we had not added the two trailing
zeros. we would have the erroneous 3 16.261. • •

The justification for the conversion rules is that the grouping of the binary digits
into groups of three forms. in effect~ numbers times powers of 8. This is perhaps best
understood from a specific example. Again. consider 011 001 110.010 110 100, which
is a contraction of

011 X 26 + 001 X 23 + 110 X 2° + 0 l O X 2 - 3 + 110 X. 2 - 6 + 100 X 2 - 9

12 1/NUMBER SYSTEMS AND REPRESENTATIONS

Converting this to octal, term by tenn, results in

3 X 82 + 1 X 81 + 6 X go+ 2 X g-t + 6 X g- 2 + 4 X g- 3

or 316.264 in contracted form. So, the grouping of bits-by threes allows the powers of
the binary base to be directly converted into powers of the octal base.

As is evident, octal numbers are a convenient shorthand for representing binary
numbers because the equivalent octal numbers have only approximately one-third as
many digits, and the conversion between binary and octal is easy and fast. There is
another justification for this shorthand. In some computers, the basic binary numbers
operated on have parts that are integer multiples of 3 bits. In other words, each part is
either 3 bits, 6 bits, 9 bits, or some other integer multiple of 3 bits. So, conversion of
these binary numbers to octal provides an exact conversion for each part, which is a
convenience.

1.7 HEXADECIMAL NUMB.ER SYSTEM

In some computers the parts of binary numbers considered as units are multiples of 4
bits instead of 3 bits, making the octal shorthand unsuitable. But, the hexadecimal number
system is useful because in converting from binary to hexadecimal, we group the bits
by fours.

Since the base of the hexadecimal number system is 16, this system has 16 different
symbols. These symbols are the ten decimal digits plus the first six letters of the alphabet:
0, I, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F. Table 1.6 has the correspondences
for the first 20 nonnegative integers of the decimal, binary, and hexadecimal number
systems. By starting with O and adding 1 consecutively~ we can generate the hexadecimal
entries for this table. In doing this, note that since the hexadecimal number system is
a base 16 system, a carry is not generated for the next digit until the digit sum exceeds
F (15 10).

TABLE 1.6 DECIMAL-BINARY-HEXADECIMAL EQUIVALENCE

Decimal Binary Hexadecimal Decimal Binary Hexadecimal

0 0 0 10 1010 A
I I 11 1011 B

2 10 2 12 llOO C
3 11 3 13 1101 D
4 100 4 14 I 110 E
5 101 5 15 1111 F
6 110 6 16 I 0000 10
7 111 7 17 10001 11
8 1000 8 18 10010 12
9 1001 9 19 1001 I 13

1. 7 HEXADECIMAL NUMBER SYSTEM 13

The conversion between binary and hexadecimal is similar to that for octal except
that the grouping of bits is by fours instead of by threes. Justification for this conversion
follows from that for the octal-binary conversion.

EXAMPLE 1.7 -----------------------------

Convert I I 100101101.1111010111 2 to hexadecimal.-

Solution. We group the bits by fours to the right and to the left of the binary
point, and then substitute the hexadecimal equivalent for each group.

0111 0010 1101 . 1111 0101 1100

t t t t t t t
7 2 D F 5 C

So. the equivalent hexadecimal number is 72D.FSC. ••

EXAMPLE 1.8 ----------------------------

Convert B9A4.E6Cl6 to binary.

Solution. In the conversion from hexadecimal to binary, we convert each hex
adecimal digit into its 4-bit equivalent.

B 9 A 4 E 6 C
t t t t t t t t

-1011 1001 1010 0100 . 1110 01 IO I 100

So. B9A4.E6C 16 = 1011100110100100.1110011011 2• ••
The easiest way to convert a hexadecimal number to a decimal number is to express

the hexadecimal number in expanded form as powers of the base 16 and then add in
decimal.

EXAMPLE 1.9 ----------------------------

Convert B 63 .4C 16 to decimal.

Solution.

B63 .4C 16 = 11 X 162 + 6 X 161 + 3 X 16° + 4 X 16- I + 12 X 16- 2

= 2816 + 96 + 3 + 0.25 + 0.046875
= 2915.296875!0 • •

The decimal-to-hexadecimal conversion parallels that of Examples 1.3 and 1.4 for
decimal-to-binary conversion. But. of course, the division and multiplication are by 16
instead of 2, and each decimal intermediate result must be convened to a.hexadecimal
integer.

14 1 /NUMBER SYSTEMS AND REPRESENTATIONS

EXAMPLE 1.10 ----------------------------

Convert 43,976.3046875 10 to hexadecimal.

Solution.

16 143,976

16 12748

16 1171

16 l!Q
0

remainder

8

12~c

So, 43,97610 = ABC8 16 • Continuing,

integer
16 X 0.3046875 = 4.875 4

16 X 0.875 = 14.0 l~E

So,

43,976.3046875 10 = ABC8.4E16

1.8 REPRESENTING NEGATIVE BINARY NUMBERS

••

In a digital computer, or any other digital system, there are no positive (+) or negative
(-) signs for representing positive and negative binary numbers. Instead, the signs of
binary numbers must somehow be represented by 1 s and Os within the forms of the binary
numbers. Three forms of signed binary numbers are popular: signed magnitude, 1 s
complement, and 2s complement. We will consider these three forms as related to integer
type or fixed-point numbers in which the first bit in a number is the sign bit and each
binary point is assumed to be immediately to the right of the least-significant digit. But
the concepts apply as well to numbers that are not integers.

In the signed-magnitude fonn, a positive or negative binary number is represented
by a sign bit followed by the magnitude in binary. For example, for an 8-bit repres~nta
tion, the decimal number 13 is represented by the binary number 00001101 and -5 by
10000101, with, as is conventional, a O bit representing a positive sign and a 1 bit a
negative sign. Incidentally, there are two representations for the number zero, a positive
zero and a negative zero, which for 8 bits are 00000000 and 10000000, respectively.

In the ls-complement representation, positive numbers are the same as in the
signed-magnitude representation, but negative numbers differ for they are represented in
ls-complement form. To find the ls-complement representation of a negative number,
all we have to do is to consider the number to be positive, and then change all Os to 1 s,
including the sign bit, and all 1 s to Os. For example. to find the 8-bit representation of
decimal number -13, we first find the 8-bit binary equivalent of + 13, which is
00001101. Then we change the Os to 1 s and the 1 s to Os, and obtain 11110010, which
is the desired complement representation.

1.9 BINARY-CODED DECIMAL (BCD) REPRESENTATION 15

In the 2s-complement representation, positive numbers are the same as in the
signed-magnitude representation. but negative numbers differ; they are represented in
2s-complement fonn. The 2s complement of a negative number is simply the ls com
plement plus 1. As an illustration, the 8-bit ls complement of - 13 is 11110010, as has
been shown. Therefore, the 2s-complement representation is 11110010 + 1 =
11110011. Applications of the 2s-complement representation, along with ls-complement
and signed-magnitude representations, will be demon-strated throughout this text.

1.9 BINARY-CODED DECIMAL (BCD) REPRESENTATION

The binary·-coded decimal (BCD) representation is a code for decimal numbers. It is an
alternative to converting a decimal number to its binary equivalent. Many applications
require the inputting and/or displaying of decimal digits. In these applications, it is often
convenient to store the data in the BCD representation.

In the BCD representation, each decimal digit of a decimal number is coded into
binary. Since there are ten decimal digits, a binary representation of these digits requires
4 bits. Only 10 of the 16 combinations of the 4 bits are required for a BCD code. Of
the many possible such codes, the most popular is the 8421 code illustrated in
Table 1. 7. In this code, each decimal digit is converted into its 4-bit binary equivalent,
and then the groups of four bits are concatenated.

EXAMPLE 1.11 ----------------------------

What is the representation for the decimal number 7963 in the 8421 code?

Solution. In the coding of 7963, we replace each digit by the corresponding 4
bits from Table 1. 7. The result is

7 9 6 3 decimal number

~ ~ t ~
011 I 1001 0110 0011 8421 code

Finally, we concatenate the four groups of four bits:

01111 00 I O 11000 11 ••
The 8421 code is so popular as a BCD code that when a reference is made to the

BCD code. we should assume that it is the 8421 code unless another BCD code is
specified.

TABLE 1.7. 8421 BCD CODE

zero 0000 five 0101
one 0001 six 0110
two 0010 seven 0111
three 001 I eight 1000
four 0100 nine 1001

16

PROBLEMS

1/NUMBER SYSTEMS ANO REPRESENTATIONS

SUPPLEMENTARY READING (see Bibliography)

[Banee 85], [Hill 81]. [Mano 84], [McCluskey 75], [Roth 85]

1.1. Perform the indicated operations on the following: binary numbers:
(a) 1101 + 110 (b) Ill.OIi

(c) 10011 - I IO
(e) 111.01

1111.1
1011.11

+ 1101.111

1.2. Repeat Problem 1.1 for
(a) 1101.1 + Ill.IOI

(c) 11011 - IOI
(e) Ill.IOI

JI 10.11
11111.01

+ 101110.011

1111.1 I
+ 111001.1

(d) 1001.1101 - 11100.001
(f) I 1001.0 I - 111.1

(b) 11 I.OJ
1011.11

+ 11110'.01
(d) 1001 .01 - IOI 10. IC!
(f) 1100.01 - I I I.I

1.3. Perform the indicated binary multiplications and divisions.
(a) 101 X 1101 (b) 11011 X 1100.1
(C) 11101 I.OJ x 1111.001 (d) 10100 + 100
(e) 100011.11 + IOI. I (f) 101010001.1 + 1101 I

1.4. Repeat Problem 1.3 for
(a) I 101 X 110011
(C) 1011101.01 I x 10110.101
(e) 10000000.01 + 1101. I

(b) 11010.1 x 1101.01
(d) 1001000 + 110
(f) 110101001.11101 110011.101

1.5. Convert the following binary numbers to decimal:
(a) 100111 (b) 10101. 101 (c) 10001001 .001

1.6. Repeat Problem 1.5 for
(a) 1100111 (b) 1110.111 (c) 1100110101.0111

1. 7. Convert the following decimal numbers to binary:
(a) 146 (b) I 928.875
(c) 14.6 (d) I9ij

1 .8. Repeat Problem I . 7 for ·
(a) 1689 (b) 1430.625 (c) 178.3

1.9. Perform the indicated operations on the following octal numbers:
(a) 324 + 564 (b) 710.145 + 217.633

PROBLEMS

(c) 352 - 163
(e) 40002.3 - · 675. 77

(g) 473.63 - 754.321

I. 10. Repeat Problem l. 9 for
(a) 472 + 326
(c) 456 - 324
(e) 47 .653

327. 734
+ 467.772

(d) 1236.47 - 765.2377
(f) 46.23

327.12
+ 4652.327

(b) 410.23 + 367.55
(d) 4723.636 - 724.647
(f) -5346.72 - 600321.1

1.11. Convert the following octal numbers to decimal:
(a) 110011 (b) 1234.54 (c) 7006.302

1.12. Repeat Problem 1.1 1 for
(a) 30076 (b) 6403.2 (c) 400602.244

1. 13. Convert the following decimal numbers to octal:
(a) 3094 (b) 2906.5625
(c) 250.3 (d) 37i

1.14. Repeat Problem 1.13 for
(a) 1000
(c) 2345.46875

(b) 100
(d) 461:h

1.15. Convert the following binary numbers to octal:
(a) 101101 (b) 110010111011.01011011
(c) 100011 I I O I.01

1.16. Repeat Problem 1.15 for
(a) 1101011
(c) 110111.0111

(b) 10111111011.0110111

1. 17. Convert the following octal numbers to binary:
(a) 76002 (b) 773406.245

I. 18. Repeat Problem 1.17 for
(a) 23077 (b) 432.7066

. 1. 19. Convert the following hexadecimal numbers to decimal:
(a) 4A6 (b) ABD.C8

1.20. Repeat Problem· 1 . 19 for
(a) CAB (b) FE6.8C4

1.21. Convert the following binary numbers to hexadecimal:
(a) I 1011100 I (b) 110001101.1001 l

1.22. Repeat Problem 1.21 for
(a) 1001110101 (b) 110011100 l. 1000 IO 1

1.23. Convert the following hexadecimal numbers to binary:
(a) CD3F (b) 8F2A.5EF

1.24. Repeat Problem l . 23 for
(a) ACD8 (b) 3FD2.ACD

1.25. Convert the following decimal numbers to hexadecimal:
(a~ 329.5 (bl 7..i.95.34 (c) 17+

17

18 1/NUMBER SYSTEMS AND REPRESENTATIONS

1.26. Repeat Problem 1.25 for
(a) 492.25 (b) 9294.85 (c) 73½f

1.27. Determine the 1 s complements of the following binary numbers:
(a) 01011010 (b) 01110011 (c) 01111111 (d) 0011110100111101

1.28. Repeat Problem 1.27 for
(a) 00110111 (b) 01111011 (c) 01010101 (d) 0111101101111111

1.29. Determine the 2s complements of the numbers of Problem 1.27.

1.30. Determine the 2s complements of the numbers of Problem 1.28.

1.31. Determine the decimal -equivalents of the following_ binary numbers in each of the three
representations: signed magnitude, ls complement, and 2s complement.
(a) 101010 (b) 111111
(c) 100000 (d) IOI IOI
(e) 111100 (f) 1100 I I

1.32. Repeat Problem 1.31 for
(a) 1101111 (b) 0000000
(c) 1111 11 1 (d) 1000000
(e) 1110111 (f) 1110100

1.33. For 8 bits. show the three binary representations of signed magnitude, ls complement, and
2s complement for the folJowing decimal numbers:
(a) -23 (b) +O (c) -0
(d) 41 (e) -54 (f) -37

1.34. Repeat Problem 1.33 for
(a) -63 (b) - 18
(d) -60 (e) -49

(c) -3
(f) -34

1.35. Code the decimal numbers 954. 672, 1394, and 67,942 into the 8421 BCD code.

1.36. Repeat Problem 1.35 for the decimal numbers 876, 4594, and 43,298.

1.37. Given the following BCD representations, find the corresponding decimal numbers.
(a) 100001 IO (b) 001101000010 (c) 1001100001010111

1.38. Repeat Problem 1.37 for
(a) 10010111 (b) 100000101001 (c) 001001000101011 l

Chapter 2

Boolean Algebra

2.1 INTRODUCTION

This chapter presents Boolean algebra, which is the basic mathematics requir~d for the
study of the design of digital circuits. Since these circuits are also called switching
circuits. the Boolean algebra used in their design is sometimes called switching algebra.
Boolean algebra provides a systematic method for describing and simplifying the logic
processes at the basic component level of digital design.

2.2 BOOLEAN VARIABLES AND LOGIC VALUES

A Boolean \'Griable, unlike an ordinary algebraic variable. has only one of two values:
true or false, called logic values. A Boolean variable can be viewed as representing a
statement that can be only true or false. For example. the Boolean variable A may
represent the statement · "Frank has red hair." Obviously. variable A can have only the
logic value of either true or false. In other words. the statement ''Frank has red hair'·
is either true (Frank does have red hair) or false (Frank does not have red hair). If the
statement is false. Frank has another color hair or is bald.

A Boolean variable may be a function of other Boolean variables. Then, as will
be seen in the next chapter. we will find it convenient to call the function variable an
ourput t'ariable and the other variables input variables. The value of the output variable
depends not only on the values of the input variables, but also on the operations of the
function.

2.3 FUNDAMENTAL OPERATIONS

Boolean algebra has three fundamental operations: AND. OR. and NOT. We will now
consider each of them.

20 2/BOOLEAN ALGEBRA

2.3.1 AND Operation

The AND operation is represented by the symbol '· ·'' as in

Z =A· B

which in words is • 'Z is equal to A AND B. ·' This equation specifies that the Boolean
variable Z is true if both A is true and B is true. Otherwise, Z is false.

The AND operation can be precisely defined in a truth table (also called a logic
table), as follows:

A

F
F
T
T

B

F
T
F
T

Z =A· B

F
F
F
T

A truth table is simply a listing of all possible values of the input variables (here. A and
B) with the corresponding output variable values resulting from the operation (or oper
ations). It is apparent from this table that Z is true (T) if and only if both A is true (T)
and B is true (T). Otherwise. Z is false (F).

For a physical aid to the understanding of the AND operation, consider the circuit
of Fig. 2.1. containing a voltage source, two switches A and B, and a light bulb Z. For
this circuit, a variable A might represent the statement that .. switch A is closed." a
variable B the statement that • 'switch B is closed," and a variable Z the statement that
.. the light bulb Z is lit." Clearly, if either statement A or B is false, then statement Z
is false, since both switches must be closed for the voltage source to energize the light
bulb.

The AND operation of Boolean algebra is not related to the multiplication operation
of ordinary arithmetic. although the symbols are the same. Generally, Boolean algebra
has many of the same elements as ordinary algebra. and has many of the same symbols
and tenninology. But there are some important differences. Therefore, in working with
Boolean algebra. we should not rely on our past study of ordinary algebra but rather rely
solely on the definitions given here.

The AND operation applies to any number of input variables. For three input
variables the AND truth table is

A B C Z=A·B·C

F F F F
F F T F
F T F F
F T T F
T F F F
T F T F
T T F F
T T T T

Note that Z is false unless all input variables are true. which is a general property of the
AND operation. regardless of the number of input variables.

2.3 FUNDAMENTAL OPERATIONS 21

Figure 2.1 Illustrating AND.

For this truth table, as for all truth tables, there is a standard way of assigning the
T's and F's in the input variable columns. All columns start with F. Then, in the rightmost
input variable column, the F's and T's alternate. In the next column they alternate by
twos, and in the first column they alternate by fours. If there were a founh column. they
would alternate by eights, and so on.

To have all possible combinations of input variable values, a truth table must have
a number of rows equal to 2", in which n is the number of input variables. So, a two~
variable truth table has 4 rows, a three-variable one has 8 rows, a four-variable one has
16 rows, and so on.

2.3.2 OR Operation

The OR operation is represented by the symbol • • + '· as in

Z=A+B

which in words is ''2 is equal to A OR B. •' This equation specifies that Z is true if
either A or B is true. Otherwise, Z is false. In a truth table, this specification is

A

F
F
T
T

B

F
T
F
T

Z A+B

F
T
T
T

Although the symbols are the same. the OR operation of Boolean algebra is not related
to the addition operation of ordinary arithmetic.

For an illustration of the OR operation, consider the circuit of Fig. 2.2. As with
Fig. 2.1, let variable A correspond to the statement that .. switch A is closed," variable
B to the statement that "switch B is closed," and variable Z to the statement that "light
bulb Z is lit.'' Obviously, if either statement A or B is true, then statement Z is true,
since the closing of either switch completes a circuit from the voltage source to the light
bulb.

¢ f ; f
~2

B

Figure 2.2 Illustrating OR.

22 2t'BOOLEAN ALGEBRA

The OR operation can extend to any number of input variables. For three input
variables the OR truth table is

A B C Z=A+B+C

F F F F
F F T T
F T F T
F T T 'T
T F F T
T F T T
T T F T
T T T T

Note that Z is true unless all input variables are false, which is a general property of the
OR operation. regardless of the number of input variables.

2.3.3 NOT Operation

The NOT operation is designated by an overline, as in

Z=A

which in words is that HZ is equal to A NOT." The NOT operation is defined as follows:

The NOT operation is a complement operation. Since a Boolean variable can have
only_one of two values. the compJement of one logic value is the other value: F = T
and T = F.

The NOT operation can apply to more than one variable, and in fact to an entire
expression. Then, the o~erline extends over more than one variable. As an illustration,
the complement of A · B + C has the designation A · B + C.

2.3.4 Operation Hierarchy

To evaluate an expression. we have to know the priority of the operations. Suppose, for
example. we want the value of the expression A + B · C for A = F, B = T. and
C = F. Since all three operations are present, we need to know the order in which to
perform them. The priority or hierarchy rule is: perform the individual variable NOT
operations first. the AND operations second. and the OR operations last. Therefore. this
expression evaluates to

A+B·C=F+T·F=T+T·F=T+F=T

We can override the priority rule by using parentheses. as in

2.3 FUNDAMENTAL OPERATIONS 23

(A + B) · C = (F + T) · F = (T + T) · F = T · F = F

The parentheses cause the OR operation to be performed before the AND operation.
If an expression is complemented. we must evaluate the expression before com

plementing; that is, we do not complement first.
The hierarchy of operations and the evaluation of expressions can best be under

stood from some examples.

EXAMPLE 2.1 -----------------------------

Evaluate the following expressions for A = T, B = F, C = T, and D = T:
(a) A · B + C. (b) (A + B) · (C + B · D), and (c) A · B · (C + D · E).

2.3.5 Summary

Solwion.
(a) A · B + C = T · F + T = T · T + T = T + T = T

We could have obtained the T result immediately after inserting the values,
because T (from the C) OR anything is equal to T.

(b) (A + B) . (C + B . D) = (T + F) . (T + F . T)

= (F + F) · (T + T · T)
= (F + F) · (T + T)
= (F) · (T) = F

We could have stopped after finding that one factor is false, since F AND
anything is F.

- - - -
(c) A · B · (C + D · E) = T · F · (T + T · E)

= T · T · (T + T · E) = T · T · T = T

Note that the quantity in parentheses is true because T + anything = T. • •

A summary of the three basic Boolean operations is given in Table 2.1. Remember that
a Boolean variable can have only one of two logic values: true (T) or false (F). For
convenience, though. we will often represent the logic value true (T) by the symbol L
and the logic value false (F) by the symbol 0, as in Table 2.1. Important: Although the
symbol I looks like the numeric I and the symbol O looks like the numeric 0, they are
logic values representing true and false. respectively. So we cannot add or subtract or
perform any other ordinary arithmetic operations on the logic values O and I .

TABLE 2.1

A B A·B A+ B A §

0 0 0 0 I I
0 I 0 I I 0
I 0 0 I 0 I

I I I I 0 0

24 2/BOOLEAN ALGEBRA

2.4 LOGIC EXPRESSIONS FROM TRUTH TABLES

We have used truth tables in defining the AND, OR, and NOT operations. Truth tables
are also useful in designing digital circuits. Specifically, in a design we form a truth
table from the design specifications and then detennine a logic expression from the truth
table.

Consider the design of a simple digital circuit for controlling the operation of a
light bulb Z with two switches A and B. Suppose the light bulb is to be on when both
switches are on (closed), and also when both switches are off (open): Otherwise (one
switch off and the other on), the light bulb is to be off.

Switch A ---

Switch B---

Control
circuit

i----- light bulb Z

We can easily represent this description of the circuit operation with a truth table
in which a O implies that a switch or the light bulb is off, and a I implies that a switch
or the light bulb is on.

A

0
0

B

0
1
0

z

I
0
0
I

The next step is to obtain a logic expression from this truth table. There are two
methods we can use. and they give different types of logic expressions. One type is a
sum-of-products (SOP) expression, and the other is a product-of-sums (POS) expression.
An SOP expression comprises several "product" (AND) terms "summed" (ORed) to
gether. For example, the following expression is in SOP form:

A·B+A·B+A·B

A POS expression comprises several ·'sum" (OR) factors • 'multiplied" (ANDed) to
gether, as in

(A + B). (C + D). (A + C)

2.4.1 SOP Expression from a Truth Table

To obtain an SOP expression for the truth table of the light control circuit, we need to
derive a logic expression for Z in the fonn of

Z = f(A. B)

that will express the condition for which Z is true (the light bulb is on). In other words.
what are the combinations of the inputs A and B for which Z is true < 1)? From the truth

2.4 LOGIC EXPRESSIONS FROM TRUTH TABLES 25

table, we see that Z is true when A is false and B is false. or when A is true and B is
true. Written in a fonnalized manner. this is

Z=A·B+A·B

We can generalize from this example and derive the following rules for obtaining
an SOP expression from a truth table:

1. Identify each row in which the output function is true (l).
2. For each of these rows. write an AND tenn of all the input variables. applying

complements such that the term evaluates to true for the variable values of that
row. Incidentally, each of these terms is commonly called a minterm. (In gen
eral. a mintenn is a tenn that contains all the input variables.)

3. OR together all the AND terms (mintenns) found_ in step 2.

The resulting SOP expression is called a canonical sum-of-products expression (CSOP)
or. more simply. a minrerm expansion. Note that in a CSOP each minterm contributes
one and only one true (I) value. Examples will help us better understand these rules.

EXAMPLE 2.2 -----------------------------

Given the following truth table. finq, a CSOP expression for Z.

A B
0 0
0 l

0

z
l A
0 z

B

Solurion.

I. Rows I. 3. and 4 have true (l) outputs.
2. The minterms corresponding to these rows are A · B. A · B. and A · B. re-

spectively.

3. ORing these minterms results in Z = AB + AB + AB.

Note that the AND operator symbol ·' ·'' is omitted in the final result. The AND
operator is implied by the adjacent placement of the variables. We will often omit
this symbol when its omission does not cause any confusion. • •

EXAMPLE 2.3 ----------------------------

Find a CSOP expression for the Z specified in the following truth table.

A B C 2
0 0 0 l A
0 0 l 0 B z
0 l 0 l C
0 l I 0
I 0 0 0

0 I 0
0

26 2/BOOLEAN ALGEBRA

Solution.

1. Rows 1, 3, 7, and 8 have true (1) outputs.

2. The corresponding minterms are, respectively, ~BC, ABC, ABC, and ABC.

3. ORing the minterms results in Z = ABC + ABC + ABC + ABC. • •

2.4.2 POS Expression from a Truth Table

From the same truth table for the described light control circuit, we can also obtain a
POS expression for Z. Recall that this truth table is

A B
0 O
0 l

0

z
I
0
0

A--"""'
---z

B--"""'

The rules for obtaining a POS expression from a truth table are as follows:

1. Identify each row in the truth table for which the output Z is false (0).
2. For each of these rows, write an OR factor of all the input variables, using

complements such that the factor evaluates to false for the variable values of
that row. Incidentally. each of these factors is commonly called a maxterm. (In
general, a maxtenn is a factor that contains all the input variables.)

3. AND together all the OR factors (maxterms) found in step 2.

The resulting POS expression is called a canonical product-of-sums expression (CPOS)
or, more simply, a maxterm expansion. Note that i~ a CPOS, each maxtenn contributes
one and only one false (0) value.

We will now apply these rules to the light control circuit example.

1. Z is false (0) for rows 2 and 3.

2. The corresponding maxterms are A + Band A + B.

3. ANDing the maxterms, we obtain Z = (A + B)(A + B).

EXAMPLE 2.4 -----------------------------

Find a CPOS expression for Z.

A

0
0

B

0
I
0

z

)

0

2_5 EQUIVALENT EXPRESSIONS

Solution.

L Row 2 is the only row with a false (0) output.

2. The max term corresponding to this row is A + B.

27

3. Since there is only one maxtenn, Z is equal to it: Z = A + B. . • •

t:X.\.\ll'LE 2.5 -------------------------------

Find a CPOS expression for Z.

A

0
0
0
0

B

0

0

I

0
0

C

0
l
0
I

0
l
0

2

I
0
l
0
0
0

Solution.

1. Rows 2. 4, 5, and 6 have false (0) outputs.
2. The corresponding _E1axtenns ~e. respectively, A

A + B + C, and A + B + C.
3. By ANDing the maxtenns, we obtain

z = (A + B + C)(A + B + C)(A + B

2.5 EQUIVALENT EXPRESSIONS

+ B + C, A + B + c,

+ C)(A + B + C) ••

Two expressions are equivalent if for every set of values of the input variables. the two
expressions evaluate to the same value. As an illustration, for the light control cir
cuit we obtained a CSOP expression AB + AB and an equivalent CPOS expression
(A + B)(A + B). We can verify that these two· expressions are equivalent by using a
truth table.

A B A·B+A·B (A ~ B)(A + 8)

0 0 O·O+O·O=l (0 + 0)(0 + 0) = l
0 l o-T + 0 · I = 0 (0 + IHQ + l) = 0

0 I· 0 + I· 0 0 (I + 0)(1 + 0) = 0
I· I + l · l = l (l + 1)(1 + I) = I

Since the two expressions evaluate to the same values for each combination of input
variable values. they are equivalent, or

z = AB + AB = (A + B)(A + B)

28

A

0
0

2/BOOLEAN ALGEBRA

For another illustration, recall the truth tab]e for the OR operation:

B

0
I
0
I

z

0

The CSOP expression for Z is AB + AB + AB, and the CPOS expression is A + B.
Obviously, the two expressions are equivalent. In other words,

Z = AB + AB + AB = A + B

Again. we can show this equivalence with a truth table. But there is another method of
proof. We can reduce the expression AB + AB + AB to the expression A + B by
using Boolean identities:

AB + AB + AB = AB + (AB + A~) = AB + A(B + B)
= AB + A(I) = AB + A = B + A = A + B

Obviously, some of us may not fully comprehend this manipulation at this point since
Boolean identities are discussed in the next section.

2.6 BOOLEAN IDENTITIES

Generally, we want to reduce any logic expression to its simplest fonn since a simpler
expression usually requires fewer hardware components for its implementation. Boolean
identities are often useful in a reduction.

Table 2.2 contains the Boolean identities most important to digital design. Identities
1-5 are the fundamental relations of Boolean algebra and provide the foundation for

TABLE 2.2 BOOLEAN IDENTITIES

(a)

l. A= A
2. A ~ false = A (A + 0 = A)

3. A true = true · (A + I = I)
4. A .,.. A A
5. A .,.. A = true (A ..:. A = l)
6. A~ B = B + A

7. A - B -:- C = (A -i- 8) + C = A + (8 - Cl
8. A · ,B C) = A· B + A· C
9. A + B =A· B

10. A · B - A · B = A
ll. A.,..A·B=A
12. A(A ..;.. Bl ;;; A· B
13. A · B - A· C - B · C = A · B - A· C

(b)

=
A=A

A · true = A (A · 1 = Al
A · false = false (A · 0 = 0)

A· A= A
A · A = false (A · A = 0)

A· B B · A
A · B · C = (A · B) · C = .A · (B · C)

A + B · C (A + B)(A C)
A·B=A+B

(A + B)(A + B) = A
A(A + B) = A
A+A·B A+B

(A B)(A + CHB + C) = (A + BHA + C)

2.6 BOOLEAN IDENTITIES 29

Boolean manipulation. Identities 6, 7, and 8 are, respectively, the commutative, asso
ciative, and distributive laws of Boolean algebra. Except for 8(b), they are very similar
to the corresponding laws of ordinary algebra. Identity 8(b) is unfamiliar only if we think
in terms of ·' + '' as addition and '' · '' as multiplication operators. Remember that '' + ''
in Boolean algebra is the OR operator and so has properties that are not the same as the
addition operator of ordinary algebra. One of these properties enables us to "multiply
through" or "factor out," as in

A + BCD = '(A + B)(A + C)(A + D)

Identities 9(a) and (b) are the well-known DeMorgan's laws. Note that both forms
of DeMorgan's laws have the complement of an entire expression, and the effect of this
complementing is to change each '' + '' to a ''· '' and each·''·'' to a '' + '' and to
complement each literal. (A literal is a generic term for a variable or its complement.)
Identities 10 through 13 are other identities frequently used in digital design. Identities
lO(a) and (b) are the bases for several systematic Boolean simplification methods. one
of which we will study in a following section. In each of these identities a variable may
be replaced by an expression, and the identity will still be valid.

Using truth tables, we can prove all these Boolean identities, exhaustively. As an
illustration. we will use this method to prove DeMorgan's law of 9(a) for three variables.
The result is

- - -A B C A+B+C A·B·C

0 0 0 I I
0 0 I 0 0
0 0 0 0
0 I I 0 0

0 0 0 0
0 l 0 0

0 0 0
0 0

Since the two output colums are identical, then A + B + C = A · B · C.
Another method of proving these identities is with Boolean manipulation, using

other proven identities. As an illustration, we will prove identity 12(a) in this manner,
with the assumption that the other identities we use have been proved.

A(A + B) = AA + AB
AA + AB = 0 . + AB

0 + AB = AB

by the distributive law 8(a)
by 5(b)
by 2(a)

So, we have proved that A(A + B) = AB by using Boolean manipulation to obtain the
second expression from the first.

EXAMPLE 2.6 ----------------------------

Using Boolean manipulation. prove identity l l(a). assuming that the preceding identities
are valid.

30

Solution.

A + AB = (A · I) + AB
(A · l) + AB = A · (I + B)
A· (I + B) = A· (I)

A· (I) = A

2/BOOLEAN ALGEBRA

2(b)
8(a)

3(a)
2(b) ••

To gain facility with the use of these identities; you should use Boolean manipu•
lation to work through the proofs of some of the other identities of Table 2.2.

Note in Table 2.2 that the Boolean identities are divided into two columns. The
identities in column (a) and the corresponding identities in column (b) are duals of each
other. A dual of an identity is fonned by replacing each AND operator with an OR
operator, each OR operator with an AND operator, each true (I) with false (0), and each
false with true. This procedure for finding a dual of an expression is identical to the
application of DeMorgan·s laws. except that there is no complementing of literals. In
general, in Boolean algebra a dual of a theorem is another valid theorem.

2.7 SIMPLIFICATION USING BOOLEAN IDENTITIES

The primary use of Boolean manipulation is for simplifying Boolean expressions to obtain
simpler expressions for digital design. A simpler expression usually results in a simpler
implementation with digital devices.

In using Boolean manipulation we are usually trying to obtain either a minimum
sum of products (MSOP) or a minimum product of sums (MPOS) that is equivalent to
the original expression. An MSOP is an SOP that is equivalent to the original expression,
and has no more tenns or literals than any other equivalent SOP. In other words. in an
MSOP. the number of terms and the number of literals are the minimum possible for
any equivalent SOP. There may be several equivalent MSOP expressions. Once in a
while. though. the requirements for a minimum number of tenns and a minimum number
of literals are mutually exclusive-they conflict. Then, there is no clear meaning of what
an MSOP is.

The MSOP definition applies to an MPOS with the substitution of "'factors·' for
·'terms.·· An MPOS and an equivalent MSOP may have a different number of literals,
as we will see for the expression of the next example. Also. the number of factors of
the MPOS may be different than the number of tenns of the MSOP.

EXAMPLE 2.7 ----------------------------

Find an MSOP for F = XW + Y + Z(Y + XW).

Solution.

F = XW + Y + Z(Y + XW)
= xw + y + ZY + zxw
= (XW + ZXW) ..j.. (Y + ZY)
= xw, I .J.. Z) ..j.. Y(I + Z)

8(a)
6(a). 7(a)

8(al

2.7 SIMPLIFICATION USING BOOLEAN IDENTITIES

= XW(l) + Y(l)
= xw + y

So, XW + Y is an MSOP expression for F.

3(a)
2(b)

. 31

Sometimes we want an MPOS even though obtaining an MSOP is easier.
We can often obtain an MPOS from an MSOP by taking the dual of the MSOP,
multiplying out, and then taking the dual again, making obvious simplifications in
multiplying out. Taking the dual twice gives us an equivalent expression. Doing
this for the XW + Y of thi~example, we obtain (X + W)Y from taking the dual.
Then, we multiply, getting XY + WY. Finally, we take the dual again, obtaining
(X + Y)(W + Y), which is an MPOS expression for F. Note that this MPOS has
one more literal than the MSOP. • •

EXAMPLE 2.8 ----------------------------

Find an MSOP for F = WXY + WXZ + (Y + Z).

Solution.

F = WXY + WXZ + (Y + Z)
= WX(Y + Z) + (Y + Z)
= WX + (Y + Z)
= wx + yz

8(a)
12(b)
9(a) ••

EXAMPLE 2.9 -----------------------------

Find an MSOP for F = (X + WY + Z)(X + WY + Z).

Solution.

F = (X + WY + Z)(X + WY + Z)
= (X + WY) + (Z · Z) 8(b)
= (X + WY) + 0 5(b)
= X + WY 2(a)

Or, directly use lO(b) and obtain F = X + WY in one step. ••
EXAMPLE 2.10 ---------------------------

Find an MSOP for F = VWXY + VWYZ + VXYZ.

Solution.

Since

F = VWXY + VWYZ + VXYZ - -= VY(WX + WZ + XZ) 8(a)
= VY(WX + Z(W + X)) . 8(a)

(W + X) = (W + X) = wx

F = VY(WX + Z(WX))
= VY(WX + Z)
= VYWX + VYZ

12(b)
8(a)

l (a), 9(a)

••

32 2/BOOLEAN ALGEBRA

EXAMPLE 2.11 -----------------------------

Find an MSOP for F = WXY + WXY + WX.Z + WYZ + XYZ.

Solution. Where do we begin'? By using identity l3(a), we can obtain

WXZ + XYZ + WYZ = WXZ + XYZ
WXY + WYZ + WXZ = WXY + WYZ
WYZ WXY + XYZ = WYZ + YfXY

(I)

(2)
(3)

We can use equation (I) to eliminate the WYZ tenn. But with it eliminated. we
cannot use equations (2) and (3) since this term is needed in these equations.
Therefore. we should not use equation (l) and eliminate WYZ. Instead, we will
use equations (2) and (3). Note that to do this, we use the same term (WYZ) twice.
but that is acceptable because, from identity 4(a), WYZ = WYZ + WYZ. By
using equations (2) and (3) we eliminate the WXZ and XYZ terms. obtaining
F == WXY + WXY + WYZ. • •

The difficulties with simplification we had in this last example should make us
think that there must he a better way to simplify an expression than by using Boolean
manipulation. With it. we have difficulty determining where to begin. how to proceed.
and when to know that we are finished and have an MSOP or an MPOS. There are
simply no definitive rules for Boolean manipulation. Conseq~ently, we will use Boolean
manipulation only for reducing simple Boolean expressions. or Boolean expressions that
we cannot conveniently simplify with other methods. For simplifying expressions of up
to six variables. we will usually prefer to use the graphical method of the next section.

2.8 KARNAUGH MAPS

A Kamaugh map <K-map) is a convenient graphical method for obtaining an MSOP or
MPOS of a Boolean expression of three. four. or five variables-and possibly, though
not conveniently. six or seven variables. All the information of a truth table of a function
is contained in a K-map. In other words. there is a one-to-one correspondence between
a truth table and its K-map.

A K-map contains squares, one for each row of a corresponding truth table. So, a
two-variable K-map has 4 squares. a three-variable K-map has 8 squares, a four-variable
K-map has 16 squares, and so on. The values of the input variables are arranged in a
certain order along two edges of a K-map, and from these values we can detennine the
corresponding truth table row for each square. The function values are inserted into the
squares.

Figure 1.3 illustrates truth tables and corresponding K-maps for some two-variable.
three-variable. and four-variable functions. Note. for example, in Fig. 2.3(a), that the
top left square corresponds to the first truth table row since both the A and B input values
are O for this square. And. from the l inside the square. we see that Z = 1 for A = 0
and B = 0. Similarly. the bottom left square corresponds to the second row of the truth

2.8 KARNAUGH MAPS 33

A = 0, B = 0, Z = 1

A B z 0

0 0 o(D I
0 I 0

1@ 0
I

A = 0, B = 1, Z = 0

(a)

A
A B C z BC 0

0 0 0 1 00 0

0 0 1 0
01 0

0 l 0 1

0 1 1 0 11 0 0

0 0 0

0 I I

0 1

0 A= l,B

(b)
A= 1, B = 0, C = 0, D = 0,

A B C D z CDABOO
Z= I

01 11 10

0 0 0 0 1 00 1
0 0 0 I 0

0 0 0
01 0

0 0 1 1 1 11 I

0 0 0 1

0 0 I 0 10 1

0 0 0
0 1 1 1

1 0 0 0

1 0 0
0 0 0

A= l,B= l,C= l,D= l,Z=O
u l l l

0 0 0

0 1 I

0 0
0

(c)

Figure 2.3 Truth tables and corresponding K-maps.

table, where A = 0, B = I, Z = 0, and so on. In the three-variable K-map of Fig.
2.3(b), the bottom right square, for example, corresponds to the seventh row of the truth
table, where A = 1, B = 1, C = 0, and Z = 1. In the four-variable K-map of Fig.
2.3(c), the top right corner square corresponds to the ninth row of the corresponding
truth table~ where A = 1, B = 0, C = 0. D = 0, and Z = 1. Also, the square in the
third row and column of the K~map corresponds to the last row of the truth table, where
A 1. B = I. C = 1, D = L and Z = 0. and so on. You should verify the other
entries for each K-map.

34

AB
co 00 01 11 10

00

01

11

10

i---.-....;--+---4

(a)

Figure 2.4 Adjacent squares.

2/BOOLEAN ALGEBRA

AB
CD 00

00

01

11

(b) -

We can consider a K-map to be an alternative representation of a troth table. Given
a truth table, we can draw the corresponding K-map, or given a K-map we can form the
corresponding truth table. But there is one very important difference: In a K-map the
values of the input variables are arranged such that for any two physically adjacent
squares. only nne of the input variables has a different value. For example, in Fig. 2.4(a).
consider the square corresponding to A == 0, B = 1, C = 0, D = l, and any adjacent
square. For the square on top the values are A = 0, B = I, C = 0, D = 0, which
differs only in the value of the variable D. For the square on the left, only variable B
has a different value. and so on.

Adjacent squares are more difficult to see for a square at an edge. As an illustration,
in Fig. 2.4(b), for the square corresponding to A = 1, B = 0, C = 1, D = 0, at the
bottom right, there are two physically adjacent squares, one at the top and one on the
left. Although there are no other physically adjacent squares, there are two other squares
that differ in only one variable value. The square for A = I, B = 0, C = 0, D = 0,
which is in the top row and last column. though not physically adjacent. is also adjacent
from the point of view that only one variable has a different value-the variable C. So
we consider these two squares to be "adjacent" squares even though they are not phys
ically adjacent. Similarly, in the last row the square on the left (corresponding to A =
0, B = 0, C = 1, D = 0) has only one variable with a different value-the variable
A-and so is an "adjacent" square. Generalizing, for the purposes of adjacency in the
sense that only one variable has a different value, we see that the squares in the top row
are ··adjacent" to the corresponding squares in the bottom row, and the squares in the
leftmost column are ·'adjacent" to the corresponding squares in the rightmost column.
If ever we have a doubt whether two squares are "adjacent." all we have to do is to
check the variable values for the two squares. If only one variable has a different value,
then the two squares are ··adjacent.''

In Fig. 2.4. note the numbering of the variable values. If we interpret these values
as being binary numbers. then the first column is numbered zero, the second column
one, but the third column is numbered three, and the fourth column two. So, from a
numeric sense. the numberings of the third and fourth columns are interchanged. The

~ -
same is true for the third and fourth rows. It is this interchanging of numbering that
gives the adjacencies needed to simplify Boolean functions entered on K-maps.

2.8.1 Obtaining an MSOP from a K-Map

As mentioned. a K-map is a specific graphical representation of a truth table. Conse
quently. we can obtain a canonical SOP expression (CSOP) directly from u K-map. just

2.8 KARNAUGH MAPS 35

A B C z
0 0 0 0

ABC

0 0 I I
0 I 0 0 BC
0 l 0

ABC

0 0 0
0 I l II 0 0 ll 0 0
I 0 0

I 0
10 0 0 10 0 0

(a) (b) (c)

Figure 2.5 Using a K-map.

as we can from a truth table. We will do this for the K-map of Fig. 2.5(b), which
corresponds to the truth table of Fig. 2.5(a). Recall from Sec. 2.4.1, that to obtain a
CSOP from a truth table, we identify each row for which the function (Z here) is I .
With this K-map, then, we must identify the squares in which ls are entered for z. and,
for convenience, circle the ls as shown in Fig. 2.5(b). Next, we obtain the minterm
corresponding to each of these squares. Here, these minterms are ABC and ABC. Finally.
we OR the minterms to obtain the CSOP for Z. For the function Z of Fig. 2.5, the result
is z = ABC + ABC.

We can algebraically simplify this result by using Boolean identity 1 0(a) of Table
2.2:

z = ABC + ABC = BC

Better yet, we can simplify graphically using the K-map. as illustrated in Fig. 2.5(c).
For this. we just circle the two adjacent I-squares and read the simplified expression
directly from the K-map by keeping the literals that do not change and dropping the
variable that changes in value-in this case, variable A. This graphical simplification is
possible because of the K-map feature that for any two adjacent squares. only one input
variable has a different value. So. this K-map simplification is a graphical application
of Boolean identity I 0(a): AB + AB = A.

In a similar fashion. we can group four adjacent I-squares, arranged in the form
of a rectangle, to eliminate two variables, as illustrated in Fig. 2.6(a). For this group of
four squares notice that two variables (A and B)-and only two---have different values.
These are the variables that drop out. So. we can read the simplified expression for the

A
BC O l

00 0 0

c
C

B AB
00 01 11 10 __.

D

C
00 0 1 I 0

01 0 1 I 0

10 0 0
11 0 l I 0

(a) (b)
10 0 I I 0

Figure 2.6 Grouping four I-squares. Figure 2.7 Grouping eight I-squares.

36 2/BOOLEAN ALGEBRA

~

O I
8
~0 1

8
mO 1 BfflO 1 lliEO 1 BfflO 1

8
fflO I o (0 o o 1 1 o 1 o o 1 1

8
0 o o o 1 . o _o (0 o

1 0 0 IO O I IO 1 1 1 IO O IO 1 I 0(0

AB e ;: 0 Invalid ABT AB

Figure 2.8 Two-variable K-map grouping examples. -

circled group directly from the K-map and obtain Z = C. This grouping of four squares
corresponds to applying Boolean identity 1 0(a) twice:

Z = (ABC + ABC) + (ABC + ABC) = BC + BC = C

For this variation of variable values that allows dropping of two or more variables,
the circled squares must be in the shape of a rectangle; however, the rectangle can extend
from the top of the K-map to the bottom, as in Fig. 2.6(b). Also, the number of squares
grouped must be a power of two: 2". Then, n variables drop out.

Figure 2. 7 shows a rectangular grouping of eight adjacent squares. We can read
the simplified expression directly from the K-map as Z = B. The justification for this
simplification is that this graphical application corresponds to applying Boolean identity
I0(a) three times, as you can prove to yourself.

The tenns we have been obtaining from K-maps are called prime implicants. For
every set of variable values that makes a prime implicant 1, the corresponding function
is also 1. This is rather obvious, because to obtain a prime implicant, we circle only ls
of a function. Another feature of a prime implicant is that no literal can be deleted from
it and yet have it remain a valid tenn of the function. Thus there is a sense of minimalness
about the number of literals in a prime implicant.

Figure 2.8 shows some common groupings for two-variable K-maps. However.
for the simplification, of expressions of just two variables we will usually find it easier
to use the identities of Table 2.2. Note the invalid grouping of the next-to-last K-map.
We cannot validly circle the two ls because both variables have different values for the
two I -squares. For a valid grouping of two Is only one variable can and must have
different values. Graphically, we should know that the grouping is invalid from the fact
that the sides of the squares are not physically adjacent. Since we cannot group the two
ls, we cannot simplify the CSOP.

A
BC O

0 00 0 0

0 OJ O 0

l I O 0 I I O 0

JO O 0

A
BC

00

01

11

JO

0 1

I 0

I 0

I 0

~ 0

AB BC A AC
Figure 2.9 Three-variable K-map grouping examples.

00 I

OJ I

II I

10 1

A
BC

00

01

II

10

0 I

0 0

0 0

0 0

0 0

0

2.8 KARNAUGH MAPS

11 0 0

10 0 O

(a) (b)

Figure 2.10 Invalid groupings.

A
BC

00

0 I

II

10

37

0 1
r--.

I 0

I 0

0 0

0 0 IO O 0

, (c) (d)

Figure 2. 9 shows some common groupings for three-variable K-maps, whereas
Fig. 2.10 shows some invalid groupings for three-variable K-maps. In Fig. 2. lO(a) the
grouping is invalid because two variables (A and B), and not just one, have different
values for the two I-squares. We do not, however, have to check the variable values to
know this. It is obvious from the lack of physical adjacency, even with the K-map rolled
up to make the top edge and bottom edge join. Also, the grouping does not form a
rectangle. For similar reasons, the grouping of Fig. 2. IO(b) is invalid. The grouping of
Fig. 2. IO(c) is invalid because the number of grouped I-squares (three) is not a power
of two. The grouping of Fig. 2. IO(d) is invalid, graphically speaking, because the
grouped 1-squares do not form a rectangle. From an analytical point of view, the grouping
is invalid because all three variables have different values for the grouped I-squares,
while for a valid grouping of four I-squares, two and only two variables must have
different values.

Figure 2.11 shows some common groupings for four-variable K-maps.
So far we have considered only a single grouping on each K-map. Almost always,

though, more than one grouping is required to completely specify the function represented
by the K-map, as shown by the following example.

AB AB AB
CD 00 01 11 10 C D 00 01 I 1]0 C D , 00 01

00 0 0 00 0 0 ri-? 00 l 1

01 0 0
!

01 0 0 l I OJ 0

11 0 0 0 11 0 0 I I 11 0

10 0 0 0 0 10 0 0 ~ I
'._ _ _,I

JO (1
I

ABD

so
Figure 2.11 Four-variable K-map grouping examples.

I

0

0

I

AB
11 10

l 1 J
CD 00 01 11 JO

000 O O 0

0 0

0 0

I lj 10 0 0 0 O

BD

38

A
BC

00

0 I

11

10

0 1

I I

1 0

I 0

0 I

(a) (bt (c)

Figure 2.12 K-map illustration for Example 2.12.

2/BOOLEAN ALGEBRA

(d)

EXAMPLE 2.12 ----------------------------

Use a K-map to find an MSOP expression for Z.

A

0
0
0
0

B

0
0
1
1
0
0

C

0
l
0
I
0
I
0

z

1
0

I
0
I
0

Solution. Our first step is to enter the function on a three-variable K-map, as
shown in Fig. 2.12(a).

The next step is to find the I-squares that w~ can circle only once. There are
two of them: A = I, B = 1 , C = 0 and A = 0, B = 1, C = 1. We fonn
groupings with them, as shown in Fig. 2.12(b). The corresponding prime implicants
(AC and AC) are called essential prime implicants since they must be included in
an MSOP. On1y one I-square remains uncircled, that of A = 0, B = 0, C = 0.
For it, we have two grouping choices. We can group it with the I-square of A =
1, B = 0, C = 0, as shown in Fig. 2.12(c), to obtain prime implicant BC. Or,
we can group it with the I-square of A = 0, B = 0, C = 1, as shown in Fig.
2. l 2(d), to obtain prime implicant AB. Since the number of literals in these prime
implicants is the same, we can use either one, which means there is no unique
MSOP. From the Fig. 2.12(c) K-map we obtain Z = AC + AC + BC, and from
the Fig. 2.12(d) K-map we obtain the equivalent Z = AC + AC + AB. • •

Figure 2.13 shows some three-variable K-maps and corresponding MSOP expres-
sions. Remember, in finding an MSOP. we want to use as few groupings as possible in
order to have the fewest number of terms. Also. we want each grouping to be as large
as possible because the larger a grouping, the fewer the number of literals in the corre
sponding prime implicant. Note the redundant dotted grouping in the last K-map. If we
used this grouping also, the expression would be AB + AC + BC. This is not an
MSOP because it has more terms and literals than the MSOP AB + AC. which covers
all the Is.

2.8 KARNAUGH MAPS 39

A
BC O B cAo I

00 0 0 00 00 0 0
01 01 01 0 0

11 II 0 0
10 10 0 0 10 0 0 - 10 0 0

C + AB AB + AC + BC A + E ABC + ABC + ABC + ABC AB + AC

Figure 2.13 Three-variable K-map MSOP examples.

Obtaining an MSOP for a four-variable function is only slightly more difficult than
for a three-variable function. Additionally, we must remember that I-squares in the
leftmost column are "adjacent" I -squares in the corresponding rows in the rightmost
column. Also, all four comer squares are .. adjacent."

EXAMPLE 2.13 ----------------------------

Use a K-map to find an MSOP expression for Z.

A B C D z

0 0 0 0
0 0 0 I
0 0 0 I
0 0 I I 0
0 0 0 0
0 I 0 I I
0 I 0 0
0 I I I
I 0 0 0 0

0 0 I 0
0 I 0 I
0 I I 0

0 0 0
0 I 0

0 0
0

Solution. Our first step is to enter the function on a four-variable K-map, as
shown in Fig. 2. 14(a). The next step is to find the essential prime implicant group-

AB
C D 00 01 II 10

00 I 0 0 0

01 i l I 0 0

II 0 I j 0 0

10 I 0 0 I

(a) (b) (c)

Figure 2.14 K-map illustration for Example 2. 13.

40 2/BOOLEAN ALGEBRA

AB
C D 00 01 11 10

00 1"' 0 0 T
01 1 0 (1]~

11 (I I l!_ 1
~

10 l I I l I

B + C + AD ABCD + BD + AD + AC D +AC+ ABC
Figure 2.15 Four-variable K-map MSOP examples.

ings. There are just two of them since the only I-squares we cannot circle more
than once are those for A = 1, B = 0, C = I , D = 0 and A = 0. B = I ,
C = 1. D = I. Figure 2.14(b) shows the essential prime implicant groupings.
Two I-squares remain to be circled. Since they are adjacent. we should obviously
group them and obtain the complete grouping of Fig. 2. I4(c). From it we obtain
Z = BCD + ABO + ABC. which is a unique MSOP even though one of the
tenns is not an essential prime implicant. • •

Figure 2.15 shows some four-variable K-maps and the corresponding MSOP
expressions.

In summary, finding an MSOP from a K-map is an art. Although there are no
definitive rules to follow to guarantee obtaining an MSOP, the following guidelines are
helpful.

1. Circle every 1 at least once.
i. Circle a 1 more than once if this circling helps in making larger groupings. but

do not circle any more times than necessary to circle all the ls.
3. Make the groups as large as possible.
4. Use no more groups than necessary.
5. Start the circling with ls that can be circled only once. In general. start with

the ls that are most difficult to group.

We could extend our study of K-maps to five-variable and six-variable K-maps.
The principles are the same. but the adjacencies become progressively more difficult to
visualize as the number of variables increases. Besides, there are computer programs for
finding MSOPs for functions of many more variables than we can use K-maps for. These
computer programs are not based on graphical techniques such as K-maps, but on tabular
methods such as modifications of the tabular Quine-McCluskey method.

2.8.2 Obtaining an MPOS from a K-Map

We can use K-maps for finding MPOSs just as readily as for finding MSOPs. The rules
for grouping are the same except that we circle Os instead of 1 s. From these groups we
form factors instead of tenns. Also. we complement variables that have l values and do
not complement those that have 0 values-just the opposite as for finding literals of
MSOPs.

2.8 KAANAUGH MAPS 41

A
B C 0

00 0.

01 I

II I

10 0

(a)

I

I

0

I

I

®

(b)

Figure 2.16 K-map illustration for Example
2.14.

EXAMPLE 2.14 ----------------------------

Use a K•map to find an MPOS expression for Z.

A

0
0
0
0

B

0
0

I
0
0

C

0
I
0
I
0
I
0

z

0
I
0
I
I
0

Solution. As usual. our first step is to enter the function on a K-map, as shown
in Fig. 2.16(a). Then. we group the Os, as shown in Fig. 2.16(b). Next. we find
factors corresponding to the groups. remembering to complement if a variable has
a 1 value. These factors are (A + C) and (A + B + C). Finally, we AND these
factors. The result is Z = (A + C)(A + B + C). • •

Figure 2.17 shows some four-variable K-maps and corresponding MPOS expres
sions obtained from the shown groupings of Os. Since K-maps can be used to find MSOPs
or MPOSs. there arises the question of which type of minimum expression to solve for
in a digital design. Actually. we may want to solve for both to determine which, possibly.
is simpler. As an illustration. if for the function entered on the K-map of Fig. :!.16(a)
we had solved for an MSOP. we would have obtained either Z = AC + AC + BC or

AB AB
C D 00 01 11 10 CD 00 01 II 10

00 I oJ l I 00 0

' ol OJ 0 I 0 01 1 .._,,
11 0 I I 0 II l

10 I l @ I 10 0

CB+ D) (A+ B + C) (A+ B + C + 0)

(8 + Dl (8 + c + 0) (A+ C + D)
Figure 2.17 Four-variable K-map MPOS illustrations.

11 10

0

0 0

0 0

0

(C + D) (A+ 0) (8 + 0) (A+ B + C)

42 2/BOOLEAN ALGEBRA

B C
A 0 I BC

A 0 1

00 0 0 00 0 0

01 I X 01 1 I

11 0 I 11 0 I 11 0

10 X 0 10 0 0 10 0 0

(a) (b) .(c) (d)

Figure 2.18 Three-variable don·t-care illustrations.

Z = AC + AC + AB. Both MSOPs have three tenns and six literals, while the MPOS
Z = (A + C)(A + B + C) we found has just two factors and five literals, and so is
simpler. Often. though, the MSOP and MPOS expressions are equally minimum. Another
consideration is the type of hardware that will be used to implement the function. As
shown in the next chapter, we want to use the minimum expression that more closely
corresponds to the available hardware.

2.9 DON'T-CARE OUTPUTS

Often, in designing a digital system, a designer will know that certain components of
the system will never have all possible combinations of inputs. A component with, say,
inputs of A. B, and C, may never have inputs of A= l, B = I, C = 0 and A = 1,
B = 0. C = 0. for example. And yet there are rows in the truth table and squares in
the K-map for these input values. What then does the designer insert for the output for
each of these inputs? The answer is a "don't care," identified by the symbol X. Clearly,
for those inputs it does not matter what the outputs are, at least with regard to system
operation. But it does make a difference with regard to minimization.

Since for don't-care outputs we are free to select either Os or Is, we select the
values that are best for minimizing the output expression. In this, the selection for one
don ·t care does not restrict us from selecting a different value for another don't care. In
other words, the don't-care assignments do not have to be the same. By using K-maps
we can readily detennine which values for the don't cares result in minimum expressions.

Consider the K-map of Fig. 2.18(a), which has two don't cares. For an MSOP,
obviously we want to replace the don't care of A = I, B = 0, C = l with a I and the

AB
CD 00

00 0

01 0

II X

10 0

AD+ ABC+ ABC

C
AB

D 1 00 01 11 10

00 lo xj 1 I
r

01 0 I X 0

11 X I I X

10 (x 0 ' I I

(A+ D) (8 + D)
Figure 2.19 Four-variable don ·c-care illustrations.

2.11 OTHER COMMON LOGIC OPERATIONS 43

don't care of A = 0, B = 1, C = 0 with a 0, as shown in Fig. 2.18(b). Then, with
the grouping shown in Fig. 2. 18(c), we obtain the MSOP expression AC + BC for Z.
This don't care selection is also clearly best for an MPOS, which from Fig. 2.18(d) we
see is Z = C(A + B). But. the best don·t-care selection for an MSOP is not always
best for an MPOS. Figure 2.19 gives some additional don't-care illustrations.

'?.10 MINIMIZATION SUMMARY

As has been shown, the K-map is a very convenient tool for simplifying logic functions
of up to four variables-and, as mentioned, the K-map method can be extended to the
simplifying of logic functions of five or more variables. However, the K-map method
becomes increasingly more difficult to use with an increase in the number of variables,
and eventually becomes unmanageable. Other systematic Boolean simplification methods
have been developed to avoid this problem. These methods were important when hard
ware devices were the dominant cost of digital systems. In recent years. however, ad
vances in microelectronic technology have been such that hardware costs are far from
being the dominant costs. Consequently, our time will be better devoted to the study of
concepts that are relevant to the enhancement of the overall digital system at the design
level rather than in the stu_dy of sophisticated methods for eliminating a few logic gates.

2.11 OTHER COMMON LOGIC OPERATIONS

To complete our study of Boolean algebra, we will consider some other logic operations,
that though not as fundamental as AND, OR. and NOT, are still important.

For two variables A and B, we can systematically generate 16 possible logic
functions, as illustrated in Table 2.3. The three fundamental operations AND, OR, and
NOT are represented by F1, F7 , and F10 (and Fd, respectively. All other logic functions
are combinations of these three fundamental operations. We will consider the most
common of these.

2.11.1 NANO Operation

The NANO operation. represented by F14 in Table 2.3, is defined again as follows:

A B

0 0
0 I

0
1

I
0

Note from the first three rows of the truth table that the Boolean variable F14 is true if
1101 both A and B are true. From the last row of the truth table we get F,..i = A + B.
which by DeMo_rgan·s laws also has the form F

1
.. = A · B. From this second form we

44

TABLE 2.3

A B Fa

0 0 0
0 I 0
1 0 0
1 I 0

i
0

2/BOOLEAN ALGEBRJ

F1 F2 F3 F4 Fs F6 F7 Fa F9 F10 F1, F1-2 F,3 F,4 F,s

0 0 0 0 0 0 0 I I I 1
0 0 0 l 1 0 0 0 0 1 1
0 I 1 0 0 I l 0 0 I 0 0)

l 0 I 0 I 0 I 0 I 0 0 0 1

i i i r i r i i i i i
A·B A B A.,.. B A0B s A A·B

A(±)B A+B

see that NAND is a combination of NOT and AND-hence the name NAND. More
specifically, the NANO operation is the complement of the AND operation; it is the
AND operation followed by the NOT operation.

The NANO operation applies to any number of v~ables. For the three variables
A, B, and C, the NAND truth table is

A

0
0
0
0

B

0
0

I
0
0

C

0
I
0
I
0
I
0

A·B·C

1
0

Again, the only O output is for the last row, which is always the case, regardless of the
number of input variables. In other words, the output variable is 1 unless all input
variables are I, in which case the output variable is 0.

2.11.2 NOR Operation

The NOR operation, represented by F8 in Table 2.3, is defined again as follows:

A

0
0

B

0
l
0

1
0
0
0

Note from the first row of the truth table that the Boolean variable F8 is true only if
neither A nor B is true. Also, from this row we get that F8 = A · B. which by
DeMorgan's laws also has the fonn F8 = A + B. From this second form we see that
NOR is a combination of NOT and OR-hence the name NOR. More specifically, the
NOR operation is the complement of the OR operation; it is the OR operation followed
by the NOT operation.

2.11 OTHER COMMON LOGIC OPERATIONS 45

The NOR operation applies to any number of variables. For the three variables A,·
B. and C, the NOR truth table is

A B C A+B+C

0 0 0 I
0 0 I 0
0 l 0 0
0 I I 0

0 0 0
0 I 0

0 0
0

Again. the only I output is for the first row, which is always the case, regardless of the
number of input variables. In other words, the output variable is O unless all input
variables are 0. in which case the output variable is I.

Although the NANO and NOR operations are by far the most popular of the
nonfundamental Boolean operations. there are other important ones we should consider.

2.11.3 Exclusive OR Operation

The Exclusive OR (XOR) operation, represented by F6 in Table 2.3, is commonly des
ignated by the symbol (±) as in F6 = A (±) B. The XOR operation is defined by the
following table:

A

0
0

B

0
I
0

0

I

0

Note that the Boolean variable F6 is true if A is true or B is true, but not both. We can
also view F 6 as being true if and only if A :;= B. Consequently this operation is useful
in digital design for comparison purposes. Note also that this truth table differs from the
two-variable OR truth table only in the last row, for both inputs of 1. From the second
and third rows of the truth table we find that F6 = AB + AB.

The XOR operation applies to any number of variables. For the three variables A,
B. and C the XOR truth table is

A B C A(IJB(z)C

0 0 0 0
0 0 I
0 0 I
0 I I 0

0 0
0 I 0

0 0

46 2/BOOLEAN ALGEBRA

Note that for an odd number of l inputs, the output is 1. But for an even number of l
inputs. the output is 0. This is generally true. Because of this. the XOR pattern on a
K-map is a checkerboard. and so no tenns combine.

2.11.4 'Equivalence Operation

The equivalence operat!On. also called the coincidence operation. is represented by F9

in Table 2.3. This operation is commonly designated by the symbol 0, as in F9 =
A 0 B. and worded "'F9 is equal to A equivalence B.'' The equivalence operation is
defined by the following table:

A

0
0

B

0
l
0

1
0
0

From the first and~~ rows, we see that the Boolean variable F9 is true if and only if
A = B. So E.~ = AB + AB. Also, from a comparison of this truth table and that for
XOR. we see that for two variables, the equivalence and XOR operations are comple
ments of one another. which means that the equivalence operation, like the XOR oper
ation. is useful in digital design for comparison purposes.

SUPPLEMENTARY READING (see Bibliography)

[Banee 85]. [Boole 54], [Blakeslee 79], [Hill 81], [Kamaugh 53), [Mano 84], [Mc
Cluskey 75], [Peatman 80], [Roth 85], [Shannon 38]

PROBLEMS

2.J. Evaluate the following expressions for A = F, B = T, C = F. and D = T:
(a) AB + C(A + D) (b) (A + BC)(AD + AD)

-
(c) AD<A + BC + BD) (d) AB(AC + BD + ABCD)

--
(e) AB + C + CD (f) (A + BC + BCD + s + C)(ACD + BD)

2.2. Evaluate the following expressions for A = F, B = F, C = T, and D = T:
(a) AB + BCD(AB + CD + AD) (b) ABCD + ACD + BC(A + CD)

(c) C:, ;D~ + C)(A + C + D)(A + B (d) (A + B)(A + CD + CD)

(e) (ABC + CD)(AC + D + BCD) . (0 (A + BC)CD + BCD

PROBLEMS

2.3. Repeat Problem 2.1 for A = 1, B = 1, C = O. and D = I.

2.4. Repeat Problem 2.2 for A = I, B = O. C = 1, and D = 0.

2.5. Find the CSOP expressions for the Z functions defined in the following truth tables:

ABC z, ABC ~ ABC ~ ABC z.

000 0 000 000 I 000 0
001 I 001 I ()()) 0 001 0
OJO I 010 l 010 010
Oil 0 011 0 011 I 011
100 I 100 0 100 0 100 I
IOI 1 JOI I 101 0 101 0
IIO 0 110 I 110 I 110 I
l II I Ill 0 Ill I 111 0

(a) (b) (c) (d)

2.6. Find the CPOS expressions for the Z functions of Problem 2.5.

47

2.7. A function Z of four variables A, B, C, and Dis 1 if and only if two of the four variables
are 1. Express the function Z as a CSOP and also as a CPOS.

2.8. A function Z of four variables A, B, C, and D is 1 if and only if an odd number of the
four variables is J. Express the function Z as a CSOP and also as a CPOS.

2.9. A function Z of five variables A, B, C, D. and Eis I if and only if an even number of the
five variables is 1. Express the function Z as a CSOP and also as a CPOS.

2.10. Use truth tables to detennine whether the following pairs of expressions are equivalent:

(a) AB + ABC + AB + ABC and ABC + AC + AC

(b) AC + BC + ABC and BC + ABC + AB
(c) AB + AC and (A + C)(A + C)(B + C)

(d) (A + B + C)(B + C)(A + B) and ABC + BC

(e) (A + C)(A + B + C)IA + B) and (A + B + C)(B + C)

2. I I. Repeat Problem 2.10 for the following.

(a) BC + BCD + ABC and AB + ABC + ABCD + ACD

(b) AD + ACD + CD and AC + ACD + ABC + ABCD

(c) BD + BO and (A + B + D)(B + D)(A + B + D)

(d) BD(A + C) and (B + C)(B + D)(B + C)

(e) B(A + B + C + D)(B + C) and C(A + B)(A + B + C)

2.12. Repeat Problem 2. JO for the following:

(a) ACD + ADE + ABD + ABCDE + ADE and ACDE + ACDE + AD +
Xci5E

(b) (A + E)(D + E)(A + D)(C + D)(B + C) and A(C + BD)(D + CEl

2.13. Use truth tables to detennine whether the following pairs of expressions are complements
of each other:

(a) AC + ABC + ABC and AB + AC + ABC

(b) C + ABC and AC + AB

(c) AB + ABC + ABC and AC + BC + ABC

48 2/BOOLEAN ALGEBRA

(d) (A + B)(A + C) and AB + BC

(e) (A + B)(A + C) and (A + B + C)(A + B + C)(A + B)

(f) (A + B)(A + B + C)(A + B) and (A + B)(A + B + C)

2.14. Repeat Problem 2. 13 for

(a) AB + CD + BC and BD + BC + ABC

(b) ABC + AD and AB + AD + AC

(c) AC + AC and (A + C)(A + B + C + D)(A + B + C)

(d) (B + C)(A + D),(A + B) and (A + B)(B + D)
(e) (A + C)(A + B) and (A + D)(B + C)(A + B)

2.15. Using Boolean identities. simplify the following expressions:

(a) ABC + (A + B)CD

(b) AC(B + D) + BD + C

(c) (AB + C + D)(A + B + C + D + E)

(d) (AB + CD + E + F)(A + B + E + F)(C + D + E + F)

2.16. Repeat Problem 2.15 for

(a) A +CD+ CDE + AB

(b) ACD +·ABC+ ABD

(c) (A + C + D)(A + C + D + E)

(d) (A + B + C)(A + C + D)(B + D)C

2.17. Repeat Problem 2. I 5 for
....,.___,,,,...._--=-----

(a) ABC + ABC + (A + B + C)(A + B + C)

(b) (A + B + C)(A + BC)(A + B + C)(A + B + C)

(c) ABCD + ABCD + ABCD + ABCD

(d) (A + B)(B + C)(B + C)
2.18. Find complements of the following expressions by using DeMorgan's laws and then simplify

until DeMorgan·s laws cannot be applied further.

(a) AB + c(5 + E)

(b) AB + CD(E + FG)

(c) AB(C + DE) + ABC + B(C + D)

2.19. Repeat Problem 2. 18 for

(a) (A + C)(D + EF) + AB

(b) AB(C + DE) + AB(C + D)
-

(c) ACD(E + FG) + HIJ(K + LM)

2.20. Using Boolean identities. convert each of the following expressions to a CSOP. and also
to a CPOS:

(a) AB + BC

(c) (A + B)(A + B)
2.21. Repeat Problem 2.20 for

(a) AB + C

(c) (A + BC)(A + BD)

(b) A + BC

(d) (A + B)(B + C)

(b) AB+ CD

(d) (A + B)(C + D)

PROBLEMS 49

2.22. Find the K-maps for each function 2 1, 2 2 , 2 3 , and 2 4 defined as follows:

ABC z, Z1 ABCD ZJ 24

000 0 0000 0
001 I l 0001 I 0
OIO I 0 0010 0
011 0 0 . 0011 I I
100 0 0100 I 0
IOI I OIOI 0 0
I 10 0 01 IO 0 I
III 0 0111 0

1000 I
l001 0 I
10IO 0 0
IOI I 0
1100 I
I IOI 0
1110 I 0
1111 0

2.23. Find the truth tables corresponding to the functions defined by the K-maps of Fig. 2.20.

00 I I

01 I 0

11 I I

10 0 0

01

11 I 0

10 I I

AB
CD

00

01

11

JO

00 01

I I

0 l

0 I

0 I

21 Z2 23

(a) (b) (c)

Figure 2.20 K-maps for Problem 2.23.

11

0

1

I

I

10

0

I

0

0

AB
CD 00 01

00 1 0

01 1 0

11 1 I

10 0 I

11 10

0 1

0 1

I I

0 0

2.24. Use K-maps to find an MSOP and an MPOS for each of the functions defined by the truth
tables of Problem 2.22.

2.25. Find an MSOP and an MPOS for each of the functions defined by the K-maps of Fig. 2.20.

2.26. Obtain an MSOP and an MPOS for each of the functions defined by the K-maps of
Fig. 2.21.

A A

BC BC BC 0 I

00 00 0 I 00 0 00 0 X

OJ 01 I I 01 I 01 1 0

II I I 11 II 0 11 X 0 11 1 I

10 0 1 10 10 0 1 10 0 1

Z1 Z2 23 Z4 Zs
(a) (b) le) (d) (e)

Figure 2.21 K-maps for Problem 2.26.

50 2/BOOLEAN ALGEBRA

2.27. Obtain an MSOP and an MPOS for each of the functions defined by the K-maps of
Fig. 2.22.

AB
C D 00 OJ 11 JO

AB

C D 00 OJ JJ 10
AB

C D 00 01 11 10
AB

CD 00 01 11 10
AB

C D 00 01 11

00 0 0 1 l 00 0 0 l 0 00 1

01 1 l 1 0 OJ 0 l l 0 01 0

11 0 0 l 0 11 l 1 J 0 11 0

JO 0 0 l 0 JO 0 0 0 1 10 0

Z1 Z2

(a) (b)

0 1 1 00 I 0

0 1 0 01 0 0

0 0 l 11 0 0

1 l 1 10 1 0

I X 00

X 0 01

1 0 11

0 1 10

1

0

0

0

1 1

X 1

0

1

X

X

Zs
(e)

Figure 2.22 K-maps for Problem 2.27.

2.28. Use K-maps to obtain an MSOP and an MPOS for each of the following functions:

(a) 2 1 == ABC + ABC + ABC + ABC

(b) 22 =ABC+ ABC+ ABC+ ABC

(c) 23 = BC + ABC + ABC

(d) 24 = (A + B + C)(A + B + C)(A + B + C)

(e) 25 = (A + B + C)(A + B + C)(A + B + C)

(f) Zt, = (A + B + C)(A + C)(A + B + C)

2.29. Repeat Problem 2.28 for

(a) 2 1 = ABC + ABC + ABC+ ABC with a don't care for ABC = 101

(b) Z2 = ABC+ ABC + ABC+ ABC with don't cares for ABC = 001 and 01 I

(c) 23 = ABC + ABC + ABC with don't cares for ABC = 101 and 010

(d) 24 = (A + B + C)(A + B + C) with don't cares for ABC = 100,011, and 110

(e) Zs = (A + B + C)(A + B + C) with don't cares for ABC = 001, 111. and I IO

(f) Zt, = (A + B)(B + C)(A + B + C) with a don't care for ABC = 011

2.30. Repeat Problem 2.28 for

(a) 2 1 = ABCD + ABCD + ABCD + ABCD + ABC!)

(b) 22 = ABCD + ABCD + ABCD + ABCD + ABCD + ABCD

(c) 23 = ABC + ABCD + BCD + ABCD + ACD

(d) 24 = (A + B + C + D)(A + B + C + D)(A + B + C + D)(A + B + C + D)
<X +a·+ c + o>

(e) Zs = (A + B + C + D)(A + B)(C + D)(B + C + D)(A + B + C + D)
(f) 26 = (A + B + D)(B _+ C + D)(A + B + C + D)(A + B + C + D)

(A+ B + C + D)
2.31. Repeat Problem 2.28 for

(a) 2 1 = ABCD + ABCD + ABCD + ABCD + ABCD with a don't care for
ABCD = 0101

(b) 22 = ABCD + ABCD + ABCD + ABCD + ABCD + ABCD with don't cares
for ABCD 0001 and 1111

(c) 23 = ABC+ ABCD + ABCD + ABCD with don't cares for ABCD = 0010 and
0101

10

0

X

l

X

PROBLEMS 51

(d) 2 4 = (A + B)(A + B + C)(A + B + C + D) with a don't care for ABCD =
0101

(e) Z5 = (C + D)(A + B)(A + C + D) with don't cares for ABCD = 1001, 1101,
and 1111

(f) 2 6 = (C + D)(B + D)(C + D) with don't cares for ABCD = 0111 and 1111

2.32. For two variables it has been stated that the equivalence and XOR operations are comple
ments of one another. What about three variables? Compare the truth table of A 0 B 0
C with that for A (t) B (t) C.

Chapter 3

Digital Design with Small-Scale
Integrated Circuit Elements

3.1 INTRODUCTION

In Chapter 2 we considered the concept of Boolean variables (variables that can have
only the logic values of true and false) and the three fundamental operations of Boolean
algebra: AND, OR, and NOT. We proceeded to derive complex expressions based on
these operations and discussed various methods of manipulating these expressions. With
this background in mind, in this chapter we will study the design of digital systems using
physical devices that actually perform Boolean operations, and with extraordinary speed.
We will find that we can physically implement any imaginable digital system that is
consistent with Boolean logic.-Furthermore, the implementations will perform the basic
Boolean operations in a nanosecond time frame. It is this fact that elevated Boolean
algebra from an interesting concept derived by George Boole in the nineteenth century
into the world of wizardry of modem-day digital computers.

Specifically, in this chapter we will study the design of digital systems with physical
components called small-scale integrated circuits (SSI circuits). The term ''small-scale"
refers to the relatively small number of electronic gates in a single integraied circuit,
often referred to as a chip. (A gate is an individual logic implementer.) Generally,
integrated circuits with 12 or fewer equivalent logic gates per semiconductor chip are
considered to be SSI circuits. Other types of integrated circuits include medium-scale
integrated circuits (MSI, 13 to 99 logic gates), large-scale integra.ted circuits (LSI, 100
to 1000 logic gates), and very large-scale integrated circuits (VLSI, more than 1000
logic gates).

3.2 TRANSISTOR-TRANSISTOR LOGIC

52

For all our SSI implementations, we will use the SSI circuit family that has been most
popular for years: the transistor-transistor logic (TIL) family. Currently, there are many

3.3 LOGIC CONVENTIONS 53

series within the TTL family, including standard TIL, high-speed TTL (H-TIL), low
power TTL (L-TTL), Schottky TTL (S-TTL), low-power Schottky TTL (LS-TTL), ad
vanced S-TTL (AS-TTL), and advanced LS-TTL (ALS-TTL).

Each TTL chip has a standard 74XY identifier label. The 74 specifies a commercial
grade TTL product. The X identifies the series within the TTL family, and the Y, which
is two or more digits, identifies the particular member of the series. For example, the
74ALS04 chip is a commercial grade TTL product in the advanced LS (ALS) series with
part number 04. Under these labels, integrated-circuit manufacturers publish chip de
scriptions in their TTL data books. Included in each description is the functional operation
of the chip components. We will use this information (in the form of voltage tables) in
our design of digital systems.

The corresponding circuit elements of each of the TTL series are functionally
identical, in regard to logic operations. For example, a 7400, a 74LS00, and a 74ALS00
are all two-input NANO gates. The differences among them are physical characteristics
such as speed of operation, power dissipation, and so forth, all of which are unrelated
to logic operations. Since in this chapter only the logic operations of the chips are of
concern, we will adopt an apostrophe notation, such as in 74'00, rather than specify an
actual series within the TTL family. A more detailed discussion of the TTL family is
given in Sec. 4.8.

3.3 LOGIC CONVENTIONS

This section contains a unifying view of the various logic conventions that apply to
digital circuits in general. In the discussion we will view a digital circuit as a network
of digital elements energized by interconnecting digital signals. Each digital signal cor
responds to a logic variable, and the voltage level of the signal represents the logic value
of the variable. Also, each digital element, in the form of an integrated circuit, performs
some logic function on input signals and produces corresponding output signals. We will
begin our consideration of logic conventions with some definitions, terminology, and
notational standards that will be used in this text.

For a digital signal, the logic values of true (T) and false (F) are represented by
one of two voltage levels: high (H) or low (L). Therefore, there are just two possible
assignments:

(a)

(b)

Terminology

Active-high

Active-low

For each signal of a digital circuit, we need to assign a voltage representation of
either active-high or active-low. In the positive-logic convention of logic/voltage as
signment, we assign all signals in the digital circuit to be active-high. Conversely, in the
negative-logic convention, we assign all signals to be active-low. Finally, in the mixed
logic convention, we individually assign the voltage representation of each signal, which

54 3/DIGITAL DESIGN WITH SMALL-SCALE INTEGRATED CIRCUIT ELEMENTS

means that there can be a mixture of active-high and active-low signals in a single digital
circuit. But if in the mixed-logic convention we happen to assign all signals to be active
high, then it is equivalent to the positive-logic convention. In other words, the positive
logic convention is a subset of the mixed-logic convention-as is the negative-logic
convention.

To understand the concepts of active-high and active-low more fully, consider
Fig. 3.1, which shows a fictitious device 74'XX with three input terminals (A, B, and
C) and two output terminals (Y and Z). The small circles at terminals A and C indicate
that they are active-low input terminals. In other words, the signals applied at terminals
A and C will be interpreted by the 74'XX device as being active-low signals. The absence
of a circle at terminal B indicates that it is an active-high input terminal and so any signal
applied there will be interpreted by the device as being an active-high signal. Note the
effects of such interpretations as illustrated by the ''input voltage values'' columns and
the "input logic values" columns of the table shown in Fig. 3. I (b).

The device performs the logic function f on the signals applied at input terminals
A, B, and C, and produces an output signal at output terminal Y. The circle at terminal
Y designates that it is an active-low output terminal. Consequently, the signal that is
produced there is active-low, as illustrated by the "output logic values" columns and
the '' output voltage values'' columns of the table shown in Fig. 3 .1 (b). Similarly, the
device also performs the logic function g and produces an active-high signal at the active
high output terminal Z (absence of a circle).

Generally, in order to make use of the function that is defined for a particular
device, we must apply an active-low signal to an active-low input terminal, and an active-

Input
voltage values

A B C

L L L
L L H
L H L
L H H
H L L
H L H
H H L
H H H

74'XX

A

B

C

y

z

(a) Fictitious device

Input Output

Logic performed by the device:
Y = f(A, B, C) = A(B + C)
Z = g(A, B, C) = A + BC

Output
logic values logic values voltage values
A B C y z y z

T F T T T L H
T F F F T H H
T T T T T L H
T T F T T L H

F F T F F H L
f· F F F F H L
F T T F T H H
F T F F F H L

(b) Voltage and logic table

Figure 3.1 Illustration of active-high and active-low concepts.

3.3 LOGIC CONVENTIONS 55

· high signal to an active-high input tenninal. Also, we must accept the output signals as
being either active-high or active-low, as defined for the output terminals. These facts
are illustrated by the following example.

EXAMPLE 3.1 -----------------------------

For the circuit shown in Fig. 3.2(a), find the logic expressions for S4 and S5 as functions
of SI, S2, and S3.

Solution. Note from Fig. 3.2(a) that each signal, besides having a name label
(e.g., S 1), also has a voltage representation label of either .H for active-high or
.L for active-low. We will consistently use this notation for the labeling of signals.

74'XX

SI.L A Logic performed by the device:
y S4.L Y = f (A, B, C) = A(B + C)

S2.H B Z = g(A, B, C) = A + BC
z S5.H

S3.L C

(a) Fictitious device

Input Input Input Output Output Output
logic values voltage values logic values logic values voltage values logic values

SI S2 S3 y

SI S2 S3 (A B C) A B C y z (S4

F F F H L H F F F F F H
F F T H L L F F T F F H
F T F H H H F T F F F H
F T T H H L F T T F T H
T F F L L H T F F F T H
T F T L L L T F T T T L
T T F L H H T T F T T L
T T T L H L T T T T T L

(b) Voltage and logic table

Sl
S2 0

S3 'r------.---.

00 0 0

01 0

11 0 I .

10 0

S4 = Sl • S3 + S1 • S2
= Sl(S2 + S3)

S5 = S 1 + S2 • S3

(c) Results

Figure 3.2 Illustration for Example 3. I .

z
S5) S4 S5

L F F
L F F
L F F
H F T

H F T
H T T
H T T
H T T

56 3/DIGITAL DESIGN WITH SMALL-SCALE INTEGRATED CIRCUIT ELEMENTS

Thus a signal is incompletely specified unless it is labeled with a name and a
voltage representation. Also, to emphasize graphically that S 1 is an active-low
signal, a circle is associated with it (as with S3 and S4).

For this example. the input signals SI and S3 and the output signal S4 are
all active-low, whereas the input signal S2 and the output signal S5 are both active
high. Consequently, the logic/voltage assignments of these signals match those of
the terminals of the device.

The desired logic expressions can be obtained in a systematic manner by
using the table shown in Fig. 3.2(b). The ••input logic values" columns show all
the possible logic values for input signals SI, S2, and S3. And the '"input voltage
values'' columns contain the corresponding voltage values for S 1, S2, and S3 that
are actually applied at the input tenninals A, B, and C. These voltage values are
interpreted by the input terminals of the device, resulting in the logic values shown
in the "input logic values" columns for A, B, and C.

The device then performs the functions f and g on the input logic values,
and produces the output logic values for Y and Z, as shown in the "output logic
values'' columns for Y and Z. Next, the device outputs the actual voltage values
corresponding to these logic values, as is shown in the "output voltage values''

. columns. Note for active-low output terminal Y that the device outputs a low
voltage value for a true logic value and a high voltage value for a false logic value.
Finally, the voltage values generated by the device are interpreted by the output
signals S4 and S5. The result is shown in the "output logic values" columns for
S4 and S5.

With this table completed, it is a simple matter to derive the logic expressions
for S4 and S5 by using the techniques presented in Chapter 2. The results are
shown in Fig. 3.2(c). Note that they agree with the device logic expressions of
Fig. 3.2(a), with S 1, S2, and S3 substituted for A, B, and C, respectively. It is
much easier, of course, to make these substitutions than to use the voltage and
logic table approach.

Generalizing, we conclude from this example that to make use of the function
that is defined for a particular device, we must make certain that the logic/voltage
assignments of the input and output signals match those of the input and output
terminals of the device. • •

EXAMPLE 3.2 -----------------------------

For the circuit shown in Fig. 3.3(a), find the logic expressions for S4 and S5 as functions
of SI, S2, and S3. Note that the logic/voltage assignments of input signals S2 and S3
do not match those of input terminals B and C, respectively, of the device.

Solution. As in Example 3. 1, the solution for this problem can be obtained
systematically by using a table, as is shown in Fig. 3.3(b). Note specifically the
difference between the "input logic values" columns for S2 and S3 and the "input
logic values'' columns for B and C, resulting from the difference in the interpre
tation of the same input voltage values.

With this table completed, it is again a simple matter to derive the logic
expressions for S4 and S5 by using the techniques presented in Chapter 2. The

3.3 LOGIC CONVENTIONS 57

Input

74'XX

S2.L c i--~ B

S3.H ===cc:: .::c

Input

(a, Fictitious device

Input Output

Logic performed by the device:
Y = f(A, B. C) = A(B + C)
Z = g(A, B, C) = A + BC

Output Output
logic values voltage values logic values logic values voltage values logic values

SI S2
SI S2 S3 (A B

F F F H H
F F T H H
F T F H L
F T T H L

T F F L H
T F T L H
T T F L L
T T T L L

Sl.L

S2.H

S3.L

S3 y z
C) A B C y z (S4 SS) S4 ss

L F T T F T H H F T
H F T F F F H L F F
L F F T F F H L F F
H F F F F F H L F F
L T T T T T L H T T
H T T F T T L H T T
L T F T T T L H T T
H T F F F T H H F T

(b) Voltage and logic table

S4 = Sl • S2 + SI · S3

S l(S2 + S3)

(c) Results

74'XX

A
y S4.L

B
z S5.H

C

SS = S 1 + S2 • S3

Logic performed by the device:
Y = f(A. B, C) = A(B + C)
Z = g(A, B, C) = A + BC

(d) Circuit diagram ·with transformed input signals

Figure 3.3 Illustration for Example 3.2.

result is shown in Fig. 3.3(c). From comparing these results with the logic expres
sions for Y and Z in Fig. 3.3(a), observe that in effect we have transformed the
input signal S2.L to S2.H so that it matches the logic/voltage assignment of input
terminal B. Similarly, S3.H has been transformed to S3.L to match the
logic/voltage assignment of input terminal C. These transformations are shown in
Fig. 3.3(d).

The conclusion that we can draw from this example is that when there is a
mismatch of the logic/voltage assignment between an input signal and an input
terminal, we need to transform the logic/voltage assignment of the signal to make

58 3/DIGITAL DESIGN WITH SMALL-SCALE INTEGRATED CIRCUIT ELEMENTS

it match the logic/voltage assignment of the input terminal by using the following
identities.

X.H = X.L and X.H = X.L

The proof of these identities can be obtained by using the following table.

Voltage value
X

L
H

Logic value
X.H X.L

F
T

T
F

Expressed in words, what this table shows is that for a low voltage (L), X.H
"interprets" it as being false (F) and X.L "interprets" it as being true (T). Con
versely, for a high voltage, X.H "interprets" it as being true and X.L "interprets"
it as being false. Then from columns 2 and 3 of the table, we can determine that
X.H = X.L and X.H = X.L. • •

EXAMPLE 3.3 ----------------------------

For the circuit shown in Fig. 3.4(a), determine the logic expressions for S4 and S5 as
functions of S 1 , S2, and S 3. Note that the logic/ voltage assignments of the output signals
S4 and S5 do not match those of the output terminals Y and Z, respectively, of the
device.

Sl.L

S2.H

$3.L

Sl.L

S2.H

S3.L

74'XX

A Logic performed by the device:
y S4.H Y = f(A, B. C) = A(B + C)

B Z = g(A, B, C) = A + BC
z S5.L

C

(a) Fictitious device

S4 = Sl(S2 + S3)

S4 = S1(S2 + S3)

S5 = SI + S2 • S3

SS=Sl +S2 • S3

(b) Results

74'XX

A Logic performed by the device:
y $4.L Y = f(A, B, C) = A(B + C)

B Z = g(A, B, C) = A + BC
z S5.H

C

(c) Circuit diagram with transformed input signals

Figure 3.4 Illustration for Example 3.3.

3.3 LOGIC CONVENTIONS 59

3.3.1 74'00

Solution. As in Examples 3. l and 3.2, the solution for this example [shown in
Fig. 3.4(b)] can be systematically obtained by using a table like the one shown in
Fig. 3.3(b). The solution, however, is left to the reader. (See Problem 3.3.) Ob
serve that we can get the same result by transforming the output signal S4.H to
S4.L and S5.L to S5.H to obtain matches with the logic/voltage assignments of
output terminals Y and Z, respectively, as is shown in Fig. 3.4(c).

The conclusion that we can draw from this example is that when there is a
mismatch of the logic/voltage assignment between an output signal and an output
terminal, we need to transform the logic/voltage assignment of the signal to match
the logic/voltage assignmen_!_ of the output terminal by again using the following
identities: X.H = X.L and X.H = X.L. • •

We will now use the concepts of this section in a consideration of some specific
SSI devices.

The 74'00 has two input terminals, which we will call terminals A and B, and one output
terminal, which we will call terminal Z. From a TTL data book, we can determine the
following voltage table for the 7 4' 00.

A B Z

L L H
L H H
H L H
H H L

This table specifies how the 74'00 actually works, physically speaking. But what it does,
logically speaking, depends on our logic/voltage assignment. Consider the assignment
of

A-active-high B-acti ve-high Z-active-low

For this assignment, the corresponding graphical representation is that of Fig. 3.5(a),
and the 74'00 voltage table translates into the logic table of Fig. 3.5(b). From this table
we see that Z = A · B, and so the 74'00 is an AND gate for this specific logic/voltage
assignment.

74'00 A B z

A
F F F

z F T F

B T F F
T T T

(a) (b)

Figure 3.5 74'00 AND gate.

60

Sl.H

S2.H

74'00

A

B

Z=A•B

(a)

3/DIGITAL DESIGN WITH SMALL-SCALE INTEGRATED CIRCUIT ELEMENTS

74'00

Sl.H~ Z S3.L
S2.H B

(b)

Figure 3.6 Use of the AND graphic symbol.

The commonly accepted graphic symbol for an AND gate is

D
As illustrated in Fig. 3.6, we will use this symbol to replace the rectangular box for the
74'00. Then there is no need to specify the logic operation.

To recapitulate, from Fig. 3.6(b) we see that the 74'00 has two input terminals (A
and B) and one output terminal (Z). Having no circles, both input terminals expect active
high signals. And, because of the circle at terminal Z, the output signal is active-low.
As indicated by the shape of the symbol, the logic function performed on the signals
applied at terminals A and B is the AND operation Z = A · B, provided that the signals
applied are active-high and provided that we interpret the output signal to be active-low.
In this particular case, S3 S 1 · S2, and the signal S3 is active-low.

Now, consider the logic/voltage assignment of

A-active-low B-active-low Z-active-high

For this assignment, the corresponding graphical representation is that of Fig. 3. 7(a),
and the 74'00 voltage table translates into the logic table of Fig. 3. 7(b). Rearranging this
logic table, we obtain the standard logic table of Fig. 3. 7(c). From it we see that Z =
A + B, and so the 74'00 is an OR gate for this specific logic/voltage assignment.

The commonly accepted graphic symbol for an OR gate is

D
As illustrated in Fig. 3. 8, we will use this symbol to replace the rectangular box for the
74'00. Then we do not have to specify the logic operation.

74'00

A

B

(a)

z a---

Figure 3.7 74'00 OR gate.

A B Z

T T T
T F T
F T T
F F F

(b)

Rearrange

A B 2

F F F
F T T
T F T
T T T

(c)

"·•.;',

3.3 LOGIC CONVENTIONS

74'00

Sl.L r ~:.--......:r--:: A
z

S2.L • -- -B

Z=A+ B

(a)

S3.H

Figure 3.8 Use of the OR graphic symbol.

74'00

Sl.L --AA

S2.L -~~- B

(b)

61

S3.H

In Fig. 3.8(b) the two circles at both input terminals indicate that these terminals
expect active-low input signals. And, because there is no circle at terminal Z, the output
signal is active-high. As indicated by the shape of the symbol, the logic function per
formed on the signals applied at terminals A and B is the OR operation Z = A + B,
provided that the applied signals are active-low and provided that we interpret the output
signal to be active-high. In this particular case, S3 = S 1 + S2, and the output signal
S3 is active-high.

We have considered two of the eight possible logic/voltage assignments for the
three terminals of a 74'00. All the possible assignments are

Signals

Assignments A B z

(1) .L .L .L
(2) .L .L .H -E--QR
(3) .L .H .L
(4) .L .H .H
(5) .H .L .L
(6) .H .L .H
(7) .H .H .L -E-- AND
(8) .H .H .H

We have shown that the 74'00 implements an OR gate for assignment (2), and an AND
gate for assignment (7). The remaining six assignments do not implement any of the
three fundamental Boolean operations (AND, OR, NOT), but rather a combination of
them.

Of the remaining six assignments, the most popular one for the 74'00 is assignment
(8), in which all signals are active-high. For this assignment, the corresponding graphical
representation is that of Fig. 3.9(a), and the 74'00 voltage table translates into the logic
table of Fig. 3.9(b). From this table we see that for an all active-high assignment, the

74'00

A

B

z

Z=A•B

(a)

A B Z

F F T
F T T
T F T
T T F

(b) Figure 3.9 74'00 NANO gate.

62

3.3.2 74'02

3/DIGITAL DESIGN WITH SMALL-SCALE INTEGRATED CIRCUIT ELEMENTS

74'00 performs the NANO operation, which is the AND operation followed by the NOT
operation. So, Z = A· B. As a result, in the popular positive-logic convention in which
all signals are active high, the 74'00 is always a NANO gate.

To indicate the use of the 74'00 as a NANO gate, consider the following illustra
tion. In Fig. 3.6 we have indicated the use of the 74'00 as an AND gate as follows:

74'00

Sl.H ---iA

S2.H B

From the identity X.L = X.H, this is eq~ivalent to

74'00

Sl.H ---IAB S2.H .
)~-(Sl·S2).H

Therefore a mismatch of the voltage representation between the output terminal and the
output signal results in a logic inversion of the function performed by the 74'00, causing
it to go from an AND operation to a NAND operation.

We should remember that logic values (T, F) and the voltage representations of
these logic values are two separate concepts. Also, although the voltage table of a device
describes its physical behavior, the logic operation that the device performs in a particular
digital circuit depends on our assignment of voltage representations to the logic values.

In a similar fashion we can consider the 74'02, which also has three terminals. But, we
will omit some of the obvious details. The voltage table for the 74'02 is

A B Z

L L H
L H L
H L L
H H L

All possible logic/voltage assignments are, of course,

Signals

Assignments A 8 z

(1) .L .L .L
(2) .L .L .H
(3) .L .H .L
(4) .L .H .H
(5) .H .L .L
(6) .H .L .H
(7) .H .H .L
(8) .H .H .H

3.3 LOGIC CONVENTIONS 63

3.3.3 74'04

For assignment (7) of active-high input terminals and an active-low output terminal,
we obtain the following logic table. From it we can see that for this assignment, the
74 '02 is an OR gate.

A B z 74'02
F F F
F T T Z=A+B Sl.H (SI + S2).L = S3.L

S2.H T F T
T T T

For assignment (2) of active-low input terminals and an active-high output terminal,
we obtain the following logic table. From it we see that for this assignment, the 74 '02
is an AND gate.

74'02
A B z A B z

Sl.L A T T T rearrange F F F Z= A·B (SI ·S2).H = S3.H
T F F S2.L B F T F
F T F T F F
F F F T T T

For assignment (8), that of all active-high terminals, we obtain the following block
diagram and NOR logic table.

74'02
A B z

1: zl
F F T
F T F Z=A·B=A+B
T F F
T T F

Z=A+B

So, with the positive-logic convention in which all signals are active-high, the 74'02 is
always a NOR gate.

The 74'02 performing as a NOR gate results from a mismatch of the voltage
representation between the output terminal and the output signal, causing the operation
to change from OR to NOR~

74'02

S l.H ------\
S2.H---

We will now consider the 74'04, which has only one input terminal and one output
terminal, which we will label A and Z, respectively. The 74'04 voltage table is

ili H
L

64 3/DIGITAL DESIGN WITH SMALL-SCALE INTEGRATED CIRCUIT ELEMENTS

Since the 74 '04 has only two terminals, there are just four possible logic/voltage as-
signments:

Signals

Assignments A z

(l) .L .L
(2) .L .H
(3) .H .L
(4) .H .H

For assignment (2) the graphical representation and logic table are as follows:

74'04

--:[]I A Z i---- m T
F

Z=A

With this assignment, the 74'04 implements an IDENTITY logic operation, which means
it does not do anything logically. But, of course, it does change the voltage representation
from active-low to active-high, and so is useful in digital circuits that have mismatched
voltage representations.

The commonly accepted symbol for an IDENTITY gate, also known as a buffer,
lS

C>
We will use this symbol to replace the rectangular box for the 74'04, as illustrated in
Fig. 3.10.

74'04

Z=A

(a)

Sl.H

Figure 3.10 Use of the buffer graphic symbol.

74'04

SJ.Lo-----v- SJ.H

(b)

In Fig. 3. IO(b) the shape of the symbol tells us that the 74'04 performs the IDEN
TITY logic operation on A, ma.king Z = A. Also, with a circle at the input but none at
the output, the gate functions as a voltage inverter, transforming S l .L to S l .H for this
assignment (2).

For assignment (3) the graphical representation and logic table are

74'04

---tA z ILI=-- m F
T

Z=A

\
... l

3.3 LOGIC CONVENTIONS

74'04

Sl.H A Z

Z=A

(a)

S1.L

Figure 3.11 Active-high input voltage inverter.

65

74'04

Sl.H ~ Sl.L

(b)

Again, the 74'04 implements an IDENTITY operation. In this case, though, it changes
the voltage representation from active-high to active-low. Also, as shown in Fig. 3.11,
we can again use the buff er symbol instead of the rectangular box.

In Fig. 3.1 l(b) the shape of the symbol tells us that for assignment (3) the 74'04
performs the IDENTITY operation on A, making Z = A. Also, with no circle as the
input but with one at the output, the gate functions as a voltage inverter, transforming
Sl.H to S1.L.

For assignment (4) of an active-high input and also output, the block diagram and
the logic table are

74'04

-----.1 A zl i---- m T
F

Z=A

Z = A

Therefore for the assignment of both signals active-high, the 74'04 functions as a logic
inverter, but not a voltage inverter. In the positive-logic convention in which all signals
are active-high, the 74'04 is always a logic inverter-a NOT gate.

In this case the logic inversion action of the 7 4 '04 results from a mismatch of the
voltage representation between the output terminal and the output signal, as follows:

74'04

Finally, for assignment (I) of active-low input and also output, the block diagram
and the logic table are

74'04

--n::A Z ~::-- m F
T

Z=A

Z=A

from which we see that the 74'04 performs the logic NOT operation. So, with both
signals active-low, the 74 '04 again functions as a logic inverter, but not a voltage inverter.
With the negative-logic convention, in which all signals are active-low, the 74'04 is
again always a logic inverter. This logic inversion action of the 74'04 also results from
a mismatch of the voltage representation between the output signal and output terminal,
as follows:

66 3/DIGITAL DESIGN WITH SMALL-SCALE INTEGRATED CIRCUIT ELEMENTS

74'04

3.3.4 SSI Basic Gate Summary

Figure 3.12 summarizes the most important interpretations of some of the popular SSI
devices described in ITL data books.

74'00 74'00

74'00 =D- D-
74'02 74'02

74'02 =0- =[>-
74'08 74'08

74'08 =[)- =[>-
74'32 74'32

74'32 =D-- =D-
74'04 ~ ~

74'10 74'10

74'10 D- =D-
74' 11 74'11

74' 11 =D- =D-
74'27 74'27

74'27 0- =D-
74'20 74'20

74'20 D- D-
74'21 74'21

74'21 D- D-
74'25 74'25

74'25 D- D-
Figure 3.12 TIL basic gate summary.

3.4 SYNTHESIS OF DIGIT AL CIRCUITS 67

3.4 SYNTHESIS OF DIGITAL CIRCUITS

Our main goal in this chapter is to learn how to synthesize (design) digital circuits with
SSI components, starting with truth table or K-map specifications of the Boolean func
tions to be implemented. For this design process we must learn how to select the proper
SSI components and how to interconnect them such that the resulting digital circuit
performs the logic function specified by the logic expression (or truth table). Part of the
design process is to make certain that the voltage representations are consistent among
the signals. Specifically, we must connect active-high signals to active-high terminals,
and connect active-low signals to active-low terminals.

3.4.1 Synthesis Based on the Positive-Logic Convention

One sure way to guarantee that the voltage representations among signals are consistent
is to assign them all to be active high. As mentioned, this approach is commonly called
the positive-logic convention. Currently, it is the most popular approach.

For the positive-logic convention, we can assume in Fig. 3.12 that all the device
terminal output circles correspond to logic inversion. (The same is true for the input
circles.) In other words, these circles at the outputs have the same effect as NOT gates
(logic inverters). This observation follows from the facts that there are no active-low
signals in the positive-logic convention and, as we proved in Sec. 3.3, X.L = X.H.
Thus, we see from Fig. 3. 12 that the 74'00, 74' 10, and 74'20 are positive-logic NAND
gates; the 74'02, 74'27, and 74'25 are positive-logic NOR gates; and the 74'04 is a logic
inverter. These positive-logic descriptions are the ones that digital-circuit manufacturers
specify in their data books along with the 74 labels.

We will study the positive-logic convention approach by way of examples. In them,
we will use only MSOPs since the extension to designing with MPOSs should be
apparent.

EXAMPLE 3.4 -----------------------------

Using the positive-logic convention, design a digital circuit based on the following truth
table:

A 8 C z

0 0 0 0
0 0 l I
0 I 0 l
0 I l 0
1 0 0 l

0 1 l
1 0 0

0

Solution. Our first step is to obtain an MSOP, as follows:

68

11 0 0

10 CD o

3/DIGITAL DESIGN WITH SMALL-SCALE INTEGRATED CIRCUIT ELEMENTS

z = Aif+ BC + ABC

As should be apparent, to implement this MSOP we need 2 two-input AND gates,
I three-input AND gate, l three-input OR gate and some inverters. Of course, the
implementation would be very straightforward if we had the following gates: 74'08
(two-input AND), 74' 11 (three-input AND), 74'04 (inverter), and a three-input
OR gate. Since there is no three-input TIL OR gate. we could, instead, use two
74'32 gates (two-input OR), as follows:

r---- ---- -----7

I 74'32

74'32

I I L ____________ _J

A problem arises, though, if, say, we have only gates 74'00, 74'02, 74'04,
74'10, and 74'27, since in this list there are no AND and OR gates. Because we
fixed our voltage representation (all signals are active-high), our interpretations of
these gates are also fixed. From Fig. 3.12 they are

74'00-two-input NANO
74'02-two-input NOR
74'04-NOT

74' 10-three-input NANO
74 '27-three-input NOR

So all we have available are NANO and NOR gates and some inverters. Conse
quently, to implement Z we must transfonn the MSOP (which is in terms of AND,
OR, and NOT) into an equivalent expression in tenns of NANO, NOR, or NOT.
To change an OR expression into a NANO expression .. we can double complement
(which gives an equivalent expression), and in so doing, use one complement to
change the ORs to ANDs as required for NANO, and use the other complement
for the inversion part of the NANO operation:

z == AB + BC + ABC

=AB+ BC+ ABC

(DeMorgan's law)

By using a pair of two-input NANO gates (74 '00) and a three-input NANO
--

gate (74'10) at the input level, we can obtain AB, BC, and ABC. Then, with a
single three-input NANO gate (74' 10) at the second level, we can obtain the NANO

3.4 SYNTHESIS OF DIGIT AL CIRCUITS 69

A.H

B.H

C.H

of these three terms. Figure 3.13 shows the resulting digital circuit. Note that the
literal inputs at the first level are the literals appearing in the original MSOP. This
is generally true for a two-level NANO implementation. (Similarly, a two-level
NOR realization has as inputs the literals appearing in an MPOS.) • •

A.H

74'04

B.H

74'04

74'04

(A. B).H

74'00
(B • C).H

Z.H = (A • B • B • C · A • B • C).H
= (AB + BC + ABC).H

Figure 3.13 Implementation for Example 3 .4.

EXAMPLE 3.5 -----------------------------

Using positive logic, design a digital circuit for producing the function Z defined in the
following truth table.

w

0
0
0
0

X y

0 0
0 1
1 0
1 1
0 0
0 1

0

Solution.

w
XY 0

00 0

01 0

1

0

0

z

0
0

0
0
1
0

As before. our first step is to find an MSOP:

Z=WX+ XY

For our implementation of Z = WX + XY, again assume that we have only the
following gates with the corresponding interpretations (because all signals are ac
tive-high):

74'00-two-input NANO 74' 10-three-input NANO

70 3/DIGITAL DESIGN WITH SMALL·SCALE INTEGRATED CIRCUIT ELEMENTS

74'02-two-input NOR
74'04-NOT

74'27-three-input NOR

Since all we have available are NANO and NOR gates and inverters, we must
transform the MSOP expression into an expression in terms of these operations.
As before, we will double complement, and then apply one of DeMorgan's laws:

Z = WX + XY = WX + XY = WX · XY

This expression is in a form requiring 3 two-input NANO gates and some inverters
for the implementation. For the sake of illustration, we will make another as
sumption, which is that we have only 2 two-input NANO gates. In this case, then,
we must eliminate one of the NAND operations. We can do this by applying one
of DeMorgan's laws to one of the tenns:

--
z = WX · XY = WX · (X + Y) = WX · (X + Y)

The double complementing of the OR term, besides giving an equivalent term,
corresponds to NOR followed by NOT. Now we can implement the expression
with a pair of two-input NANO gates, 1 two-input NOR gate, and some inverters,
as shown in Fig. 3.14. • •

74'04

W.H---

X.H --e-----
74'04

Y.H _______ _,

(WX).H

74'04
(X + Y).H

Figure 3.14 Implementation for Example 3.5.

Z.H = [WX • (X + Y)] .H
=(WX+XY).H

As is evident, a major advantage of the positive-logic approach is the consistency
of signal voltage representations since all signals are active-high. A disadvantage is that
we sometimes have to transform the original logic expression into some initially obscure
expression in order to implement it with the available gates. For this, DeMorgan's laws
are very helpful.

3.4.2 Synthesis Based on the Negative-Logic Convention

Another sure way to guarantee that the voltage representations are consistent is to assign
them all to be active-low. This approach, commonly called the negative-logic convention,
is analogous to the approach based on the positive-logic convention. Since the voltage
representations are fixed (all signals are active-low), we are, for example, limited to the
use of only one of the eight logic/voltage assignments for a two-input, single-output
gate, such as the 74'00. Consequently, we must still transform the original logic expres
sion to "fit" that interpretation of the gate. Because of the similarity to the positive
logic convention, we will not consider any examples here.

3.4 SYNTHESIS OF DIGITAL CIRCUITS 71

3.4.3 Synthesis Based on the Mixed-Logic Convention

The third approach to digital circuit synthesis is based on the mixed-logic convention in
which both active-high and active-low signals are allowed. Since we are not restricted
to a particular logic/voltage assignment (where all the signals are either active-high or
active-low), we can choose the voltage assignment of each signal at implementation time.
As a result, we can use all eight logic/voltage assignments of a gate such as the 74'00.
Also, we can base our designs on the AND, OR, and NOT operations, and so directly
implement an MSOP or an MPOS without any algebraic manipulation. With this ap
proach, we must, of course, take care to ensure that the voltage representations are
consistent between signals and terminals. Perhaps the mixed-logic approach can be best
introduced by way of an example.

EXAMPLE 3.6 -----------------------------

Using the mixed-logic convention, directly implement Z WX + XY from Example
3.5 in Sec. 3.4.1. The available SSI gates are the 74'00, 74'02, 74'04, 74' 10, and 74'27.
The input signals are W.H, X.H, and Y.H, and the output signal is to be Z.H.

Solution. To implement the logic expression directly for Z, we need a pair of
two-input AND gates, a two-input OR gate, and some inverters. (Note that we do
not make any transformation of the original expression.) We will make a prelim
inary sketch of the circuit diagram, showing the AND and OR gate placements.

W.H

D
D X.H Z.H

D
Y.H

Now, do we have any AND and OR gates among our available gates? Look
ing at Fig. 3.12, we see that the 74'00 is a two-input AND gate if we use the
following voltage assignments:

74'00

A.H ~ (AB).L
B.H ~

Furthennore, the 74'02 is also a two-input AND gate if we use the following
voltage assignments:

74'02

~:~~(AB).H

So, in our list of available gates, we have not one, but two types of two-input
AND gates! Similarly, we have two types of two-input OR gates:

74'00 74'02

~:~ ~(A+B).H A.H ~--"
B.H ~(A+ B).L

72 3/DIGITAL DESIGN WITH SMALL~SCALE INTEGRATED CIRCUIT ELEMENTS

Both these AND and OR gates are available for our selection. Now, back to
the example. Do we use the 74'00 or the 74'02 for our two-input AND gates?
Since at this point it really doesn't matter, we will arbitrarily select the 74'00 for
the first two-input AND gate.

W.H

X.H

Y.H

74'00

W.H ----r-\,._ (WX).L
X.H~

D
D Z,H

With the operation specified, we have fixed the voltage representations of all the
signals of this 74'00. For the AND operation, the inputs are active-high and the
output is active-low. Since we want this gate to generate the term WX, we need
inputs of X.H and W.H. Of course, X.H is available. In addition. we can generate
W .H from the available W .H by using a 74'04 as a logic inverter. This is possible
because W.H = W.L.

74'04
W.H

D
Y.H

Similarly, we can generate the term XY.

74'04
W.H

W.H

X.H 74'00

74'04
Y.H

Y.H

(WX).L

D Z.H

(WX).L

D Z.H

(XY).L

There is no special reason to choose the 74'00 for this second AND gate other
than to have the voltage representation (active-low) of the output of this gate the
same as the voltage representation of the output of the other AND gate.

Finally, we need to OR WX and XY. For this, we should use the 74'00.
version of the OR gate, rather than the 74'02 version, since these two signals are
active-low, and the 74'00 OR gate requires active-low inputs. An added bonus is

3.4 SYNTHESIS OF DIGITAL CIRCUITS 73

74'04
W.H

W.H ----.

<WX).L

X.H --------- 74'00
1----- Z.H = (WX + XY).H

<XY).L

74'04
Y.H

Y.H--

Figure 3.15 Mixed-logic implementation for Example 3.6.

that the output of the 74'00 OR gate is active-high, as is required for the output
signal. The complete circuit is showE_ in Fig. ~ 15.

This implementation of Z = WX + XY is functionally equivalent to that
of Fig. 3.14 which, although for the same function, is based on a different ap
proach-that of positive logic. Even with the same logic convention, we can obtain
different implementations, some of which may be better than others. Figure 3.16
shows another mixed-logic implementation of Z = WX + XY. • •

The functionally equivalent implementations of Figs. 3.15 and 3. 16 have the same
number of gates. Usually, though, different implementations have different numbers of
gates, primarily of inverters. Optimally, of course, we want an implementation with the
least number of inverters, and of gates in general. There are no definitive rules for
obtaining such a "best" implementation. It is a skill that can be enhanced through
practice. The following guidelines are helpful, however.

1. Determine the framework of the digital circuit by defining all the input and
output signals and sketching in the required AND and OR gates.

2. Pick one of the gates, preferably at the input level, and select a specific TTL
gate for it. This selection fixes the voltage assignments for the gate input and
output signals.

3. Obtain the required input signals for this gate from the available signals, using
inverters and/or the "other label" (A.H = A.L), when necessary.

4. Repeat steps 2 and 3 for the remaining gates until the circuit is complete. To
minimize the number of inverters, you may, from time to time, have to back
up and reconsider your choice of specific TTL gates when it is obvious that
you have made a poor choice.

We will illustrate these guidelines with an example.

74'02
(WX).H

74'04
(WX + XY).L Z.H = {WX + XY).H

X.H

(XY).H

Y.H ------ut...-✓
Figure 3.16 Another mixed-logic implementation for Example 3.6.

74 3/DIGITAL DESIGN WITH SMALL-SCALE INTEGRATED CIRCUIT ELEMENTS

EXAMPLE 3.7 -----------------------------

Implement Z = ABC + CD + AC using any gates of Fig. 3.12. The inputs are A.H,
B.L, C.H, and D.H, and the output is to be Z.L.

Solution. Determine the circuit framework (step 1).

A.H

B.L

C.H

D.H

D
D
D

D Z.L

Now (step 2) pick a gate at the first level and select the specific TTL gate for it.
We will start with the first three-input AND gate. Which TTL gate should we use?

74'27 74'10

=D-- or =C>-
Normally, at this point in the design it would not matter which TTL gate we
selected. But we know that at the second level we want a three-input OR gate with
an active-low output to generate the output Z.L, and in Fig. 3.12 the only such
OR gate is the 74'27, which requires active-high inputs.

74'27

=[>--
Therefore, for the first AND gate we prefer the 74'27, at least temporarily, since
it has an active-high output. Now obtain the required input signals (step 3).

A.L 74'27
A.H (ABC).H

B.L 74'27

D Z.L
C.L

C.H

D.H D
In accordance with step 4. repeat the process until the complete circuit is designed,
as shown in Fig. 3.17.

Note in Fig. 3.17 that the second AND gate is a 74'00 rather than a 74'02
version. If we had selected the 74'02 instead, then we would have needed two
inverters for the two inputs and no inverter for the output. But with the 74'00, we
need no inverters for the inputs and just one inverter for the output. Sometimes by
making the appropriate choice of gates, we can reduce the number of inverters

3.4 SYNTHESIS OF DIGIT AL CIRCUITS 75

74'27
(ABC).H

74'27

C.H - -----+----e
74'02

(AC).H

Figure 3.17 Mixed-logic implementation for Example 3.7.

74'27

74'00 74'04 74'27

74'02

Figure 3.18 Preferred circuit diagram for Example 3. 7.

required. Saving inverters is desirable, especially when board space is limited. But
that should not be an overriding concern. Having a clear and structured design is
more important.

In Fig. 3.17 all the intermediate terms are labeled. Usually, though, this is
not desirable, and they can be omitted, as shown in Fig. 3.18.

When we finish our design, we should check our circuit diagram. In analyzing
a circuit diagram we should realize that the circle at an input or output terminal
can implement a voltage inversion or a logic inversion operation, depending on
the context. If there is a mismatched logic/voltage assignment between a signal
and a terminal, then it is a logic inversion operation. Otherwise, it is a voltage
inversion operation and can be ignored in the analysis of the circuit. With this in
mind, we can readily see in Fig. 3.18 that the output of the three-input 74'27 AND
gate is ABC, and the output of the 74'02 AND gate is AC, even though these
intermediate terms are not labeled. • •

EXAMPLE 3.8 ----------------------------

Directly implement Z = (A + B + C) · (A + D). The inputs are A.H, A.L, B.L,
C.L, and D.L, and the output is to be Z.H.

76 3/DIGITAL DESIGN WITH SMALL-SCALE INTEGRATED CIRCUIT ELEMENTS

A.H

Solution. Step I: Determine the framework of the circuit.

A.H

D A.L

B.L D Z.H

C.L D D.L

Steps 2 and 3: Select a TTL gate for one of the first-level gates. Then, generate
the gate input signals.

74'27
A.H

A.L 0

B.L D Z.H
74'04

C.L D
D.L 0

Step 4: Do the same for the other first-level gate.

74'27
A.H

A.L

B.L D Z.H
74'04

C.L
74'00

74'04

D.L

Continuing for the second-level gate, we obtain the circuit of Fig. 3.19. Note how
the term (A + B + C) is complemented to (A + B + C).

74'27

A.Lu-----

B.L u------....-
74'04

Z.H =[(A+ B + C). (A+ D)]. H

74'00
74'04

D.Lu---a

Figure 3.19 Mixed-logic implementation for Example 3.8.

PROBLEMS n
As a check, and also as an exercise, you should analyze the circuit diagram

of Fig. 3.19 to determine whether the output is Z = (A + B + C) · (A + D).
As mentioned, to do this you should ignore the circles if they are voltage inverters
and consider each mismatched logic/voltage assignment as producing a logic NOT.

Incidentally, with different choices for the AND and OR gates, the number
of inverters required can be reduced from three to one. We will leave it to the
reader to try it. • •

3.5 SUMMARY-LOGIC CONVENTIONS

The positive- and negative-logic conventions are simply special cases of the mixed-logic
convention. An advantage of the positive-logic approach (and also of the negative-logic
approach) is the certainty of matching between signals and gate terminals, since all are
active-high (or active-low). The trade-off is a loss of some flexibility. For example, for
a gate such as the 74'00 with three signals, there are 23 = 8 different possible
logic/voltage assignments. Yet, with the positive-logic approach we can select only one
of the eight assignments-that of all signals being active-high. Consequently, we are
forced to transfonn the original logic expression to "fit" that interpretation of the gate.
This lack of flexibility is also true of the negative-logic approach.

With the mixed-logic approach we do not assign the logic/voltage assignment until
implementation time. Therefore we have the freedom to use all possible assignments for
a gate. Consequently, we do not need to transfonn the original expression to fit the gates.
Rather, we change the interpretations of the gates to fit the logic expression. The trade
off for the mixed-logic approach is the necessity of making certain that the voltage
representations between signals and gate input requirements are consistent (sometimes
using inverters, sometimes using the "other label").

For the positive- and negative-logic approaches, circuit synthesis generally requires
Boolean algebraic manipulation of logic expressions. For the mixed-logic approach,
however, circuit synthesis generally requires graphical manipulation. For the design of
simple circuits that are implemented with SSI devices, the selection of the easiest ap
proach is a matter of personal preference. But the advantages of the mixed-logic approach
become more apparent in the design of more complex circuits with MSI and LSI com
ponents. Also. the mixed-logic approach becomes increasingly valuable as the clarity of
the digital design becomes more important.

SUPPLEMENTARY READING (see Bibliography)

[Boole 54], [Fletcher 80], [Kintner 71], [Mano 84], [Motorola], [Prosser 87], [Taub 82],
[Texas Instruments]

PROBLEMS

3.1. Explain the differences among the positive-logic, negative-logic, and mixed-logic conven
tions.

3.2. What is the difference between logic values and voltage levels?

78

3.3.
3.4.

3/DIGITAL DESIGN WITH SMALL-SCALE INTEGRATED CIRCUIT ELEMENTS

Complete the solution for Example 3.3 in Sec. 3.3.

Consider the device of Fig. 3. 20.
(a) Complete the following table:

Input Output logic values
voltage values (O = false, 1 = true)

S1 S2 S3 SA SB

L L L
L L H
L H L
L H H
H L L
H L H
H H L
H H H

(b) Find the logic equations for SA and SB as functions of S l, S2, and S3.

S l.L u----L.11 A

S2.H __ ___. B

z---

Figure 3.20 Device for Problem 3 .4.

SB.H

Y=A·B+C

Z =(A+ B) • C

3.5. Repeat Problem 3.4 for the device of Fig. 3.21.

Sl.H

S2.H

S3.H

~ A

B

~ C

y
,- -

z

Figure 3.21 Device for Problem 3 .5.

SA.L

SB.H

Y=A·B+C
Z =(A+ B) • C

3.6. Repeat Problem 3.4 for the device of Fig. 3.22.

Sl.H

S2.L

S3.H

-

,o A

B

:c

y ::

z

Figure 3.22 Device for Problem 3.6.

SA.H

SB.H

Y=A·B+C

Z =(A+ B) • C

3. 7. Given the following logic table and that the logic/voltage assignment is A active-low, B
active-high, C active-high, and Z active-low, detennine the corresponding voltage table.
Arrange it in the conventional manner.

PROBLEMS

A B C z

F F F F
F F T T
F T F T
F T T F
T F F T
T F T F
T T F T
T T T T

3.8. (a) Show how a 74'00 gate can be made into an inverter.
(b) Is it a logic inverter or a voltage inverter? Explain.

79

3.9. (a) By looking into a ITL data book, find the 74'Y component corresponding to the
following logic symbol:

(b) Detennine the voltage table for it.
(c) List the eight possible logic/voltage assignments.
(d) For each of the eight assignments, determine (using the voltage and logic tables) the

logic function that this component perfonns.
(e) What logic function does it perfonn for the positive-logic convention?
(f) What logic function does it perfonn for the negative-logic convention?

3.10. Repeat Problem 3.9 for the following logic symbol:

3.11. Find voltage tables for the devices of Fig. 3.23.

~ v-
(a) (b) (c)

Figure 3.23 Devices for Problem 3. 11.

3.12. Find the logic expressions for the Z outputs in Fig. 3.24.

W.H

A.H
B.L
C.H

X.L Z.H W.Hs=>-
X.L Z.L

Y.H Y.H

(a) (b)

Figure 3.24 Devices for Problem 3.12.

(d)

Z.L

(c)

80 3/DIGITAL DESIGN WITH SMALL-SCALE INTEGRATED CIRCUIT ELEMENTS

3.13. Fill in all the intermediate signal names for the mixed-logic circuit diagram of Fig. 3.25.
Also, find a logic expression for Z.

A.H -------~

B.L

C.L

Figure 3.25 Mixed-logic circuit diagram for Problem 3. 13.

3.14. Repeat Problem 3.13 for the circuit diagram of Fig. 3.26.

Figure 3.26 Mixed-logic circuit diagram for Problem 3.14.

3.15. Repeat Problem 3.13 for the circuit diagram of Fig. 3.27.

A.L u-~..,_ ____ lJ\

B.H -----11-------<

C.H --t-----<1

D.L C>--+---------t

Figure 3.27 Mixed-logic circuit diagram for Problem 3.15.

Z.H

Z.L

PROBLEMS 81

3.16. Figure 3.28 shows a circuit based on the positive-logic convention. Fill in all the inter
mediate signal names and find a logic expression for Z. Compare with the answer to Problem
3.13.

A.H -------- •

B.H ------- ---
Z.H

D.H ______,...,~i....--

Figure 3.28 Positive-logic circuit diagram for Problem 3. 16.

3.17. Repeat Problem 3. 16 for the circuit of Fig. 3.29. Compare with the answer to Problem
3.14.

A.H --------t~
B.H

Z.H
C.H

D.H

Figure 3.29 Positive-logic circuit diagram for Problem 3. 17.

3.18. Repeat Problem 3.16 for the circuit of Fig. 3.30. Compare with the answer to Problem
3.15.

A.H _...., ____ -(_A

B.H ---'--------rvL.____.,

C.H ---+--------4.

5.H ---'-------'

Figure 3.30 Positive-logic circuit diagram for Problem 3.18.

82 3/DIGIT AL DESIGN WITH SMALL-SCALE INTEGRATED CIRCUIT ELEMENTS

3.19. Analyze each circuit diagram of Fig. 3.31 and determine the logic equation for Z based on
the positive-logic convention. Remember that in the positive-logic convention, all inverters
and inverting circles perform a logic inversion.

74'00

A.H ------------1
74'10

B.H ---+-----,

C.H ---------1

D.H _______ _.

(a)

74'27

74'00

C.H

5.u---
(b)

Figure 3.31 Circuit diagrams for Problem 3.19.

3.20. Analyze each circuit diagram of Fig. 3.32 and determine the logic equation for Z based on
the mixed-logic convention. Remember that in the mixed-logic convention, a logic NOT
occurs as a result of a ''mismatched" logic/voltage assignment.

74'00
A.H

B.H 74'10

74'04 74'10 Z.H
C.H

D.H
(a-,

74'27

A.H

74'04

B.H Z.L
74'04

C.L

D.L
(b)

Figure 3.32 Circuit diagrams for Problem 3.20.

PROBLEMS 83

3.21. Figure 3.33 shows a two-level NANO logic diagram based on the positive-logic convention.
(The number of levels is the maximum number of gates that signals must pass through.)
Find an SOP expression for Z.

A.H -----t

A..H-----r---..
B.H---------i

C.H ----~-__,,,,,

B.H ------i
C.H--------1 ---
Figure 3.33 Logic diagram for Problem 3. 21.

3.22. Implement each of the following using an optimum two-level positive-logic NANO reali
zation. In other words, only NANO gates are available for the implementation, and they
are to be used in no more than two levels. Assume that the variables and their complements
are both available for inputs.

(a) Z = AB + BC
(b) z = (A + B + C)(B + C)

(c) Z = ACD + ACD + AB + BCD

(d) Z = (B + D)(A + B)(B + C + D)

3.23. Figure 3.34 shows a two-level NOR logic diagram based on the positive-logic convention.
Find a POS expression for Z.

A.H------"'.
B.H -------
C.H ----... •--

c.H----~--
Figure 3.34 Logic diagram for Problem 3.23.

3 .. 24. Implement each of the following u~ing an optimum two-level positive-logic NOR realiza
tion. In other words. only NOR gates are available for the implementation, and they are to
be used in no more than two levels. Assume that the variables and their complements are
both available for inputs.

(a) Z = (A + B)(B + C)

84 3/DIGITAL DESIGN WITH SMALL-SCALE INTEGRATED CIRCUIT ELEMENTS

(b) Z ABC+ AC

(c) Z = (A + C + D)(A + C + D)(A + B)(B + C + D)

(d) z = BD + AB + BCD

3.25. Implement the following logic equations for Z, basing the implementations on the positive
logic convention. Assume that only the following gates are available: 74 '00, 74 '02, 74 '04,
74' 10. and 74'27. Also, for each implementation use a minimum number of gates and draw
the circuit diagram with all gates labeled.

(a) Z = AB + C + ABD for Z.H. The inputs are A.H, B.H, C.H, and D.L.

(b) Z = (A + D)(A + C + D)(C + D) for Z.H. The inputs are A.H, B.L, C.H. and
D.H.

(c) Z = AB + CD + CD for Z.H. The inputs are A.L, B.H, C.H, and D.~.
- -

(d) Z = (A + D)(B + C)(B + C) for Z.H. The inputs are A.H, B.L, C.H, D.H, and
D.L.

(e) Z = AC + BD + BD for Z.L. The inputs are A.L, B.L, C.H, and D.H.

(f) Z = AC + BD + CD for Z.L. The inputs are A.L, B.L, C.H, and D.L.

3.26. Repeat Problem 3 .25 for implementations based on the mixed-logic convention.

3.27. Implement the following logic equations for Z, basing the implementations on the positive
logic convention. Draw the circuit diagrams with all gates labeled. Select any gates from
a TTL data book, and the 74'86 Exclusive OR gate in particular. But, minimize the number
of IC packages used. In other words, try to use the same types of gates when possible.

(a) Z = AB + A 0 C + AC for Z.L. The inputs are A.H, A.L, B.L, C.H, and C.L.

(b) Z = A(±) B + B 0 C + CD for Z.H. The inputs are A.H, B.H, C.L, and D.H.

(c) Z = AB + B (±) D for Z.H. The inputs are A.H, B.L, C.L, and D.H.

3.28. Repeat Problem 3.27 for the mixed-logic convention.

3.29. Figure 3.35 shows a parity detector for detecting the parity of an input 4-bit number ABCD.
The detector output PARITY is 0 (PARITY = 0) if ABCD has even parity, which means : •·
that ABCD contains an even number of ls. And the output PARITY is l (PARITY = 1)
if ABCD has odd parity, which means that it contains an odd number of ls. For example,
for ABCD = 0ll0, PARITY = 0. And for ABCD = 1101, PARITY = 1.

- A -

. B -

- C

- D

Parity detector

PARITY --

Figure 3.35 Parity detector for Problem
3.29.

(a) Make a truth table for the parity detector, with input columns of ABCD and an output
column of PARITY.

(b) Determine an MSOP expression for PARITY.
(c) For inputs of A.H, B.H, C.H, and D.H, implement the MSOP logic equation for

· PARITY.H using the positive-logic convention.

PROBLEMS 85

(d) Repeat part (c) for the mixed-logic convention.

3.30. A combinational circuit with inputs A, B, C, and D and an output Z is to be designed such
that Z = 1 if and only if three or more of the inputs are 1 .
(a) Make a truth table for the circuit.
(b) Detennine an MSOP expression for Z.
(c) For inputs of A.H. B.H, C.H, and D.H, implement the MSOP logic equation for Z.H

using the positive-logic convention.
(d) Repeat part (c) for the mixed-logic convention.

3.31. Figure 3.36 shows an excess-3 code generator and table. An excess-3 code is a binary code
for decimal numbers in which each decimal digit is represented by its binary equivalent
plus 3. For example. the excess-3 code for the digit O is 0011, and for the digit 9 it is
1100. A characteristic of the excess-3 code is that every coded digit has at least one 1,
which is important in some applications.
(a) Complete the truth table for the circuit, using don't cares for invalid inputs.
(b) Determine MSOP expressions for the four outputs X3 , X2 , X1, and Xo-
(c) Implement the MSOP logic equations for the four outputs, basing the implementations

on the positive-logic convention. Assume that all inputs and outputs are active-high.
(d) Repeat part (c) for the mixed-logic convention, again assuming that all inputs and

outputs are active-high.

Binary-coded
decimal digit

--

--
--

B3

B2

B1

Bo

X3
. -

X2 -

Xi -

Xo
. -

B3 B2 B1 Bo
0 0 0 0
0 0 0

Excess-3
0 0 1 code
0 0

Figure 3.36 Excess-3 code generator and table for Problem 3.31.

X3 X2 X1 Xo
0 0 I

0 0

3.32. A large room has three entrances, each with a light switch that controls an overhead light.
A combinational circuit is to be designed with inputs A, B, and C from the individual light
switches and an output LIGHT for controlling the energization of the overhead light. When
all three switches are down (i.e., A = 0, B = 0, and C = 0), then the light is to be off
(LIGHT = 0). Also, a change in position of any switch will change the state of the light.
Assume that only one switch can be changed at a time.
(a) Draw a block diagram of this circuit
(b) Make a truth table for the circuit.
(c) Detennine an MSOP expression for LIGHT. ---
(d) Implement the MSOP logic equation for LIGHT .H, basing the implementation on the

positive-logic convention. Assume that the inputs are active-high.
(e) Repeat part (d) for the mixed-logic convention, again assuming that all inputs are active

high.

3.33. The input to the combinational circuit of Fig. 3.37 is a 4-bit binary number 8 3B2B18 0 • The
function of this circuit is to convert this binary number into the corresponding negative
number N3N2N 1N0 in Zs-complement form.
(a) Complete the truth table for the circuit.
(b) Determine MSOP expressions for the four outputs N3, N2 , N1, and N0 •

86 3/DIGITAL DESIGN WITH SMALL-SCALE INTEGRATED CIRCUIT ELEMENTS

(c) Implement the MSOP logic equations for the four outputs, basing the implementations
on the positive-logic convention. Assume that all inputs and outputs are active-high.

(d) Repeat part (c) for the mixed-logic convention, again assuming that all inputs and
outputs are active-high.

- B3 N3 -. .
B3 B2 B1 Bo N3 N2 N1 No

- B2 Nz -- - 0 0 0 0 0 0 0 0
0 0 0 I I I I
0 0 0 0 .

B1 N1 -- .

- Bo No -. - 0 0 0

Figure 3.37 Combinational circuit and table for Problem 3.33.

3.34. What are the advantages and disadvantages of synthesis based on the positive-logic con
vention?

3.35. What are the advantages and disadvantages of synthesis based on the mixed-logic conven
tion?

' 4.1 INTRODUCTION

Chapter 4

Combinational MSI Circuit
Elements

A number of logic functions are used in the design of a typical digital circuit. The circuit
elements that realize these logic functions are classified as one of two types: combina
tional or sequential. For a combinational circuit element, the output values at any time
are functions only of a combination of the present input values. In contrast, for a se
quential circuit element, the output values are functions not only of the present inputs
but also of the conditions of some internal states of the circuit element. And the conditions
of these states are, in tum, functions of previous inputs. Consequently, for a sequential
circuit element the outputs depend on both the present and past values of the inputs.
Because past inputs affect present outputs, a sequential circuit element must have some
type of memory capability.

In this and the next two chapters we will study the designs and applications of
circuit elements that realize some of the commonly used logic functions. These circuit
elements form the building blocks used in the design of a digital circuit, as will be
discussed in Chapter 7. In the present chapter, combinational MSI (medium-scale inte
gration) circuits will be considered. In Chapter 5 sequential MSI circuit elements will
be considered; and in Chapter 6 we complete the study of digital building blocks by
considering some of the commonly used LSI (large-scale integration) circuit elements.

In all the following sections of this chapter, the presentation fonnat for each logic
function is consistent. First, a functional description is given. Then, there is the design
and realization of the logic function based on the SSI design methods of the preceding
chapters. Next, commercially available MSI realizations are described. Finally, some
applications of these MSI circuit elements are presented.

87

88 4/COMBINATIONAL MSI CIRCUIT ELEMENTS

4.2 BINARY ADDER AND SUBTRACTOR

4.2.1 Half Adder and Full Adder

Binary addition was discussed in Chapter 1. As should be recalled, the binary addition
of two bits (Ai and B;) is represented by the addition table shown in Fig. 4. l(a). Here,
0 and l represent the binary bits zero and one. If we associate the binary bit O with the ~.i. __ ,;

logic value false, and the binary bit 1 with the logic value true, then the table of Fig.
4.1 (a) is also the truth table for a binary addition circuit element. Using the methods of
Chapter 2, we can determine the logic expressions for SUMi and CARRY;+ 1, and for-
mulate the corresponding circuit. as shown in Fig. 4.1 (b). This circuit is called a half
adder. (The upper graphic symbol represents Exclusive OR.)

The half-adder circuit does not suffice for general additions. To see this, consider
the following addition of two multibit binary numbers:

carry O 0
A O I I 0
B + 0 0 I

sum 0 0

As is evident, when the binary numbers to be added are multibit, then we need to consider
the carry that is generated from the preceding stage of addition. Consequently, except

A; Bi SUMi CARRYi+l

0 0 0 0
0 1 0

0 0
0

(a) Addition table

SUMi = Ai Bi+ Ai Bi= Ai(£) Bi

CARRYi+ 1 = AiBi

CARRYi+l

(b) Half-adder circuit Figure 4.1 Half adder.

4.2 BINARY ADDER AND SUBTRACTOR 89

for the addition of the least significant bits. a half adder is not adequate. What is needed
is a full adder.

The functional block diagram and the truth table describing a full adder (FA) are
given in Figs. 4.2(a) and (b), respectively. The inputs to the full adder are the current
bits of the numbers to be added (Ai and B;) and the carry-in (CJ from the preceding
addition stage. The outputs are the sum (S;) and the carry-out (C;+ 1) generated from the
current stage of addition. This carry-out is the carry-in for the next stage.

Full adder

Ai Si

Bi

Ci Ci+l

(a) Functional block 4iagram

i
io l

00 0 1

01 l 0

11 0 1

10· I 0

SUM = ~ Bici + Ai Bli + A)ili + Ai Bici
= Aj(°BiCi + BiCi) + A/Bli + BiCi)
= Ai(Bi EB Ci)+ Ai(Bi EB C)

= Ai EB Bi EB C1

(c) Design

Full adder

Half adder- Half adder

(d) Realization

Figure 4.2 Full adder.

A;
0
0
0
0

Bi Ci Si Ci+ l

0 0 0 0
0 I 0

0 1 0
I I 0 1
0 0 0
0 I 0

0 0

(b) Truth table

ci ... 1 = AiBi + A;Bici + AiBici
= AiBi + Cj(AiBi + AiBi)
= AiBi + Ci(A1 EB Bi)

SUM
·/

90 4/COMBINATIONAL MSI CIRCUIT ELEMENTS

Using the methods of Chapters 2 and 3 we can design and realize a full adder, as
shown in Figs. 4.2(c) and (d). Note that the groupings of the ls in the K-map for C;+ 1

do not produce the minimum SOP expression for Ci+ 1, which is

c.+ 1 = A.B. + A-C- + B.c. I I I l I l I

This expression would result in the minimum amount of hardware used if Ci+ 1 was the
only output. However, since Si is also an output, less overall hardware is required if we
use the indicated "nonminimum" expression for C;+ 1 and allow C;+ 1 to share with S;
the common tenn A; EBB,. Consequently, with some clever maneuvering, we can realize
a full adder with two half adders plus a single OR gate, as shown in Fig. 4.2(d).

4.2.2 Parallel Adder

Full adders can be connected together to perform addition in parallel of two multibit
binary numbers. Shown in Fig. 4.3 are four full adders cascaded to fonn a 4-bit parallel
adder. With it, two 4-bit numbers, inputted at A and B, can be added in parallel to
produce a 4-bit sum S and a carry-out C4 • Note that the carry-in C0 of Stage O must be
connected to "O'' for the 4-bit adder to function properly. Alternatively, a half adder
could be used for this stage. In general, an N-bit parallel adder can be realized by
cascading N full adders in this manner.

If all the inputs are simultaneously applied to a physical parallel adder, the correct
sum bits and carry-out bit do not appear simultaneously, but at a time that may be tens
of nanoseconds later. The cause for the delay is the inherent propagation delay that every
real digital element has. (Propagation delay .is considered in Sec. 4.8.3.) For the parallel
adder configuration of Fig. 4.3, the overall delay is aggravated by the cascade arrange
ment of the full adders. Note that, except for Stage 0, each carry-in is the carry-out of
the preceding stage, and so is not stable until the preceding stage produces a stable carry
out output. Specifically, the carry-in for Stage 1 is not stable until Stage O produces a
stable output at C 1• Similarly the carry-in at Stage 2 is not stable until Stage I produces
a stable output at C2 , and so forth. As a result, the stage outputs become stable succes
sively from right to left. And, in a manner very much as in performing binary addition
manually, a carry ''ripples'' down the chain of full adders. For this reason, this type of
parallel adder is commonly called a ripple adder.

r-- ---- ------- ---- ________ " ___ -------- ---- ---7
I A3 B3 A2 B2 A1 B1 Ao Bo
I I
I "' ' , , , :- , r ' ·.-. , , , r ~ , ' I
I......-"'--- ------ ---- -· I

_IJ,,,,.-__,c_,4 Stage 3 _ C3 Stage 2 _ Cz Stage)l _ Ci Stage O ___ co I
- I FA - FA - FA.~-- . FA . - 1 0

I '--.------' ._ ___ .--_, ___ ,__, -----....-- I
I I
I - .,-, - --· I
I · ·- - .. • .' i I
L_ ____ S3 ________ S2 _______ ,: !1 _________ So ___ _j

,.
" ', 1,

Figure 4.3 4-bit parallel adder.

4.2 BINARY ADDER AND SUBTRACTOR

4.2.3 MSI Parallel Adders

91

Since binary addition is an important function in digital design, integrated-circuit man
ufacturers produce multibit parallel adders in the form of MSI chips. Two examples are
the 74'83 and the 74'283. Functionally, both perform, the same function as the 4-bit
parallel adder described in the last section. In other words, each adds two 4-bit binary
numbers with a carry-in, and produces a 4-bit sum and a carry-out. Additionally, both
of these adders feature look-ahead circuitry to eliminate the relatively slow rippling effect
of the carry bits of the ripple adder. Carry look-ahead circuitry is discussed in more
detail in Chapter 6.

The voltage table for the 74'283 is .shown in Fig. 4.4(a). Recall that a voltage
table defines the physical behavior of a digital device. It shows how the device really

Ai Bi Ci Si Ci+ l

L L L L L
L L H H L
L H L H L
L H H L H
H L L H L
H L H L H
H H L L H
H H H H H

(a) Voltage table

74'283 74'283
4..,

A3-Ao /

4
ArAo

S3-So
4/
/ S3-So

4..,
B3-Bo /

4
B3-Bo

C4 C4

Co Co

(b) Active-high view (c) Active-low view

}'4 /
:14 /'4

A7-A4 B7-B4 ArAo

,~ ', ,.
A3-Ao B3-Bo ArAo

- cout
C4 74'283 Co

~

C4 74'283 - ~

S3-So S3-So

S7-S4 S3-So

/"4 }'4 ,. ,,

(d) An 8-bit adder constructed from two 74'283 adders

Figure 4.4 74'283 4-bit parallel adder.

4

v4
/

B3-Bo

, ..

B3-Bo

Co - cin
~

92 4/COMBINATIONAL MSI CIRCUIT ELEMENTS

works. In contrast, the logic operations that the device performs depend on the assignment
of the voltage representation to the logic values. Due to the symmetry of the binary add
function, the 74 '283 can function as a 4-bit binary adder for two different voltage as
signments. The functional block diagram for the active-high view is shown in Fig. 4.4(b),
and that for the active-low view is shown in Fig. 4.4(c).

Figure 4.4 introduces a commonly used shorthand notation:

is equivalent to

---1A3

A2
---Ai

---Ao

Often, it is convenient to group a set of related signals. Notationally, a slash indicates
that a line represents more than one signal. And, the number associated with the slash
indicates the number of signals.

The most common view of the 74'283 is the active-high view shown in Fig. 4.4(b).
If, however, most of the signals that require the use of the adder are active-low, then
the active-low view should be used. Forcing the active-high view in this case requires
additional inverters. By mapping the voltage table of Fig. 4.4(a) into the respective logic
tables, as done in Chapter 3, we can see that both views result in the binary addition
function. (See Problem 4.1.)

For an illustration, we will use the active-low view of a 74'283 adder and show
the voltage-level representations for all signals for the addition of 9 + 3 with a carry
in of 1. The sum is 13, of course. And, the carry-out is O because no more than four
bits are required for the sum. So, for the active-low view, the 74'283 will have LLHL
at the SUM outputs, representing the 13, and H at the C4 output, representing the 0.
Following is a summary of the input and output signals.

decimal
binary
74'283 voltage level

A

9
1001

LHHL

B

3
0011

HHLL
1
L

SUM

13
1101

LLHL

0
0
H

Two 4-bit 74'283 (or 74'83) adders can be connected in cascade to produce an
8-bit parallel adder, as shown in Fig. 4.4(d). In general, N 4-bit adders can be cascaded
to produce a parallel adder that can add binary numbers of up to 4 x N bits each.

4.2.4 Binary Subtracter

The functional block diagram and the truth table for a full subtractor (FS) are given in
Figs. 4.5(a) and (b), respectively. Analogous to a full adder. the inputs to the full
subtractor are the current bits of the minuend (M;), the subtrahend (S;), and the borrow
in (Bi} from the preceding subtraction stage. The outputs are the current difference bit
(D;) and the borrow-out (Bi+ 1) generated by the current subtraction stage. Full subtractors
can also be cascaded for the subtraction in parallel of two multibit binary numbers, as
shown in Fig. 4.5(c).

4.2 BINARY ADDER AND SUBTRACTOR 93

L
L
L
L
H
H
H
H

Mi Si Bi Di Bi+ 1

Mi
Di

0 0 0 0 0
0 0 1 1

Si
Bi+ l

Bi

0 1 0 1
0 1 0

0 0 1 0
0 1 0 0

0 0 0

(a) Functional block diagram

(b) Truth table

r-------------------- ---- -------- ---- --,
I MN SN 1r M1 •r S1 ,i. Mo ,i. So I
I ~-----~ ~-----....._ I

BN + 1 Stage N BN - 82 Stage l ~ Bi Stage O B.o I 0
FS FS FS ~ I

I
I

DN D1 D I
'--·--·--·- ----------------- -------------'--~---_J

·~ ,I,

(c) (N + I)•bit parallel subtractor

Figure 4.5 Binary subtractor.

Binary subtractors are commercially available in the form of MSI circuit elements.
One example is, interestingly enough, the 74'283. With a change in voltage assignment
from that of Fig. 4.4(b) or (c), it can be made to subtract instead of add. In fact, as
shown in Figs. 4.6(a) and (b), two additional views, both realizing 4-bit binary subtrac
tors, for the 74'283 are possible. Consider the 74'283 for the voltage assignment of Fig.
4.6(a). For the voltage table for stage i of the 74'283 shown in Fig. 4.4(a), we obtain
the following logic table:

VOLTAGE TABLE

L
L
H
H
L

.L
H
H

L
H
L
H
L
H
L
H

L
H
H
L
H
L
L
H

L
L
L
H
L
H
H
H

~

0
0
0
0

LOGIC TABLE

0
0

l
0
0

1
0
l
0
1
0
1
0

D; Bi+I

0

l
0
l
0
0

l
0
l
0
0
0

rearrange

0
0
0
0

LOGIC TABLE

0
0
l
1
0
0

0
l
0
l
0
1
0
1

0

l
0
l
0
0

0

1
0
0
0

We see from the second logic table that the 74'283 realizes a 4-bit binary subtractor for
an assignment of an active-high minuend and difference, and an active-low subtrahend,
borrow-in, and borrow-out. Consider what needs to be added for the 4-bit subtractor to
have an active-high minuend and subtrahend. (See Problem 4.3.) Similarly, a proof can
be derived for the voltage assignment shown in Fig. 4.6(b). (See Problem 4.2.)

94 4/COMBINATIONAL MSI CIRCUIT ELEMENTS

74'283

4
MrMo 4

DrDo

4
S3-So

B4
Bo

(a) Active-high minuend and difference

74'283

4,..
: M3-Mo /

D3-Do ~
4.,,
/

4.,,
S3-So /

B4
Bo

(b) Active-low minuend and difference Figure 4.6 74'283 binary subtractor.

4.3 MAGNITUDE COMPARATOR

A magnitude comparator is a combinational circuit element that produces outputs that
are functions of the relative magnitudes of two inputted binary numbers. A functional
block diagram for a 2-bit magnitude comparator is shown in Fig. 4. 7(a). For this com
parator the inputs are two 2-bit numbers A and B. The outputs are signals indicating
whether the binary number A is greater than B, equal to B, or less than B. The functional
description of the 2-bit comparator, in the form of a truth table, is given in Fig. 4.7(b).
As shown, the signal (A = B) is true when A and B are both equal to 00, 01, 10, or
I 1. Otherwise, A is either less than B, as shown in rows 2, 3, 4, 7, 8, and 12 of the
truth table; or A is greater than B, as shown in rows 5, 9, IO, 13, 14, and 15.

With this truth table, we can use the methods of Chapters 2 and 3 to design and
realize the 2-bit comparator, as shown in Figs. 4.7(c) and (d). Note that we need to
implement only two out of the three outputs directly since we can generate the third
output more economically by using the fact that it is true only when both other outputs
are false. So, we can generate one output indirectly by using one of the following
equations:

or

(A< B) = (A> B) · (A = B)

(A = B) = (A > B) · (A < B)

(A > B) - (A = B) · (A < B)

A1 Ao B1 Bo (A> B) (A= B) (A<B)

0 0 0 0 0 1
0 0 0 1 0 0

Magnitude comparator 0 0 1 0 0 0
0 0 1 1 0 0

(A> B) 0 I 0 0 1 0
0 I 0 I 0 1
0 1 1 0 0 0

(A= B) 0 1 1 1 0 0
1 0 0 0 l 0

(A< B)
I 0 0 1 1 0
I 0 1 0 0 1
1 0 I 1 0 0

(a) Functional block diagram 1 I 0 0 1 0
1 I 0 I 1 0
1 I 1 0 1 0
I I 1 I 0 1

(b) Truth table.

A1
B Ao

00 01 11 10 1B
0

00 0

Bo
00 01 11 10

00 G) 0 0 0

A1

B1 Ao 00 01 11 10 Bo
00 0 0 0 0

01 0 0 01 0 G) 0 0 01

11 0 0 11 0 0 0 0 11

IO 0 0 10 0 0 0 G) 10

(A> B) = A 1 B1 + A0 B1 B0 (A = B) = A1 A0 B1 B0 + A1 A0 B1 B0 (A < B) = A1 B1 +

A1 Ao Bo+ AoB1 Bo + A1 A0B0 + A1 AoB1 B0 + A 1 A0 B1 B0

(c) Design

(d) Realization

Figure 4. 7 2-bit magnitude comparator.

0
1
I
1
0
0
1
1

0
0
0
1

0
0
0
0

95

96 4/COMBINATIONAL MSI CIRCUIT ELEMENTS

In Fig. 4. 7(d) the signal (A = B) is generated indirectly. Of course, this design can be
generalized for the construction of a magnitude comparator of more than 2 bits. But, the
design becomes more and more unwieldy as the number of inputs increases.

Four-bit magnitude comparators are commercially available as MSI circuit ele
ments. An example of such a device is the 7 4' 85, which has the block diagram
and voltage table shown in Figs. 4.8(a) and (b), respectively. In addition to the inputs
and outputs considered above, the 74'85 also has the following cascading inputs:

74'85

4/
A3-Ao /

(A> B)
4/
/ B3-Bo

(A> B).IN
(A= B)

(A= B).IN
(A< B)'

(A< B).IN

(a) Functional block diagram

Comparing inputs Cascading inputs

A3, B3 A2, B2 A1,B1 Ao, Bo (A> B).IN (A < B).IN (A= B).IN

A3 >B3 X X X X X X

A3 <B3 X X X X X X

A3 B3 A2> B2 X X X X X

A3 = B3 A2 <B2 X X X X X

A3 = B3 A2 = B2 A1 > B1 X X X X

A3 = B3 A2 = B2 A1 <B1 X X X X

A3 = B3 A2 = B2 A1 = B1 Ao>Bo X X X

A3 = B3 A2 = B2 A1 = B1 Ao<Bo X X X

A3 = B3 A2 = B2 A1 = B1 Ao= Bo H L L

A3 = B3 A2 = B2 A1 = B1 Ao= Bo L H L

A3 = B3 A2 = B2 A1 = B1 Ao= Bo X X H

A3 = B3 A2 = B2 A1 B1 Ao= Bo H H L

A3 = B3 A2 = B2 A1 = B1 Ao= Bo L L L

(b) Voltage table

4 / 4 I/ 4 v 4V
,I / / ,I

A7-A4 B7-B4 ArAo B3-Bo ,, ', .. ',
A3-,¼ B3-Bo A3-Ao B3-Bo

- (A> B)
(A> B) (A> B). IN (A>B) - (A> B).IN

- (A= B)
(A= B) 74'85 (A= B). IN

. (A= B) 74'85 (A = B).IN -
- (A< B)

(A <B) (A< B). IN
.

(A<B) (A< B).IN -

(c) 8-bit magnitude comparator

Figure 4.8 74'85 magnitude comparator.

Outputs

(A>B) (A< B) (A= B)

H

L

H

L

H

L

H

L

H

L

L
L

H

_(A> B).IN
~

_ (A= B).IN
-

_(A< B).IN
-

L

H

L

H

L

H

L

H

L

H

L
L

H

L

L
L

L

L

L

L

L

L

L

H

L

L

F(L)

T(H)

F(L)

4.4 DECODER 97

(A> B).IN, (A = B).IN, and (A< B).IN. These inputs make it easy to cascade 74'85s
to produce an N-bit magnitude comparator, where N is a multiple of 4. An 8-bit com
parator is shown in Fig. 4.8(c). Note for this connection that if the most significant 4
bits of A have a value greater than those of B, then the signal (A > B) is true regardless
of the cascading inputs from the comparator of the preceding stage. Conversely, if the
value of the most significant 4 bits of A is less than that of B, then the signal (A < B)
is true regardless of the inputs from the preceding stage. When, however, these two
values are equal. then the comparator outputs depend on the cascading inputs from the
comparator of the preceding stage. Again, in general, 4-bit magnitude comparators can
be cascaded in this manner to produce a magnitude comparator of any reasonable length.
Note that for the least significant stage of a chain of 74'85 comparators, the (A = B).IN
input must be connected to true, and the (A > B).IN and (A < B).IN inputs must be
connected to false.

4.4 DECODER

A binary code of N bits can encode up to 2N different elements of information. So~ a
2-bit code can encode up to four elements. A 3-bit code can encode up to eight elements,
and so forth. In the design of a digital circuit, it is often necessary to use a decoding
function. A decoder is a combinational circuit element that will decode an N-bit code.
It has up to 2N output lines, and activates the output signals as a function of the N-bit
code applied at the inputs.

Figure 4. 9 shows a 3-to-8 decoder. Its functional block diagram is shown in Fig.
4.9(a), and its functional description, in the form of a truth table, is given in Fig. 4.9(b).
The input to the decoder is a 3-bit code at the A2, A1, and A0 inputs. Since a 3-bit code
can encode up to eight different elements of information, this decoder has eight outputs,
each of which represents one of the eight different elements. For example, if the input
code is 000 (i.e., A2 = false, A 1 = false, A0 = false), then the Z0 output is activated
and the other outputs are all false. If the input code is 001, then only the Z 1 output is
activated, and so forth. From the truth table of Fig. 4.9(b), the logic equations for the
eight outputs can be determined in a straightforward manner. The result is the circuit
shown in Fig. 4. 9(c).

Decoders are commercially available as MSI circuit elements in the form of 2-to-
4, 3-to-8, and 4-to-10 decoders. An example of a commercially available MSI 3-to-8
decoder is the 74' 138 shown in Fig. 4.10. As shown in the functional block diagram of
Fig. 4. l0(a), the three inputs A2, A1, and Ao are active-high and the eight outputs are
active-low. Furthermore, there are two active-low enable inputs E1 and E2, and an active
high enable input E3• As shown in the voltage table of Fig. 4. lO(b), the 74' 138 functions
as a 3-to-8 decoder only if all three enable inputs are true: E 1 = L, E2 = L, and E3 =
H. Otherwise all eight outputs are false (H).

The function of the enable inputs is to permit convenient expansion. Figure_s 4. lO(c)
and (d) show a 4-to-16 decoder, with an active-low enable, constructed from two 74' 138
decoders without any additional logic. Note that the 74' 138 decoder on the top is enabled
only if A3 is 0, and the bottom 74' 138 decoder is enabled only if A3 is 1. Consequently,
each different element of the 4-bit code activates a unique output. In general, a decoder

98

3-to-8 decoder

Zo

A2 Z1
Z2

23
A1 24

Zs

Ao 26
z,

(a) Functional block
diagram

Ao

Figure 4.9 3-to-8 decoder.

7 4' 138 decoder

A2 Zo:
A1 Z1::

Ao Z2:;
23:

24:

: E1 Zs:

: E2 26:

E3 z,:

(a) Functional block diagram

Figure 4.10 7 4 '-13 8 decoder.

4/COMBINATIONAL MSI CIRCUIT ELEMENTS

A2 A1 Ao Zo Z1 Z2 23 24 Zs 26 Z1

0 0 0 1 0 0 0 0 0 0 0
0 0 l 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0

(b) Truth table

,__ ___ zo

.,__ __ zs

(c) Design and realization

Inputs Outputs

E1 E2 E3 A2 A1 Ao Zo Z1 Z2 23 24 Zs 26 Z1

H X X X X X H H H H H H H H
X H X X X X H H H H H H H H
X X L X X X H H H H H H H H
L L H L L L L H H H H H H H
L L H L L H H L H H H H H H
L L H L H L H H L H H H H H
L L H L H H H H H L H H H H
L L H H L L H H H H L H H H
L L H H L H H H H H H L H H
L L H H H L H H H H H H L H
L L H H H H H H H H H H H L

(b) Voltage table

''

'-i'
' !

4.4 DECODER

4-to-16 decoder

4/
,I'

--~lllEN

(c) Functional block diagram

Figure 4.10 (cont.)

A3

A2

A1

Ao

C EN

99

74'138

A2 Zo::
Zo -...
21

A1 21: '"\

22 ~
Ao 22:

23 ::-
23 ~

24 ::
24 ,

~ E1 Zs:
Zs ,

: E2 26:
26 ,

T.H- E3 27 ~
27 --

74'138

A2 Zo
... Zs

""\

- z ,-

A1 21 ~90

22:
210

Ao ~

211 r-

23: ~

212 ~
24: ""\

: E1 Zs::
Z13~

214=
T.LO--O E2 26: ...,

E3 27::
21s-.

...:

(d) Realization of a 4-to-16 decoder

of a larger size can be constructed by using decoders of a smaller size along with some
additional circuitry. Is such circuitry needed to construct a 5-to-32 decoder from four
74' 138 decoders? (See Problem 4.8.)

4.4.1 BCD-to-7-Segment Decoder

Outputs of a digital circuit are often displayed as decimal. digits. The most common and
simplest device for displaying a decimal digit is a 7-segment display, as shown in Fig.
4.1 l(a). Each of the segments is an LED (light-emitting diode) that will glow when a
true signal is applied to it. By a proper selection of the segments to be lit, the decimal
digits can be displayed as shown in Fig. 4.1 l(a).

Seven-segment displays are commercially available in two forms: common anode
and common cathode. The common-anode display, with all the LED anodes connected
together, is active-low. And, the common-cathode display, with all the LED cathodes
connected together, is active-high. ·

A BCD-to-7-segment decoder is a combinational circuit element that converts a
BCD number into the signals required for the display of the value of that number on a
7-segment display. The functional block diagram for such a decoder is shown in Fig.
4.1 l(b). The seven decoder outputs (a, b, c, d, e, f, g) correspond to the seven segments
with the same labels of the 7-segment display. The functional description of the decoder,

100

a

r/Jb //
e/ /c / /
T -

D

0
0
0
0

0
0
0
0
1
1
1
1

1
1
1
1

4/COMBINATIONAL MSI CIRCUIT ELEMENTS

I I I I I;-,-
/ ;- 7 - - ;- _ I _I _I

C B

0 0
0 0
0 I
0 I
I 0
l 0
I 1
I I

0 0
0 0
0 1
0 1

1 0
1 0
1 1
1 I

(a) A 7--segment display

BCD-to-7-
segment decoder

D a
b

C C

d
B e

f
A g

(b) Functional block diagram

A a b C d e

0 I I I I 1
1 0 I I 0 0
0 I I 0 I I
1 I I 1 I 0
0 0 I I 0 0
I I 0 I 1 0
0 1 0 1 1 1
I l 1 l 0 0

0 1 l l I l
1 1 I 1 I 0
0 X X X X X
I X X X X X
0 X X X X X
1 X X X X X
0 X X X X X
I X X X X X

f g

I 0
0 0
0 l
0 1

1 1
I 1
1 1
0 0

1 l
1 1
X X
X X
X X
X X
X X
X X

(c) Truth table

Figure 4.11 BCD-to-7-segment decoder.

in the form of a truth table, is shown in Fig. 4. ll(c). Observe from the first row of the
truth table that for the display of the digit 0, segments a, b, c, d, e, and f have to be lit,
as is evident from Fig. 4.1 l(a). For the display of the digit 1, the second row specifies
that segments b and c have to be lit, and so forth. From another point of view, this truth
table specifies that the output corresponding to segment a has to be true for the displays
of digits 0, 2, 3, 5, 6, 7, 8, and 9. Also, the output corresponding to segment b has to
be true for digits 0, 1, 2, 3, 4, 7, 8, and 9, and so forth. Note that since binary numbers
1010 through 1111 are not valid BCD representations, the outputs for these inputs are
designated as don't cares in the truth table. The logic equations for the seven outputs
can be determined in a straightforward manner. (See Problem 4.10.)

BCD-to-7-segment decoders are commercially available with either active-low or
active-high outputs. Examples are the 74'47 (active-low) and the 74'48 (active-high).
The functional block diagrams and voltage tables of both are shown in Figs. 4.12(a) and
(b). Note from the voltage tables of Fig. 4.12(b) that the inverse in the output levels is

4.4 DECODER

74'47 74'48

D a D a
C b C b
B C B C

A d A d
e e
f f

LT g LT g

RBI BI/RBO RBI B1/RB0

(a) Functional block diagrams for the74'47 and 74'48

n I -, -, I I ,- I -I 1-1 n I I ,- I
u I I_ _1 I _I I_I I U I I_ _J _ I_

0 I 2 3 4 5 6 7 8 9 10 l 112131415

Numerical designations - resultant displays

-Inputs Outputs----. -Inputs

Decimal Decimal
or LT RBI DC B A B1/RBO a b c d e f g or LT RBI D C B A BI/RBO

function function
0 H H L L L L H LLLLLLH 0 H H L L L L H
1 H X LL L H H HLLHHHH l H X LL L H H
2 H X LL H L H LLHLLHL 2 H X LLHL H
3 H X LL H H H LLLLHHL 3 H X LL H H H
4 H X L H LL H HLLHHLL 4 H X L H LL H
s H X L H L H H LHLLHLL 5 H X LHLH H
6 H X LHHL H HHLLLLL 6 H X LHHL H
7 H X LHHH H LLLHHHH 7 H X LHHH H
8 H X H LL L H L L L L L L L 8 H X H L L L H
9 H X H LL H H LLLHHLL 9 H X HLLH H

10 H X H L H L H HHHLLHL 10 H X H L H L H
11 H X HLHH H HHLLHHL 11 H X HLHH H
12 H X H H LL H HLHHHLL 12 H X H H LL H
13 H X HHLH H LHHLHLL 13 H X HHLH H
14 H X HHHL H H H H L L L L 14 H X H H H L H
15 H X HHHH H HHHHHHH 15 H X HHHH H
BI X X xxxx L HHHHHHH BI X X xxxx L

RBI H L L L L L L HHHHHHH RBI H L L L L L L
LT L X xxxx H L L L L L L L LT L X xxxx H

74'47 74'48

(b) Displays and voltage tables for the 74'47 and 74'48

To 7-segment
display 1 To display 2 To display 3

abcdefgg

74'47 ~
abcdefgg

74'47 e:::
abcdefg~

74'47 c::

RBI LT DC BA RBI LT DCB A RBI LT DC BA

T.J.: F.L F.L F.L

(c) Use of RBI and RBO in a cascade of 7-segment displays

Figure 4.12 74'47 and 74'48 BCD-to-7-segment decoders.

101

Outputs----

a b c d e f g

HHHHHHL
LHHLLLL
HHLHHLH
HHHHLLH
LHHLLHH
HLHHLHH
LLHHHHH
HHHLLLL
HHHHHHH
HHHLLHH
LLLHHLH
LLHHLLH
LHLLLHH
HLLHLHH
LLLHHHH
L L L L L L L
L L L L L L L
L L L L L L L
HHHHHHH

102 4/COMBINATIONAL MSI CIRCUIT ELEMENTS

the only difference in the operation of these decoders. Also, the outputs for 1010 through
1111 are not don't cares, in contrast to those shown in Fig. 4.1 l(c). Instead, the specified
special characters will be displayed. In the display of BCD numbers, however, these
outputs should never occur unless there is an error.

Observe that these BCD-to-7-segment decoders have additional features, which are
provided by the inputs LT, RBI, and the input/output BI/RBO. The lamp test (LT) input
can be used to test the LEDs of an attached 7-segment display. As shown in the last row
of the voltage tables of Fig. 4.12(b), all segments of the display can be lit by making
LT true (L) and BI/RBO false (H) for either the 74'47 or the 74'48. Now consider the
BI/RBO input/ output for which the BI is an abbreviation for blanking input, and RBO
for ripple-blanking output. The B1/RBO input/output serves two functions. Used as an
input, as shown in row 17 of either voltage table, a true (L) applied to the B1/RBO input
will blank the display. As an output, the BI/RBO signal is used in conjunction with RBI
(ripple-blanking input) to suppress the display of leading zeros in a cascade of 7-segment
displays. As illustrated in Fig. 4.12(c), for decoder l the RBI input is connected to true
(L). Then, if the digit to be displayed is 0, the output is a blank (all outputs false) and
the RBO output is true (L), as indicated by row 18 (RBI) of the voltage tables. As a
result, the ~BI input of decoder 2 is true, and if the digit to be displayed on display 2
is 0, then its output is a blank and its RBO output is true (L), and so forth. In this
manner, all the leading zeros of the 7-segment displays will be displayed as blanks. The
first nonzero digit will cause its RBO to be false (H). Therefore, any subsequent embed
ded zeros (e.g., as in 430103) will be displayed as zeros and not blanks, as indicated by
the first row of either voltage table. How should RBI and RBO be connected if leading
zeros are desired? (See Problem 4.11.)

4.5 ENCODER

The inverse of the decoding function is the encoding function. For N different inputs,
only one of which is activated, an encoder is a combinational circuit element that gen
erates an M-bit binary code that uniquely identifies the activated input. Here, 2M > N.
An example of an 8-to-3 encoder is shown in Fig. 4.13. Note that in this definition of
an encoder, one and only one input can be activated at a time. Otherwise the circuit has

Io

l1

l2 C2

l3
C1

l4

Is Co

16

l7

(a) Functional block diagram

Figure 4.13 8-to-3 encoder.

Io
I
0
0
0
0
0
0
0

l1 l2 l3 I4
0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

Is 16 I7 C2 C1 Co
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0
0 0 0 0 l l
0 0 0 1 0 0
1 0 0 0 1
0 1 0 0
0 0 1

(b) Truth table

4.5 ENCODER 103

no meaning. In other words, this circuit does not allow the case where several inputs are
activated simultaneously or where no input is activated.

4.5.1 Priority Encoder

Encoders are available as MSI circuit elements in the form of priority encoders, which
allow the activation of several inputs simultaneously, or no input at all. An example of
an 8-to-3 priority encoder is the 74' 148 shown in Fig. 4.14. As illustrated in the functional

74'148

0 A2
1
2 A1
3

Ao

EO
7

EI GS

(a) Functional block diagram

Inputs Outputs

EI 0 1 2 3 4 5 6 7 A2 At Ao GS EO

H X X X X X X X X H H H H H
L H H H H H H H H H H H H L
L X X X X X X X L L L L L H
L X X X X X X L H L L H L H
L X X X X X L H H L H L L H
L X X X X L H H H L H H L H
L X X X L H H H H H L L L H
L X X L H H H H H H L H L H
L X L H H H H H H H H L L H
L L H H H H H H H H H H L H

(b) Voltage table

Inputs Outputs

EI 0 1 2 3 4 5 6 7 A2 A1 Ao GS EO

0 X X X X X X X X 0 0 0 0 0
l 0 0 0 0 0 0 0 0 0 0 0 0 1
1 X X X X X X X 1 I 1 1 1 0
1 X X X X X X 1 0 1 1 0 1 0
1 X X X X X 1 0 0 1 0 l 1 0
l X X X X 1 0 0 0 1 0 0 1 0
1 X X X 1 0 0 0 0 0 1 1 1 0
1 X X l 0 0 0 0 0 0 1 0 1 0
1 X 1 0 0 0 0 0 0 0 0 1 1 0
1 1 0 0 0 0 0 0 0 0 0 0 1 0

(c) Truth table.

Figure 4.14 74' 148 priority encoder.

104 4/COMBINATIONAL MSI CIRCUIT ELEMENTS

block diagram of Fig. 4. 14(a), the eight inputs (0, 1, ... , 7) and the three outputs (A2,

A1, A0) are active-low. Furthermore, there is an active-low enable input (El) and two
active-low outputs, GS and enable output (EO).

The 74' 148 functions as an encoder only when the enable input EI is true. Other
wise all outputs are false, as shown in row 1 of the truth table of Fig. 4.14(c). Note that
when more than one input is activated, the 74' 148 encodes the input with the highest
priority, with. input 7 having priority over input 6, which has priority over input 5, and
so forth. When input O is the only input activated (the last row), then the output code
generated is A2A 1A0 = 000. When no input is activated (row 2), the code generated is
also A2A1A0 == 000. In this case, the GS output is used to make the distinction. GS is
true only when at least one of the inputs is activated. The enable output EO and enable
input EI can be used to readily cascade 74' 148 priority encoders for octal expansion.
(See Problem 4.13.)

4.6 MULTIPLEXER

In the design of a digital circuit, another frequently required logic function is the selection
function. A multiplexer (MUX) is a combinational circuit element that selects data from
one of many inputs and directs it to a single output. Conceptually, the function of a
multiplexer can be illustrated by the multipositional switch of Fig. 4.15, which has a
number of input lines, but a single output line. Depending on the selection control, the
switch will connect a specific one of the inputs to the output Z. This electrical circuit
connection is the popular way of considering multiplexer action. But, as will be seen,
with a digital circuit multiplexer, there is no direct connection between any input and
the output. Despite this, though, the state of the output is the same as that of the selected
input.

The block diagram of a four-input MUX is shown in Fig. 4.16(a). As specified in
the truth table of Fig. 4.16(b), if for the selection signals S 1S0 = 00, then the output Z
is electrically connected to Io- If S1S0 = 01, then Z is electrically connected to 11, and
so forth. Note that the truth table in Fig. 4.16(b) is a condensed version of the actual
truth table, which would have six input variables (10 , 11, 12 , 13 , S1, and S0) and 26 rows.
(See Problem 4.14.) The design and realization of the four-input MUX is shown in Fig.
4.16(c).

Selection
control

z

Figure 4.15 N-input switch.

4.6 MULTIPLEXER

4-input MUX

z

(a) Functional block diagram

(c) Design and realization

Figure 4.16 Four-input multiplexer.

0 0
0 1

0

z

(b) Condensed truth table

z

105

Multiplexers are commercially available as MSI circuit elements with 2, 4, 8, and
16 inputs and with inverting and/or noninverting outputs (or active-low and active-high
outputs). An example of a commercially available eight-input MUX with inverting and
noninverting outputs is the 74' 151 shown in Fig. 4.17. As specified in the voltage table
and the logic equation, the 74' 151 functions as a multiplexer only if the enable input E
is true (L). Otherwise, the output Z is false. When the enable input E is true, then one
of the inputs (selected by the selection inputs) is electrically connected to the output Z.

Multiplexers are useful in the design of a digital circuit where the data for an input
of a device is from several sources. Using a multiplexer, we can easily control the source

106

E S2 S1

H X X
L L L
L L L
L L L
L L L
L L H
L L H
L L H
L L H
L H L
L H L
L H L
L H L
L H H
L H H
L H H
L H H

74'151

-----1 Io

------ 11 z
12

-----113 Z

14

------ 15

------ 16

----- 17
---ell E

(a) Functional block diagram

So Io l1 12 13 14 Is

X X X X X X X
L L X X X X X
L H X X X X X
H X L X X X X
H X H X X X X
L X X L X X X
L X X H X X X
H X X X L X X
H X X X H X X
L X X X X L X
L X X X X H X
H X X X X X L
H X X X X X H
L X X X X X X
L X X X X X X
H X X X X X X
H X X X X X X

(b) Voltage table

4/COMBINATIONAL MSI CIRCUIT ELEMENTS

16 l7 z z
X X H L
X X H L
X X L H
X X H L
X X L H
X X H L
X X L H
X X H L
X X L H
X X H L
X X L H
X X H L
X X L H
L X H L
H X L H
X L H L
X H L H

Z= E(S2S1S0 l 0 + 5251 S0 l 1 + S2 S1S0 l2 + 52 S1 S0 13 + S2S1S0 14 + S 2S1S0 I5
+ S2 S 150 16 + S2 S1 S0 17)

(c) Logic equation

Figure 4.17 74'151 MUX.

of the input. Figure 4.18 shows how four 4-input MUXs can be used to select one of
four 4-bit data to be processed by the device. For S 1 S0 inputs of 00, 01, 10, or 11, either
the 4-bit data A, B, C, or D is connected to input X of the device.

4.6.1 Three-State Logic Element

Multiplexing can also be realized with a three-state (sometimes called tristate) logic
element. Ordinarily, the voltage level of an output of a device can only be in one of two

4.6 MULTIPLEXER

A0.H
B0.H
C0 .H
00 .H
T.L

A1.H
B1 .H
C1.H
0 1.H
T.L

A2.H
B2.H
C2.H
0 2.H
T.L

A3.H
B3.H
C3.H
D3.H

f.L

MUX

- Io - l1 - l2
13

: E S
I

MUX

Io
l1
l2
13

: E S1

MUX

Io
11

l2
l3

: E S1

MUX

Io
l1
12

l3
~ ES 1

z

So

I

z

So

I

z

So

I

z

So

I

Control

Figure 4.18 Using MUXs for data selection.

107

Xo

X1
Device X

X2

X3

states: high or low. However, for a three-state device, such as the 74'125 shown in Fig.
4.19, a third high-impedance state is possible. As shown by the voltage table of Fig.
4.19(b), if the enable input Eis true (L), then the device behaves normally with the two
states of high and low. If, however, the enable input E is false (H), then the output is
in the high-impedance state.

In the high-ii:npedance state, the output does not drive or load any circuit connected
to it. In other words, the output behaves as if it were electrically disconnected. As a
result, we can use this three-state logic element to realize the multiplexing function. An
example of this application is shown to Fig. 4.19(c). Note that the circuit shown here is
equivalent to the part of the circuit that is connected to Xo of the device in Fig. 4.18.

108 4/COMBINATIONAL MSI CIRCUIT ELEMENTS

E D y

L L L
(Z) = high impedance

L H H

H X (Z)

(a) Functional block diagram (b) Voltage table

B0.H

Xo

C0.H X1
Device X

X2

D0.H X3

2~to-4 decoder

Control{

(c) Use of a three-state device for data selection

Figure 4.19 Three-state logic element.

Select Data inputs Output Output
inputs enable

74'253 S1 So Io l1 lz l3 Eo z
X X X X X X H (Z) Where (Z) is a high impedance

Io L L L X X X L L
l1 L L H X X X L H

l2 z
l3

L H X L X X L L
L H X H X X L H
H L X X L X L L

Eo S1 So H L X X H X L H
H H X X X L L L
H H X X X H L H

(a) Functional block (b) Voltage table

Figure 4.20 MUX with three-state outputs.

16-input MUX

z

(c) Functional block diagram of a 16-input MUX

16-input MUX

Io 74'253

11 Io

12
I1

12 z
13

I3

: Eo S1 So

I
I

I4
74'253

Io
Is

16
I1

I2 z
l7

13
74'139

: Eo S1 So 01 :
A1 2-to-4 ,_ I I

decoder0 2""' z - Ao O ...
3 -

: E 04 ~ 74'253
lg

Io
l9
110

I1

Iu
I2 z
13

: Eo S1 So

I I

74'253
l12

Io
l13

l14
11

l2 z
l15

13

EN : Eo S1 So

I I

I S3 S2 S1 So

I
(d) Realization

Figure 4.20 (cont.)

109

110 4/COMBINATIONAL MSI CIRCUIT ELEMENTS

Specifically, when the control signal is 00, then the three-state device for A0 is enabled
while the others are disabled. Consequently, only A0 is connected to X0 since B0 , C0 ,

and D0 are electrically disconnected from X0 • Similarly, when the control signal is O I,
then B0 is connected to X0 , and so forth.

Three-state outputs for bus control are often required in the designs of digital
circuits. In other words, it is often necessary to connect together a number of three-state
outputs from different devices to fonn a bus for the transfer of data among devices.
Consequently, many of the commercially available circuit elements have built-in three
state outputs. For example, the 74'253 is a four-input multiplexer with a three-state
output. The functional block diagram and voltage table for it are shown in Figs. 4. 20(a)
and (b), respectively. When the output enable E0 is true (L), then the 74'253 functions
as a four-input MUX. But when the output enable E0 is false (H), then the output Z is
in a high-impedance state. Figure 4.20(d) shows how four 74'253 MUXs and a 2-to-4
decoder can be connected to function as a 16-input MUX. When its selection signal is
S3S2S1S0 = 0000, then the input I0 is connected to the output Z. When S3S2S 1S0 =
0001, then I1 is connected to the output Z, and so forth. Note that at any one time, S3

and S2 enable one of the four MUXs and disable the other three. Consequently, although
the outputs of all four MUXs are connected together, only one of them is electrically
connected to the output at any one time.

4.7 DEMULTIPLEXER

The inverse of multiplexing is demultiplexing. A demultiplexer (DEMUX) is a combi
national circuit element that selects one from a number of outputs and connects it to a
single input. Conceptually, the operation of a demultiplexer can be illustrated by another
multipositional switch, as shown in Fig. 4.21(a). Here, there are a number of output
lines, but only a single input line. Depending on the selection control, the switch will
connect one of the outputs to the input D.

A block diagram of a four-output demultiplexer is shown in Fig. 4.2 l(b), and its
truth table in Fig. 4.2l(c). As shown in Fig. 4.2l(c), if the selection signal S 1S0 = 00,
then input D is electrically connected to Z0 • If S1S0 = 01, then D is connected to Z 1,

and so forth. Observe that the truth table can be reduced by combining the first four rows
to a single row with don't-care entries for S1 and S0 since for D equal to 0, all outputs
are 0, regardless of the S1 and S0 values.

Demultiplexers are commercially available as MSI circuit elements, an example of
which is the 74' 138 DEMUX. Its functional block diagram is shown in Fig. 4.22(a).
The input E1 is the data input and Z7-Zo are the eight outputs. E2 and E3 are enable
inputs. Depending on the selection control signals energizing the A2A I A0 inputs, a par
ticular one of the outputs is electrically connected to the input E 1• At least this is the
way the operation is usually explained. Actually, the output is not connected to the input,
but the operation is the same as if it were. As shown, what really happens is that if the
input is false (H), then all outputs are false (H). But if the input is true (L), then only
one output is true (L), the particular output depending on the selection control signal.
The voltage table for the 74' 138 DEMUX is shown in Fig. 4.22(b), and the corresponding
truth table in Fig. 4.22(c).

4.8 DESIGN CONSIDERATIONS FOR INTEGRATED CIRCUIT (IC) ELEMENTS

D

0
0
0
0

N-output switch

Selection
control

(a) N-output switch

4-output DEMUX

D

(b) Functional block diagram

S1 So Zo Z1 Z2 23

0 0 0 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0

1 0 0 0 0
0 0 1 0 0 0
0 1 0 l 0 0

0 0 0 0
0 0 0

(c) Truth table Figure 4.21 Demultiplexer.

111

Recall that this 74' 138 DEMUX was used as a decoder in Sec. 4.4 (Fig. 4.10).
This double usage is possible because the truth table for a demultiplexer is identical to
that of a decoder that has one or more enable inputs. Consequently, any commercially
available decoder with one or more enable inputs can also function as a demultiplexer.

4.8 DESIGN CONSIDERATIONS FOR INTEGRATED
CIRCUIT (IC) ELEMENTS

In this chapter we have studied some of the commonly used logic functions and the
designs and applications of the circuit elements that realize these logic functions. These
combinational MSI circuit elements are a part of the building blocks that are required in

112

E1 E2

H X
X H
X X
L L
L L
L L
L L
L L
L L
L L
L L

Enable

E2 E3

X X
0 X
X 0
1 1
I 1
1 1
I 1
1 1
1 1
I 1
I 1

DATA.L

74'138 DEMUX

Zo

E1
Z1

Z2

E2
Z3

Z4

E3
Zs

z6

A2 A1 Ao Z7

Selection control signals

(a) Functional block diagram

Inputs

E3 A2 A1 Ao Zo Z1 22

X X X X H H H
X X X X H H H
L X X X H H H
H L L L L H H
H L L H H L H
H L H L H H L
H L H H H H H
H H L L H H H
H H L H H H H
H H H L H H H
H H H H H H H

(b) Voltage table

Data Selection

E1 A2 A1 Ao Zo 21 Z2

0 X X X 0 0 0
X X X X 0 0 0
X X X X 0 0 0
1 0 0 0 1 0 0
1 0 0 1 0 1 0
1 0 1 0 0 0 1
1 0 1 1 0 0 0
1 1 0 0 0 0 0
1 1 0 1 0 0 0
1 1 l 0 0 0 0
1 1 1 1 0 0 0

(c) Truth table

Figure 4.22 74'138 DEMUX.

4/COMBINATIONAL MSI CIRCUIT ELEMENTS

Outputs

23 24 Zs 26 27

H H H H H
H H H H H
H H H H H
H H H H H
H H H H H
H H H H H
L H H H H
H L H H H
H H L H H
H H H L H
H H H H L

Outputs

Z3 Z4 Zs z6 27

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
l 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 I 0
0 0 0 0 1

4.8 DESIGN CONSIDERATIONS FOR INTEGRATED CIRCUIT (IC) ELEMENTS 113

the designs of digital circuits. as will be discussed in Chapter 7. Before we proceed with
the study of the sequential MSI circuit elements in the next chapter, let us consider some
of the design considerations for these integrated circuit elements.

4.8.1 TTL Digital Logic Family

TTL (Transistor-Transistor Logic). which was briefly considered in Sec. 3.2, is currently
the dominant digital logic family for SSI and MSI ICs. The popularity of the TTL family
results from its ease of use. low cost. low power consumption, relatively high speed of
operation, low noise susceptibility. and good output drive capability. Since its introduc
tion in the early 1960s, it has been expanded to include hundreds of logic functions, and
has evolved into the following series:

1. Standard TTL
2. H-TTL (high-speed TTL)
3. L-TTL (low-power TTL)
4. S-TTL (Schottky TTL)
S. LS-TTL (low-power Schottky TTL)
6. ALS-TTL (advanced LS-TTL)
7. AS-TTL (advanced S-TTL)

As mentioned in Sec. 3. 2, a TTL element is identified by a label, the first two
digits of which are 74 for commercial-grade products and 54 for military-grade products.
If the element is other than standard TTL, then letters follow the 74 to identify the series.
No letter corresponds to standard TTL, the letter H to high-speed TTL, L to low-power,
S to Schottky, LS to low-power Schottky, ALS to advanced low-power Schottky, and
AS to advanced Schottky. The remaining part of the label is a two- or three-digit number
that identifies the type of element and perhaps some other features, such as the number
of elements per chip. For example. 00 identifies a quadruple two-input positive-logic
NAND gate, which means that there are four NAND gates on a chip, and each of the
NAND gates has two inputs. Manufacturers identify the elements by their positive-logic
functions.

The corresponding circuit elements of each of the TTL series are functionally
identical. For example, a 7400, a 74LS00, and a 74ALS00 are all two-input NAND
gates. The differences among them are physical characteristics such as speed of operation,
power dissipation, input loading, output drive capacity, noise margin, and so forth.

A comparison of the various series in terms of speed and power is given in Table
4.1. Perhaps a couple of the column headings need some explanation. As will be de
scribed in more detail in Sec. 4.8.3. propagation delay is approximately the time required
for a signal to pass through an element. So, the smaller the propagation delay, the greater
the maximum speed of operation. The power-delay product (PDP) is the product of the
propagation delay and power dissipation. This product is one measure of the desirability
of an element. Often, but not always, the smaller this product, the better the element.

As shown in Table 4.1, the standard TTL, which was the first series, is relatively
fast, but has a fairly high power dissipation. The H-TTL is a high-speed series. Its power
dissipation, however, is enormous. For high-speed applications, the H-TTL ICs have

114 4/COMBINATIONAL MSI CIRCUIT ELEMENTS

TABLE 4.1 TYPICAL PERFORMANCE COMPARISON OF THE TTL LOGIC FAMILY

Series

Standard TIL
H-TIL
L-TIL
S-TIL

LS-TIL
ALS-TIL

AS-TIL

Gate propagation
delay (ns)

IO
6

33
3
9.5
4
1.5

Power Power-delay
dissipation (mW) product (pJ)

IO 100
22 132

I 33
19 57
2 19
I 4

10 15

been replaced by those of the newer S-TTL Schottky TTL series. The S-TIL series is
faster than the H-TTL series. Also, the power dissipation is less, but still substantial.

The L-TTL is a low-power series. Unfortunately, it also has very slow speed. The
L-TTL series has been replaced by the newer LS-TTL low-power Schottky series. The
LS-TTL I Cs consume slightly more power than those of the L-TTL series, but are
significantly faster. In fact, as is evident from Table 4. I, the LS-TTL series has one of
the best power-delay products. Additionally, there are an extensive number of logic
functions available in this series, and the chips are reasonably priced. Consequently, the
LS-TTL series is currently the most popular series in the TTL family. The ALS-TTL
(advanced LS-TTL) and the AS-TTL (advanced S-TTL) are high-performance series that
are improvements over the LS-TTL and the S-TTL series, respectively. The ALS-TTL
series has the best power-delay product, but the AS-TTL series is the fastest. However,
product offerings in these two series have yet to match those of the LS-TTL and the
S-TTL series.

Ordinarily, circuit elements from the same TTL series are used throughout a digital
circuit. Sometimes, however, circuit elements from different series are used together to
obtain optimum performance. High-performance AS-TTL circuit elements can be used,
for example, in speed-critical portions of a digital circuit. And, for portions of the digital
circuit where speed is not crucial, slower circuit elements with lower power dissipation
can be used. The actual mix of ICs from the different TTL series is, of course, a function
of the overall circuit specifications and requirements. For an optimum selection of a TTL
series or a mix of circuit elements from different TTL series, it is important to understand
the digital IC physical characteristics presented in the following sections.

4.8.2 Parameters for Static Characteristics

The various series within the TIL logic family are characterized by static (de) parameters
and switching (ac) parameters. Static parameters describe the input and output behavior
of the IC elements under stable operating conditions. The major static parameters are
illustrated in Fig. 4.23 and defined as follows:

/ 1H High-level input current; the current that flows into an input when a
high voltage is applied. This represents the current requirement of an
input that is in a high state.

4.8 DESIGN CONSIDERATIONS FOR INTEGRATED CIRCUIT (IC) ELEMENTS

IoH,__ H
Im
--ll-

-
+VoH +

.it--lOL
V1H .

+VoL

11L
L -------- __.....

+
VIL

-+-

Figure 4.23 Illustration of static parameters.

/fL Low-level input current; the current that flows into an input when a
low voltage is applied. This represents the current requirement of an
input that is in a low state.

/ 0 H High-level output current; the current that flows into an output that is
in a high state.

lot Low-level output current; the current that flows into an output that is
in a low state.

Vm High-level input voltage; the input voltage that is recognized by the
circuit element as a high level.

V1L Low-level input voltage; the input voltage that is recognized by the
circuit element as a low level.

V OH High-level output voltage; the output voltage that the circuit element
will provide when the output is at a high level.

V 0L Low-level output voltage; the output voltage that the circuit element
will provide when the output is at a low level.

Ice Supply current; the current flowing into the V cc supply terminal of an
IC. The product of this current and the supply voltage is the power
dissipation of the IC.

115

Note that both input and output current parameters have references into the TTL device.
Consequently, if an input or output current is specified as being negative, the actual
current flow is out of the TTL device input or output.

The worst-case and typical values for these parameters for three TTL series are
given in Table 4.2. Applications for these parameters are presented in the next two
sections.

116 4/COMBINATIONAL MSI CIRCUIT ELEMENTS

TABLE 4.2 TTL STATIC PARAMETERS

Standard TTL LS-TTL ALS-TTL

Min. Typ. Max. Min. Typ. Max. Min. Typ. Max. Units

Im 40.0 20.0 20.0 µ.A

/IL -1.6 -0.4 -0.l mA
loH -0.4 -0.4 -0.4 mA
loL 16.0 8.0 8.0 mA
VIH 2.0 2.0 2.0 V

ViL 0.8 0.8 0.8 V

VoH 2.4 3.4 2.7 3.5 2.5 3.0 V

VoL 0.2 0.4 0.35 0.5 0.35 0.5 V

Input Loading and Output Drive

In a digital circuit an output of a circuit element is usually connected to inputs of other
circuit elements. Each additional input presents an additional load to the output because
it requires a certain amount of current. But an output can supply only a limited amount
of current. Exceeding the specified maximum amount will cause the corresponding circuit
element to function improperly and possibly be damaged. The output drive capability of
an output (called the fan-out) is a measure of the number of inputs that the output of a
circuit element can drive without impairing its operation. The output drive capability of
a ITL element can be calculated from the following formulas:

For high-voltage level,

For low-voltage level,

/ 0 H(max)
Output drive =

/ 1H(max)

0 d
. /0 L(max)

utput nve =
/ 1L(max)

In other words, the output drive is measured by the maximum amount of current that an
output can supply compared to the maximum amount of current that an input will require.
For example, from Table 4.2 we see that for the LS-TTL series, /0 H(max) = 0.4 mA
and / 1H(max) = 20 µA. Therefore, an LS-TTL series output in the high state can drive
up to 20 LS-TTL inputs. For the low-voltage level, / 0 L(max) = 8 mA and / 1L(max) =
- 0.4 mA. Therefore, an LS-TTL series output can also drive up to 20 LS-ITL inputs
in the low state. So, the fan-out is 20. Similarly, we can determine that an LS-TTL series
output in the high state can drive up to 20 ALS-TTL inputs, but up to 80 ALS-TTL
inputs in the low state. When the two numbers differ, as they do here, the smaller of
the two numbers must be used to ensure proper operation. In other words, an LS-TTL
output can safely drive up to 20 ALS-TTL inputs.

4.8 DESIGN CONSIDERATIONS FOR INTEGRATED CIRCUIT (IC) ELEMENTS 117

Noise Margin

In the operation of a digital circuit, "noise" voltages often occur. These are nonsignal
voltage pulses or spikes caused by electrical disturbances such as lightning, automobile
ignitions, or sudden changes in supply voltage levels. It is, of course, not desirable for
noise voltages to affect the circuit operation.

Noise margin is a measure of the ability of a digital IC to withstand these noise
voltages. Noise margin is defined as follows:

High-level noise margin = V 0H(min) - Vm(min)

Low-level noise margin = V1L(max) - V 0L(max)

For the LS-TTL series, for example, the high-level noise margin is 2. 7 - 2.0 = 0. 7
V. So, in the worst case, a high-level signal can drop 0.7 Vin going from an LS-TTL
output to an LS-TTL input and still be recognized as a high level. For the LS-TTL series,
the low-level noise margin is 0.8 - 0.5 = 0.3 V.

4.8.3 Parameters for Switching Characteristics

For combinational circuit elements, the most important switching (ac) parameters are the
propagation delays. A signal takes a finite amount of time in propagating through a
circuit element from an input to an output. This amount of time is the propagation delay.
There are two types of propagation delay:

H

I L
l

I I
I I
I tpHL I tpLH

H I,,__.__, 1~
I I

I
l I z I I
I I L I I I
I I
I I
I l
I t

to t1

Figure 4.24 Propagation delays.

118 4/COMBINATIONAL MSI CIRCUIT ELEMENTS.

tpHL The delay from the time the input changes to the time the output
switches from H to L.

tpLH The delay from the time the input changes to the time the output
switches from L to H.

The propagation delays tpHL and tpLH of an inverter are illustrated by the timing
diagrams of Fig. 4.24, which are plots of the voltage levels versus time. In Fig. 4.24,
the voltage level at input I changes from L to H at time t0 • But, the output Z does not
change from H to L until the time t0 + tpHL· Similarly, the voltage level at I changes
from H to Lat t1, but the output Z does not change from L to H until t 1 + tpLH· Timing
diagrams are very useful in the analysis of digital circuits, and will be enc.ountered
frequently throughout the remainder of this text.

SUPPLEMENTARY READING (see Bibliography)

[Bartee 85], [Blakeslee 79], [Fletcher 80], [Hill 81], [Mano 79], [McCluskey 7 5], [Mo
torola], [Peatman 80], [Prosser 87], [Texas Instruments]

PROBLEMS

4.1. The active-high view and the active-low view for the 74'283 adder are shown in Figs.
4.4(b) and 4.4(c), respectively. Using the voltage table given in Fig. 4.4(a), prove that
both of these views perform the binary addition function.

4.2. Prove that the 74'283 adder performs the binary subtraction function for the voltage as
signment shown in Fig. 4.6(b).

4.3. Design a 4-bit subtractor that has an active-high minuend and an active-high subtrahend.
Use a 74'283 plus any additional gates that are needed.

4.4. If all the inputs are applied simultaneously to the ripple adder shown in Fig. 4.3, how long
does it talce before the sum and C4 become valid? Assume that the delay of each gate
(within each adder stage) is tP. ..;.......

4.5. Design the 4-bit BCD adder of Fig. 4.25 using two 74'283s plus any additional gates that
are needed. The following examples may be helpful in clarifying the problem specification:

If A= B == cin == then COUI == BCDSUM
0101 0011 0 0 1000
0101 0100 0 0 1001
0101 0101 0 0000
0101 0110 0 0001
0101 0111 0 0010
0101 1000 0 0011

1001 1001 1001

Note that A, B, or BCDSUM > 1001 is not allowed in the BCD notation.

PROBLEMS 119

BCD adder

4,,
A ,, 4,,

BCDSUM ,,

4., - B ,, r

Cout
.

-
cin r

Figure 4.25 BCD adder for Problem 4.5.

4.6. Using 75'85 comparators, design a 16-bit magnitude comparator.

4.7. Design the 4-bit magnitude comparator of Fig. 4.26, using a 74'85 comparator plus any
additional gates that are needed. Note that this comparator has three more than the usual
number of outputs. These are < =, > =, and <>, which represent less than or equal to,
greater than or equal to, and not equal to, respectively.

Comparator

A3-Ao (A> B)

B3-Bo
(A>= B)

(A= B)

(A> B).IN (A<= B)

(A= B).IN (A<B)

(A< B).IN (A<> B)

Figure 4.26 Comparator for Problem 4. 7.

4.8. Design a 5-to-32 decoder using 74' 138 decoders and any additional gates that are required.

4.9. Given an 8-bit address A7-Ao, what are the addresses that will enable the modules M0 , M 1,

M2 , and M3 shown in Fig. 4.27. For convenience, use X for a don't-care address bit.

,-.---c...11EN

2-to-4 decoder

A6.H B
Zo

A5.H A 21

A7 .H EN
Z2

23

Figure 4.27 Circuit for Problem 4.9.

4.10. Using the truth table for a BCD-to-7-segment decoder shown in Fig. 4.11 (c), derive the
logic equations for the seven outputs a, b, c, d, e, f, and g.

120 4/COMBINATIONAL MSI CIRCUIT ELEMENTS

4.11. A chain of 74'47 BCD-to-7-segment decoders can be connected together as shown in Fig.
4.12(c) to display leading zeros as blanks. Reconnect the 74'47s in such a way that leading
zeros are displayed as zeros.

4.12. Design Module M in Fig. 4.28 to obtain a 16-to-4 priority encoder. (Hint: Module M is a
combinational circuit with eight inputs and five outputs. You are to determine the logic
equations for the five outputs.)

16-to-4 priority encoder

74'148

0 A2
1 A1
2 Ao 3
4
5
6 X2
7 GS X1 Z3 EI EO

Xo Z2
GX

74'148 Z1
0 A2 Y2 Zo
1 A1 Y1
2 Ao Yo GS
3
4 GY
5
6
7 GS
EI EO

Figure 4.28 Encoder for Problem 4 .12.

4. 13. The enable output EO and enable input EI of a 7 4' 148 can be used to cascade 7 4' 148
priority encoders for easy octal expansion. Such an expansion for the 74' 148s of Fig. 4.29(a)
is shown in Fig. 4.29(b). Show connections for the 74' 148s of Fig. 4.29(a) that will
accomplish this expansion. No additional gates are required.

74'148
B0 --i--u

B1---+----(.1
B2 --i-----tLII

83---...--ui
B4 --i-----1(JI

85
B6 --t-----11J1

B7 --+----ui

A0 ---l.11
A1--+--""""-JI

A2 ---t---u
A3--+---ai

A4--i-~....,.
A5--+-----c.11

A6---t--~
A7-_,._-~

(a)

GSY

PROBLEMS 121

EI A0 A1 A2 A3 A4 A5 A6 A7 B0 B1 B2 B3 B4 B5 B6 B1 Z2 Z1 20 Y2 Y1 Y0 GSZ GSYEO

0 X X X X X X X X X X X X X X X X 0 0 0 0 0 0 0 0 0
1 0 1
I I 0 1 0
1 X 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0
1 X X 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0
1 X X X 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0

X X X X 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 1 0
X X X X X 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 I 0
X X X X X X 1 0 0 0 0 0 0 0 0 0 0 0 0 1 I 0 0 1 0
X X X X X X X 1 0 0 0 0 0 0 0 0 0 0 0 I I 1 0 1 0
X X X X X X X X 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
X X X X X X X X X 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0
X X X X X X X X X X I 0 0 0 0 0 0 1 0 0 0 0 1 0 0
X X X X X X X X X X X 1 0 0 0 0 0 1 1 0 0 0 1 0 0
X X X X X X X X X X X X 1 0 0 0 1 0 0 0 0 0 1 0 0
X X X X X X X X X X X X X 1 0 0 1 0 1 0 0 0 1 0 0
X X X X X X X X X X X X X X 1 0 1 0 0 0 0 1 0 0
X X X X X X X X X X X X X X XI 1 1 0 0 0 1 0 0

(b)

Figure 4.29 Table and components for Problem 4. 13.

4.14. (a) Determine the complete truth table for the four-input MUX shown in Fig. 4.16.
(b) Derive the logic equation for z.

4.15. In Fig. 4.20, a 16-input MUX is realized with 4 four-input MUXs and a decoder. But,
suppose no decoder is available. Design a 16-input MUX using any number of 4-input
MUXs (74'253), but no decoders.

4.16. Using a 74' 148 priority encoder and any additional gates that are required, design the circuit
of Fig. 4. 30 for generating the S0 and S 1 control inputs for the circuit of Fig. 4. 18. Each
of the requesting devices (A, B, C, and D) can request a connection to device X through
the signals REQA, REQB, REQC, and REQD, respectively. If there are competing requests,
then the order of priority is as follows: D, C, B, and A, with D having the highest priority.
If no request is made, then device X is connected to A by default.

CONTR

REQA.L

REQB.L

REQC.L

Figure 4.30 Circuit for Problem 4. 16.

4.17. Design the circuit BIDIR of Fig. 4.31 such that the signal DATA is bidirectional. Specif
ically, when IOCTR is I (H), then DAT A is connected to INPUT and the direction of the
data flow is "in." But when IOCTR is O (L), then DATA is connected to OUTPUT and
the direction of the data flow is "out." (Hint: Use 74'125 three-state logic elements.)

122 4/COMBINATIONAL MSI CIRCUIT ELEMENTS

BIDIR

DA TA.H -........i.,___--t -----INPUT.H

IOCTR.H -------1io-t ...,._--OUTPUT.H

Figure 4.31 Circuit for Problem 4. 17.

4.18. (a) Discuss the similarities and the differences between a decoder and a demultiplexer.
(b) An encoder performs the inverse function of a decoder, and a multiplexer performs the

inverse function of a demultiplexer. Then, is there any relationship between an encoder
and a multiplexer? Explain.

4.19. What is the maximum number of standard-TTL inputs that an _ALS-TTL output can drive?

4.20. If the signal MEMCS shown in Fig. 4.32 activates the CS inputs of a bank of memory
chips with the specified characteristics, how many CS inputs can it safely drive?

MEM

74LS02
MEMCS.L n------uics

Figure 4.32 Circuit for Problem 4.20.

Memory chip:

VrL = 0.8 V max
VIH = 2.1 V min
VOL = 0.45 V max
V 0H= 2.4 V min
IrL = -40 µA max
Irn = 40 µA max
loL = 16 mA max
loH = -1 mA max

4.21. What is the noise margin for the ALS-TTL series components?

4.22. If an ALS-TTL output drives a number of LS-TTL inputs, what is the resultant noise margin?

4.23. Given the Exclusive OR gate of Fig. 4.33(a), complete the shown timing diagram for Zin
Fig. 4.33(b). Be sure to show and label the propagation delays tpHL and tpLH·

A.H=D-z.H
B.H

A.H

B.H

Z.H
(a) (b)

Figure 4.33 Gate and timing diagram for Problem 4. 23.

L

4.24. Given the circuit diagram of Fig. 4.34(a), complete the shown timing diagram in Fig.
4.34(b) for the signals A and Z. Be sure to show and label the propagation delays tpHL and

A.H

Z.H

A.H
(a)

Z.H

Figure 4.34 Gate and timing diagram for Problem 4.24.
(b)

Chapter 5

Sequential MSI Circuit Elements

5.1 INTRODUCTION

In Chapter 4 we studied the designs and applications of some combinational MSI circuit
elements that realize many of the commonly used logic functions. In the present chapter
we will study the designs and applications of sequential MSI circuit elements. Unlike
combinational circuit element output values, which are functions only of the present input
values, the outputs of a sequential circuit element depend on both the present and past
input values. In effect, a sequential circuit element has a memory in which the effects
of past input values can be stored.

Sequential circuit elements are classified as either clocked (synchronous) or un
clocked (asynchronous). A clocked sequential circuit element responds to a change of
input signals only at discrete instants of time, as determined by a clock input. Most
sequential circuit elements that are available and used in the designs of digital circuits
are of the clocked type. On the other hand, an unclocked circuit element is not regulated
by a clock input and so can respond to a change in the inputs at any instant of time. The
most important examples of unclocked sequential elements are the random access memory
(RAM) and the read-only memory (ROM), which are presented in Chapter 6. The circuit
elements considered in the present chapter are mainly clocked circuit elements.

5.2 THE CLOCK SIGNAL

As stated, the clock input is the controlling input to a clocked sequential circuit element.
A clock input signal is generally a periodic waveform consisting of equally spaced pulses.
Two examples of clock signals are shown in the timing diagrams of Figs. 5. l(a) and (b).
The pulse width of each clock signal is TP and the period is T, as shown. The duty cycle
of a clock signal is the percentage of the time in which the signal is true, and is equal
to (Tp/n x 100 percent. For example, the clock signal of Fig. 5. l(b) has a 50 percent
duty cycle.

123

124

Rising
edge

Falling
edge

T

(a) A clock signal with a pulse width of T P and a period of T

T

(b) A clock signal with a 50% duty cycle

Circuit element

(c) Symbol for an active-high clock input

Circuit element

(d) Symbol for an active-low clock input

Figure 5.1 Clock signals and clock inputs.

5/SEQUENTIAL MSI CIRCUIT ELEMENTS

As shown in Figs. 5. l(a) and (b), the rising edge of a clock pulse is the positive
going (from low to high) transition, and the falling edge of a clock pulse is the negative
going (from high to low) transition. A clocked sequential circuit element responds to the
input signals only at the active edges of the clock signals. For an active-high clock input,
the active edge is the rising edge of the clock pulse. In other words, during a clock cycle,
a circuit element with an active-high clock input will respond to the values of the inputs
only "at the moment" that the clock signal goes from low to high. For the rest of the
clock cycle, any change in the input values will have no effect on the state and outputs
of the circuit element. For an active-low clock input, the active edge is the falling edge
of the clock pulse. The symbols for an active-high and active-low clock input are shown
in Figs. 5. l(c) and (d), respectively.

Now that we have defined the rel,evant parameters of a clock signal, we are ready
to see how the clock input is used to control the functioning of clocked sequential circuit
elements.

5.3 FLIP-FLOPS 125

5.3 FLIP-FLOPS

Flip-flops are fundamental memory devices that can assume one of two stable states: 0
(false) or 1 (true). Consequently, a flip-flop is capable of storing 1 bit of information.
The state of a flip-flop will remain stable ("remembering" a O or a 1), as long as there
is no change in the inputs. A change in the flip-flop inputs, however, can produce a
change in the flip-flop state, causing it to go from the present state to the next state. The.
next state of a flip-flop is a function of the flip-flop inputs and the present state of the
flip-flop. In other words, the same values applied at the flip-flop inputs may produce
different next states (and consequently different outputs), depending on whether the
present state of the flip-flop is a O or a l. A flip-flop is characterized by the types of
inputs and the manner in which the inputs affect the operation. In the following sections,
we will study the types of flip-flops that are commonly used in the designs of digital
circuits. We will study flip-flops in a top-down manner, considering first the function of
each type of flip-flop. Then. after the functions are well understood, we will consider
the realization details of the flip-flops. This material is presented in Sec. 5 .5.

5.3.1 The J~K Flip-Flop

Figure 5.2(a) shows the functional block diagram of a clocked J-K flip-flop. It has two
inputs, J and K, in addition to an active-high clock input. It also has two outputs: Q,
which represents the state of the flip-flop, and Q, which is simply the inverted value of
the flip-flop state.

The truth table for a J-K flip-flop, commonly called the characteristic table, is
shown in Fig. 5.2(b). Observe that Q+, which is the next state of the flip-flop, is a
function of the flip-flop inputs J and K, and the present state Q of the flip-flop. Note
that Q and Q+ in the truth table represent the value of the same flip-flop output Q, but
at different moments in time. More specifically, let Q represent the value of the output
Q at some moment in time, then Q+ represents the value of the output Q at a time "just
after" the next active clock edge. For this flip-flop, the active clock edge is the rising
edge, as indicated in the truth table by the upward arrow (j) .

The function of the J-K flip-flop can be best understood from a timing diagram,
as shown in Fig. 5.2(c). Recall that a timing diagram illustrates the behavior of a device
over time. For the timing diagram of Fig. 5.2(c), time is divided into intervals (T's),
each corresponding to a period of the clock signal CLK. Since the J-K flip-flop shown
in Fig. 5.2(a) has an active-high clock input, the diagram has, for emphasis, dashed lines
at the rising edges· of the clock signal.

For an explanation of this timing diagram, assume that the present interval is Ti,
and that the present state of the J-K flip-flop, represented by Q, is 1, as shown. At the
next active clock transition (the dashed line between T; and T;+ 1), we see that J = 0,
K = 1 , and the present state Q = 1. For this condition, the fourth row of the truth table
of Fig. 5 .2(b) specifies that the next state Q + is 0. This is graphically illustrated in the
timing diagram by the transition of Q from 1 to O ''immediately'' after the active clock
transition between T; and T; + 1• Actually, there is no ''immediate'' transition of Q, but
rather one that occurs later after a time equal to the propagation delay tpHL, as shown.

126 5/SEQUENTIAL MSI CIRCUIT ELEMENTS

CLK J K Q o+
t 0 0 0 0

~-"' t'--.,• t 0 0 I l I •.
J Q t 0 0 0

t 0 I 1 0
K t 0 0

Q t 0
t 0 I
t I 0

(a) Functional block diagram
(b) Characteristic table

Ti

CLK

I
I

I I
J I

0 I
I

K
0

0

I I I I
I I I I

I I I w LJ ~ I
I I I
I I I
I I I

I I I I I I I I I I
I

l I I

n I I I I
I I I I i l I

!~ I I : i I i I I /tu
I JI 1 I I I l I\ I I I I I I

tpHL tpLH tsetup

(c) Timing for a J-K flip-flop

J K o+ Operation

0 0 Q hold

0 I 0 clear

1 0 set

Q toggle

(d) Condensed characteristic table

Figure 5.2 The J-K flip-flop.

For the next interval Ti+ 1, the present flip-flop state Q is equal to 0. And, at the
next active clock transition, we see that J = 0, K = 0, and Q = 0. For this condition,
the first row of the truth table of Fig. 5. 2(b) specifies that the next state Q + is 0. Again,
this is graphically illustrated in the timing diagram by the fact that Q remains O after the
next active clock transition (the dashed line between Ti+ 1 and T;+ 2).

In this manner, the timing diagram of Fig. 5.2(c) illustrates the effect of the eight
possible combinations of inputs and present state of a J-K flip-flop. Note that the flip
flop responds only to the input values at the next active clock transition, and not at any

5.3 FLIP-FLOPS 127

other time. Consequently, no matter how many times the inputs change during a clock
cycle, only the values at the time of the next active clock transition will affect the next
state of the flip-flop. This is clearly illustrated in intervals T;+ 1 and T;+s of the timing
diagram.

This brings up an interesting point. What happens if the inputs are changed ''right
at" the active clock transition, as shown in the timing diagram between T1+ 9 and T;+ 10?
In this case, the input J is ambiguous. It may be "seen" by the flip-flop as either a O or
a I. This is, of course, an undesirable situation. Care must be taken to ensure that the
desired value is placed at the input at some specified setup time, tsetup, before the next
active clock edge. This tsetup is a switching (ac) parameter that is included in the man
ufacturer's data sheet on the sequential circuit element, and is the time prior to an active
clock transition that an input must be stable to assure reliable operation. Later in this

Voltage table

CLK CLR J K Q+
J Q X L X X L

74'107 i H L L Q
K i H L H L

i H H L H
Q i H H H Q

(a) 74' l 07 with a direct clear

Voltage table

PR CLK PR J K Q+
J Q X L X X H

74'113 i H L L Q
K i H L H L

i H H L H
Q i H H H Q

(b) 74' 113 with a direct set

Voltage table

CLK PR CLR J K Q+

PR X L H X X H
J Q X H L X X L

74'109 X L L X X not allowed
t H H L L L
t H H L H Q

Q t H H H L Q
t H H H H H

.r, ...
(c) 74' 109 with direct set and direct clear

Figure 5.3 Commercially available J-K flip-flops.

128 5/SEQUENTIAL MSI CIRCUIT ELEMENTS

book, we will study design methods for ensuring that inputs are synchronized to change
and become stable in the early part of the clock cycle so that the setup times of the
inputs of the sequential circuit elements are never violated.

The truth table of Fig. 5.2(b) can be condensed into the one shown in Fig. 5.2(d)
by specifying the present state as simply Q instead of a O or a 1 . From this condensed
truth table. we can clearly see the four operations that can be performed by a J-K flip
flop. If J and K are both O at an active clock transition, then the next state Q + is the
same as the present state Q. If J = 0 and K = l, then the next state is 0, regardless of
the value of the present state. On the other hand, if J = l and K = 0, then the next
state is I. regardless of the value of the pres½nt state. Finally, if J and K are both l,
then the next state is the complement of the present state, a behavior called toggling.

J-K flip-flops are commercially available with a variety of active-high and active
low inputs and outputs. Several common ones are shown in Fig. 5.3, along with their
voltage tables. Note that in addition to the normal J and K inputs, these J-K flip-flops
have a preset input PR and/ or a clear input CLR. Unlike the J and K inputs, these inputs
are asynchronous. which means that they are not regulated by the clock input. When PR
is true (L), then the output Q is "immediately" reset to l regardless of the clock input,
as indicated by the don't care in the first row of the voltage table of the 74' 113 and
74'109. Similarly. when CLR is true (L), then the output Q is "immediately" cleared
to 0. The most interesting J-K flip-flop of Fig. 5.3 is the 74' 109, which has an active
high J input, an active-low K input, an active-high clock input, and both an asynchronous
preset PR and an asynchronous clear CLR.

5.3.2 The D Flip-Flop

Another type of commonly used flip-flop is the clocked D flip-flop, also called the delay
flip-flop. The functional block diagram for it is shown in Fig. 5.4(a). Observe that it has
only one input, D. in addition to the clock input. It also has two outputs, Q and Q. The
characteristic table for a D flip-flop is shown in Fig. 5.4(b). As illustrated in the timing
diagram of Fig. 5.4(c), the operation of the D flip-flop is simpler than that of the J-K
flip-flop. In fact. the next state Q+ is a function of the D input only and, unlike the J
K flip-flop, is independent of the present state Q. If the D input is equal to l at an active
clock transition. as at T/T; + 1 and T; + 3/T; + 4, then Q + is equal to 1 regardless of the
value of the present state Q. Similarly, if the D input is equal to O at an active clock
transition, as at Ti+ i/T;+ 2 and T1+2/T;+ 3 , then Q+ is equal to O regardless of the value
of the present state Q. Consequently, the characteristic table for a D flip-flop can be
condensed to that shown in Fig. 5.4(d).

The D flip-flop is a useful circuit element for storing 1 bit of information. Another
common application of the D flip-flop is for delaying the value of a signal for one clock
cycle, as is illustrated by the following example.

Example 5.1 Serial Adder
The parallel adder described in Chapter 4 can add two N-bit numbers simultaneously by
using N full adders. But, with only one full adder, a serial adder can add two N-bit
numbers. The serial adder, however, will require N clock cycles to perform the addition.

: 5.3 FLIP·FLOPS

D Q

Q

CLK D Q

t O 0
t O l
t 0
t

0
0

(a) Functional block diagram (b) Characteristic table

CLK

I I
I I

I

i l :
I :

01 , I

I I I
l I I

D

I 11 I I

010
+ a !---+----J !I ---+-----Ji--+''.J ___ _

tpHL tpLH

(c) Timing diagram

CLK D Q+

t O 0

t I

(d) Condensed characteristic table

Figure 5.4 The D flip-flop.

129

A circuit diagram of a serial adder is shown in Fig. 5.5(a). It consists of a full adder
and a D flip-flop. The operation of the serial adder is described below. We will consider
this example in some detail since it illustrates some important characteristics of combi
national and sequential circuit elements.

In the serial adder of Fig. 5.5(a), the N-bit numbers X and Y are fed in serially,
one pair of bits at a time, at inputs A and B, respectively. First, the least significant bits
X0 and YO are fed in, then X 1 and Y 1, and so forth until finally the most significant bits
XN- 1 and Y N _ 1 are fed in. The carry-in CY; for each stage of the addition is provided
by the output of the D flip-flop. Since the input to the D flip-flop is CY;+ 1, the carry-in
CY; of the current stage of addition is the CYi+ 1 of the preceding stage of addition. In
other words, the D flip-flop delays the value of the carry-out of the preceding stage of
addition by one clock cycle so that this carry-out can be used as the carry-in for the
current addition stage, as is required for serial addition. Initially, the contents of the D
flip-flop should be 0.

For proper operation, the inputs X and Y must be synchronized with the clock
input of the D flip-flop so that a new pair of bits of X and Y is present at each clock
cycle. This can be done by storing the bits for X and Y in sequential circuit elements
called shift registers. and then by shifting them out one at a time to be fed into the adder

130 5/SEOUENTIAL MSI CIRCUIT ELEMENTS

Full adder

~.H - A s

~ B

Yi+l·H
.. -:

CYi.H CYi+i·H -~
D Q - Ci Ci+ 1 -

r>~ Q -
Clock signal

(a) Circuit diagram

Stage S4 S3 S2 S1 So

CY 0 0 0 I 0
X 0 0 0 I
y + 0 0 I

SUM 0 0

(b) Sample 4-bit addition

CLK

I I I
I

I I I

o: I
xi l I QI I

I I I I
I I I I I
I I I I I
I

ol o: I 1 :
I

Yi l I I

I I I I
I I I I I I

I !I
I I I

CYi
O ii o' QI 01

I I I
I I I I I I I I I o' l l SUM1 Oi I I I

I I
I

I
I I
I I I I
I I I

CYi+l I l 01 01 ol I
I

I
I I I

I I I

t t t t t
So ta tb S1 tc S2 td S3 S4

(c) Timing diagram for the 4~bit addition

Figure 5.5 A serial adder.

inputs at each clock cycle. Similarly, the output SUM can be stored by shifting each
SUMt bit into a shift register. The operation of a shift register is explained in Sec. 5. 7. 2.

Perhaps the operations of the serial adder can be best understood by tracing through
a timing diagram such as the one shown in Fig. 5.5(c). As shown, each stage of addition
in the sample 4-bit addition of Fig. 5.5(b) is represented by the values of each of the
active clock transitions in Fig. 5.5(c). In other words, the values of the inputs and outputs
are valid only at the active clock transitions. In this timing diagram, the active clock
transitions are labeled S0 , S1, S2, S3, and S4• At S0 , the least significant bits Xo, Y 0, and

5.3 FLIP·FLOPS 131

CY O are added together to produce SUMO and CY 1• At S1, the inputs X1, Y 1, and CY 1

are added together to produce SUM 1 and CY2 • The process continues until at S3, the
most significant bits X3, Y3• and CY 3 are added together to produce SUM3 and CY 4 •

Note that the D flip-flop is a clocked sequential circuit element. Consequently, its
output CYi changes only at each active clock transition, as can be seen graphically in
the timing diagram. The value of CY;+ 1 at each clock transition is loaded into the D
flip-flop to be used as CY; at the next active clock transition. For example, the value of
CYi+ 1 is 1 at S0 , at which time it is loaded into the D flip-flop. It then becomes available
at input C1 at time S0 + tpLH, but it will not be used as the new value of CYi until the
next active clock transition S 1•

The full adder. on the other hand, is a combinational circuit element. Consequently,
its outputs respond to the inputs "immediately" after (actually a propagation delay after)
the change in the inputs. This can be seen graphically in the timing diagram at ta where
SUMi responds to the change in CYi, at tb where CY;+ 1 responds to the changes in X1

and Y;, at tc where SUM; responds to the change in CY;, and at td where SUM; responds
to the change in Y1• Due to this behavior, the inputs and outputs of the serial adder are
guaranteed to be valid and stable only at the active clock transitions. For example,
between S0 and S1, the inputs and outputs are changing at various times. In fact, at time
ta, the values are Xi = 1, Y; = 1, CY; = 1, SUM; = 1, and CY;+ 1 = 1, which do
not correspond to any of the addition stages for this example. However, all the inputs
and outputs have become stable by the time tb, which is well before the required setup
time for the next active clock transition at S1• At this time, the values of the inputs and
outputs correspond to Stage l of this addition example. • •

D flip-flops are commercially available in a form such as the 74'74 D flip-flop
shown in Fig. 5 .6. Like some J-K flip-flops, this D flip-flop also has a preset input PR
and a clear input CLR. Again, these inputs are asynchronous, and so are not regulated
by the clock input. Consequently, they can be used to "immediately" set or clear the
state of the flip-flop during any part of the clock cycle, if either is required.

PR
D Q

74'74

o--
CLR

(a) 74'74 flip-flop

CLK PR CLR D Q+
X L H X H
X H L X L
t H H L L
t H H H H

(b) Voltage table Figure 5.6 Commercially available D flip-flop.

132 5/SEQUENTIAL MSI CIRCUIT ELEMENTS

5.3.3 The T Flip-Flop

A less common, but still useful, type of flip-flop is the clocked T flip-flop, also called
the toggle flip-flop. The functional block diagram for it is shown in Fig. 5. 7(a). This
flip-flop has one input T, in addition to the clock input. It also has two outputs Q and
Q. The characteristic table for the T flip-flop is shown in Fig. 5.7(b). A condensed
version of this table is shown in Fig. 5. 7(c).

The function of the T flip-flop is quite simple. If the T input is false (0), then at
the next active clock transition nothing happens. So the previous state of the flip-flop is
retained. But if the T input is true (1), then at the next active clock transition the output
of the flip-flop is complemented. Note that the T flip-flop performs the "hold'' and
'"toggle" functions of the J-K flip-flop.

T flip-flops are not commercially available in IC form since they can be easily
derived from other commercially available flip-flops. For example, a T flip-flop can be
obtained from a J-K flip-flop by simply connecting the J and K inputs together for the
T input, as shown in Fig. 5.7(d).

Q

(a) Functional block diagram

CLK T Q o+ CLK T o+
t 0 0 0 t 0 Q
t 0 1 t Q
t 0
t 1 0

(b) Characteristic table (c) Condensed characteristic table

T flip·flop
,-------- - --- -7

I ---- l I s QI
IT J Qi----,...-

K
I
I

QI
Qt------

1

I I L _____________ _J

(d) AT flip-flop from a J-K flip-flop

Figure S. 7 The T flip-fl.op.

5.3 FLIP-FLOPS 133

5.3.4 Flip-Flop Conversion

As seen from the preceding section, the conversion from a J-K flip-flop to a T flip-flop
can be done Hintuitively" since the conversion is so simple. When the conversion be
comes more complex, however, a systematic procedure is required.

Example 5.2 A Gated D Flip-Flop Using a J-K Flip-Flop
In this example we will design a modified D flip-flop that has a controlling load input
LD. The functional block diagram and the truth table for it are shown in Figs. 5.8(a)
and (b), respectively. This flip-flop differs from the ordinary D flip-flop which, at each
active clock transition, loads in the value at its D input indiscriminantly. With this
modified D flip-flop, however, the LD input can be used to load in the value of the D

Gated D flip-flop

--De Q

----1LD

Q

(a) Functional block diagram

CLK LD Do Q Q~
t 0 0 0 0
t 0 0 1
t 0 0 0
t 0 1 1
t 0 0 0
t 0 1 0
t · I 0
t

(b) Truth table

Gated D flip-flop ,-------------------
I I
I I
I - - J Q

I

I I
IDG Combinational I

- circuit - K I I ~

I I
1LD -+-> Q I
I I
I I
I I

I
I L----------- _____________ J

(c)° Block diagram of the flip-flop conversion

Figure 5.8 Gated D flip-flop of Example 5.2.

-

-

134 5/SEQUENTIAL MSI CIRCUIT ELEMENTS

input only at selected active clock transitions. Specifically, if the LD input is false (0),
then at the next active clock transition, nothing happens. The previous state of the flip
flop is retained. But if the LD input is true (I), then at the next active clock transition,
the gated D flip-flop loads in the value at the D0 input.

In this design our approach will be to convert a J-K flip-flop into a gated D flip
flop, as shown in the block diagram of Fig. 5.8(c). With the flip-flop selected, the problem
reduces to the design of the combinational circuit that will transform the inputs D0 , LD,
and Q, the present flip-flop state, into the corresponding J and K inputs for the J-K flip
flop so that the correct next state is outputted at the next active clock transition. A
systematic procedure will now be outlined to facilitate this conversion process.

Step I: Determine the functional block diagram of the combinational circuit. For
our example, this functional block diagram is shown in Fig. 5.9(a). The inputs to it are
LD, D0 , and the present state Q, which is fed back from the output of the J-K flip-flop.
The outputs of the combinational circuit are J and K, which correspond to the J and K
inputs of the J-K flip-flop.

Step 2: Determine the truth table for the combinational circuit. In other words, for
our circuit we need to complete the truth table shown in Fig. 5. 9(b). This step is divided
into two substeps.

Step 2(a): Transform the characteristic table of the source flip-flop into its excitation
table. In this case. the source flip-flop to be converted is a J-K flip-flop, the characteristic
table for which is shown in Fig. 5. 9(c). This characteristic table specifies the value of
the next-state output Q+ as a function of the inputs J, K, and the present state Q. On
the other hand, the excitation table, also shown in Fig. 5.9(c), specifies the values that
the inputs J and K must be for the output to change from the specified present state Q
to the specified next state Q +. For example, the first row of the excitation table specifies
that for the J-K flip-flop to change from the present state Q of 0 to the next state Q+ of
0, the value of the J input must be 0, but the value of the K input can be either 0 or 1
(i.e., a don't care). This information is obtained from rows I and 3 of the original
characteristic table. Similarly, the second row of the excitation table specifies that for
the J-K flip-flop to change from a present state of Oto a next state of 1, the value of the
J input must be 1. but the value of the K input can be either 0 or 1. This information is
obtained from rows 5 and 7 of the characteristic table. The remainder of the excitation
table can be determined in the same manner. This excitation table for a J-K flip-flop will
be used in the next step to obtain the truth table for the combinational circuit.

Step 2(b): Use the excitation table for the source flip-flop to determine the output
values for the truth table of the combinational circuit. For our circuit, the truth table of
the desired gated D flip-flop is shown on the left of Fig. 5.9(d). The first row of that
truth table specifies that for inputs LD = 0, D0 = 0, and a present Q = 0, the next
state Q + is to be 0. Now consider the source J-K flip-flop. For it to change from
Q = 0 to Q + = 0, J must be 0 but K can be a don't care at the next active clock tran
sition, as specified by the J-K excitation table. In other words, looking at Fig. 5.8(c), if
LD = 0, D0 = O. and Q = 0, then for Q+ to be 0, the combinational circuit must be
designed such that it generates J = 0 and K = 0 or 1. Similarly, for row 2 of the truth
table of Fig. 5.9(d)., under the condition of LD = 0, D0 = 0, and Q = 1, the quantity
J can be a don't care but K must be a 0 to obtain Q + = 1. Continuing in this manner
we can determine the rest of the values for J and K. Note, as shown by the arrow in

·- 5.3 FLIP-FLOPS 135

Combinational circuit LD DG Q J K

0 0 0 - LD J .
- - 0 0 1

0 1 0
- De 0 1 l

1 0 0
- Q K ~ - ~ 1 0 1

0
(a) Functional block diagram

(b) Truth table to be determined

Characteristic table

J K Q Q+

Excitation table

Q o+ J K
0 0 0 X
0 1 1 X

0 X
1 X 0

0

0

(c) Converting the characteristic table of the J-K flip-flop
into the corresponding excitation table

I t
~ ~

LD Da Q o+ J K LD De Q J K

0 0 0 0 0 X 0 0 0 0 X
0 0 I 1 X 0 0 0 X 0
0 I 0 0 0 X 0 0 0 X
0 1 1 1 X 0 0 l 1 X 0
1 0 0 0 0 X 0 0 0 X

0 1 0 X 0 X 1
1 0 1 X 0 1 X

X 0 1 X 0

(d) Determination of the J and K values (e) Final truth table for the
for the combinational circuit combinational circuit

Figure 5.9 Design and realization of the gated D flip-flop using a
J-K flip-flop. .

Fig. 5.9(d), that the values of J and K for each row are determined by the Q to Q+
transition of that row, based on the information specified in the J-K excitation table of
Fig. 5.9(c). Since the J and K inputs of the J-K flip-flop are the J and K outputs of the
combinational circuit, the truth table for the combinational circuit can be determined, as
shown in Fig. 5.9(e).

Step 3: Realize the combinational circuit. Once the truth table for the combinational
circuit is determined from step 2, the realization of this circuit is straightforward using
the techniques presented in Chapters 2 and 3. The resultant circuit diagram is shown in

136 5/SEQUENTIAL MSI CIRCUIT ELEMENTS

LD LD

De Q
0

DG Q
0

0 0 0 0 0 0 X

0 1 X X 0 1 0

1 l X X 1 1 0 0

1 0 0 I 0 X X

J = LD·Dc K = LD·Dc

(f) K-maps for the J and K outputs

Gated D flip-flop ,-------------- -----------,
I I lo _____ I

G_ __ ----I QI
I
I

,- J Q .,__ __ ,.__

I
ILo

,___ __ ____. K
I
I
I

_I
QI

Qt-----1 -
I
I

I I
I I
L-------------------------~

(g) Final circuit diagram

Figure 5.9 (cont.)

Fig. 5. 9(g). Verifying its operation, we see that if LD is 0, then both AND gates are
disabled and the J and K inputs are 0. Consequently, the gated D flip-flop will retain its
present state. If, however, LD is 1, then at the next active clock transition, the gated D
flip-flop will load in the value of D0 . • •

Example 5.3 A Gated D Flip-Flop Using a D Flip-Flop
In this example, we will redesign the gated D flip-flop, using an ordinary D flip-flop.
The procedure outlined in Example 5.2 still applies. Step 2(a), however, will be different
since the source flip-flop is now a D flip-flop.

Step 1: Determine the functional block diagram of the combinational circuit. The
functional block diagrams of the flip-flop conversion and of the combinational circuit are
shown in Figs. 5. I0(a) and (b), respectively. Observe that the inputs to the combinational
circuit are LD, DG, and the present state Q, just as before. The output, however, is now
D, corresponding to the D input of the D flip-flop.

Step 2: Determine the truth table for the combinational circuit.

5.3 FLIP-FLOPS

Gated D flip-flop
r -----------
1

I I
I I I

I -- j
I
1Dc Combinational I - D Q I circuit

- I

------7
I

ILD I
~ > Q I

I
I I
I I

I
I I L _____ _

---------------~
(a) Block diagram of the flip-flop conversion

D

(b) Functional block diagram

LO De Q

0 0 0
a a 1
0 1 0
0 1 1

0 0
0 1

0

D

(c) Truth table to be determined

Characteristic table Excitation table

D Q Q+ Q Q+ D

a 0 0 a a 0
0 1 a 0 1 I

0 l 0 a
1

(d) Determining the excitation table for a D flip-flop

137

--

--

Figure 5.10 Design and realization of the gated D flip-flop using a D flip-flop.

Step 2(a): Transform the characteristic table of the source flip-flop into its excitation
table. For our source D flip-flop, the transformation process, which is shown in Fig.
5. lO(d), is analogous to that for the J-K flip-flop in Example 5.2. For example, row 2
of the excitation table specifies that for the D flip-flop to change from the present state
(Q) of O to the next state (Q +) of l, the value of the D input must be I at the next active
clock transition. This information is obtained from row 3 of the characteristic table.

Step 2(b): Use the excitation table for the source flip-flop to determine the output
values for the truth table of the combinational circuit. The process, which is shown in
Fig. 5. lO(e), is again analogous to that for the J-K flip-flop of Example 5.2. For example,
in row 2 of the truth table in Fig. 5. lO(e), under the condition of LD = 0, D0 = 0,

138 5/SEQUENTIAL MSI CIRCUIT ELEMENTS

LD De Q Q+ D LD De Q D

0 0 0 0 0 0 0 0 0
0 0 I I 0 0 1 1
0 1 0 0 0 0 0 0
0 1 I I 1 0 1 1 I
1 0 0 0 0 0 0 0

0 1 0 0 0 1 0
0 1 0

1

(e) Determination of the D values (f) Final truth table for the
for the combinational circuit combinational circuit

LD
0 De Q ,.____,__.....,

0 0 0 0

0 1 0 t-t----- D = LD·Q + LD• De

0 0

(g) K-rnap for the D output

Gated D flip-flop
r;::---------------------------
Dc -7

I
I I

I
I
ILD

I
I
I
I

,__ ____ D

L ________________________ _

(h) Circuit diagram

Figure 5.10 (cont.)

QI
Qi--............. -

1

I
QI

Qi--....... ~-
I
l

---- _J

and Q = 1, the D input must be a 1 to obtain Q + = 1 at the next active clock transition.
Again note, as shown by the arrow in Fig. 5. lO(e), that the value of D for each row is
determined by the Q to Q+ transition of that row, based on the information given in the
D flip-flop excitation table of Fig. 5. lO(d). The final truth table for the combinational
circuit is shown in Fig. 5. lO(f).

Step 3: Realize the combinational circuit. The realization of the combinational
circuit is shown in Figs. 5. lO(g) and (h). Verifying the operation of the circuit, we see

5.4 THE UNCLOCKED S-R FLIP-FLOP 139

that if LD is 0, then the top AND gate is disabled. However, the bottom AND gate is
activated, thereby enabling the present state Q to be passed through and loaded back into
the flip-flop at the next active clock transition. If LD is l, though, the bottom AND gate
is disabled and the top AND gate is activated, thereby enabling the new value at D to
be loaded into the flip-flop at the next active clock transition. • •

In summary, the procedure outlined in this section can be used to convert a~y type
of flip-flop to any other type of flip-flop. In fact. this procedure can be modified to be
used for the design of more complex sequential circuits, as we will see later in this
chapter.

5.4 THE UNCLOCKED S-R FLIP-FLOP

The functional block diagram for an unclocked S-R flip-flop is shown in Fig. 5.1 l(a). It
has two inputs S (set) and R (reset), but has no clock input. The S-R flip-flop also has
two outputs Q and Q. As shown in the truth table in Fig. 5.1 l(b), the operation of an
S-R flip-flop is similar to that of a J-K flip-flop, except that both inputs of 1 (S = R =

s R Q Q+

s Q 0 0 0 0
0 0 l 1

R Q 0 0 0
0 1 1 0

0 0

(a) Block diagram 0 1
X not allowed

(b) Truth table

I I I

s~ I
I -
I
I

R
I
I
I

I
I I
I I
I

!I Q _j ?
I I

I I I
I I I
ta tb tc td te tr

(c) Timing diagram

Figure 5.11 The S-R flip-flop.

140 5/SEQUENTIAL MSI CIRCUIT ELEMENTS

1) are not allowed. Furthennore, unlike the clocked flip-flops that have been presented,
the unclocked S-R flip-flop is not controlled by a clock input, but rather responds asyn
chronously to changes in the inputs.

The operation of the S-R flip-flop is illustrated in the timing diagram of Fig.
5.1 l(c). Note the asynchronous nature of this flip-flop. The transition to the next state
Q + occurs ''immediately'' after a change in one of the inputs, and is not synchronized
by an active transition of a clock input. For example, at t = ta, the input S change from
0 to 1 causes Q, at t ta + tpLH, to change from O to 1. The tpLH here is the low-to
high propagation delay of the S-R flip-flop. Also note that at t = tr, S and R are both
1, which is not allowed for an S-R flip-flop. We will see the reason for this in Sec. 5.5,
when the realization details of flip-flops are discussed.

Example 5.4 Using an S-R Flip-Flop for Switch Debouncing
A common application of the S-R flip-flop is for the debouncing of a mechanical switch.
When a mechanical switch is first closed, it does not make contact cleanly, but rather
makes and breaks contact several times before remaining closed. Similarly, when a
mechanical switch is first opened, it will ''bounce'' several times before remaining open.

The problem with switch bouncing is illustrated by the waveform of the switch
signal SW shown in Fig. 5.12(a). If this signal is used as an input to other circuit

SW

(a) Undebounced switch signal

(close) (open)

+ t
SW.DB _J

(b) Debounced switch signal

ON V cc __ ,,.,,o,_,,,_.,...

OFF

---1s

--.... R

(c) Switch debouncing circuit

Q

Q

Figure 5.12 Switch debouncing using an S-R flip-flop.

SW.DB.H

-:-••• ?

,,, ...

H

· 5.5 REALIZATION OF FLIP-FLOPS 141

elements, undesirable circuit behavior may result because each bounce may be interpreted
as a signal change. What is desired is a de bounced switch signal, as shown in Fig.
5.12(b), that has a single low-to-high transition for each switch closure. and a single
high-to-low transition for each switch opening.

Figure 5.12(c) shows the use of an S-R flip-flop in a switch debouncing circuit for
a single-pole, double-throw switch. For an understanding of the operation let us assume
that initially the switch arm is between OFF and ON and that SW .DB is low. Then,
when the switch arm first makes contact with the ON terminal, the S input of the S-R
flip-flop becomes 1, causing SW .DB to make a low-to-high transition. During the time
that the switch bounces after this initial closing, the switch arm makes and breaks contact
with the ON terminal. Each time the contact is broken, the values at the S and R inputs
of the S-R flip-flop are both 0. And, each time the contact is made. the values are
S = 1 and R = 0. In either case, SW.DB remains 1. Consequently, there is only a
single low-to-high transition of SW.DB, as shown.

Now if the switch arm is moved from the ON terminal to the OFF terminal, the
value of SW.DB remains 1 until the switch arm first makes contact with the OFF terminal.
At that moment, the inputs to the S-R flip-flop become R = 1 and S = 0, with the
result that SW.DB makes a high-to-low transition. Again, the switch bounces, thereby
causing the value of R to alternate between 0 and 1 while the value of S stays at 0. In
either case, SW.DB remains 0. Consequently, there is only one high-to-low transition
of SW.DB, as shown. • •

5.5 REALIZATION OF FLIP-FLOPS

Our primary concern with flip-flops is the use of them as circuit elements in the design
of digital systems. It is nevertheless important to have some insight into the internal
structures of these devices. Consequently, we will now digress to study some realization
details of flip-flops. We do this now rather than at the beginning of our consideration of
flip-flops because of the top-down manner of our study. In the preceding sections we
learned how the common types of flip-flop function. Now that we understand this, we
can better appreciate the realization details of flip-flops.

The unclocked S-R flip-flop of the preceding section is a basic flip-flop from which
other flip-flops can be derived. So, we will consider it first. A realization of the S-R flip
flop is shown in Fig. 5.13(a). It is a simple logic circuit consisting of two interconnected
NOR gates. The feature of this circuit that distinguishes it from the combinational circuits
presented in Chapter 4 is the feedback connections from Q to NOR gate 1 and from Q
to NOR gate 2. It is these feedback paths that provide the memory property, allowing
the flip-flop to assume one of two stable states: 0 (false) and 1 (true).

The operation of this flip-flop circuit is illustrated by the timing diagram shown in
Fig. 5.13(b). As a starting point, let us assume that initially (before t = ta), the flip-flop
circuit is in a stable state with the following values: S = 0, R = 0, Q = 0, and Q =
1. At t = ta, though, S changes from 0 to 1. Consequently, the output of NOR gate 1,
Q, goes from 1 to 0, as shown in the timing diagram at ta + tpHL· And since Q is fed
back to the input of NOR gate 2, it causes Q to change from Oto 1 at ta + tpHL + tpLH·

Similarly, Q is fed back to the input of NOR gate 1. Since Q is now 1 and S is 1, then

142 5/SEQUENTIAL MSI CIRCUIT ELEMENTS

Q
R

(a) Circuit diagram

H
I

s r
I I I

I I I
I I I I

I I
I I R I I

I
I I
I I
I I

Q ! I ti
l

I
I

I I I

Q :I l I lL
I I I

ta tb tc td te tr

(b) Timing diagram

Figure 5.13 Realization of an S-R flip-flop.

Q should be 0. However, Q is already 0. Therefore, the circuit has become stable at
ta + tpHL + tpLH, with the following values: S = 1, R = 0, Q = 1, and Q = 0.

The state of the flip-flop circuit remains in that stable state until time tb, when S
. changes from 1 to 0. Although the S input to NOR gate 1 goes to 0, there is still a 1

input from Q. Consequently, the output Q of NOR gate 1 remains 0, and again the flip
flop circuit is in a stable state with the following values: S = 0, R = 0, Q = 1, and
Q = 0. Note that even though the S input has returned to 0, the flip-flop "remembers"
the last set command by remaining in a Q = 1 state.

At time t = tc, the input R changes from 0 to 1, causing the output Q of NOR
gate 2 to change from 1 to 0 at tc + _!pHL· Since Q was providing the only 1 input to
NOR gate 1, this change in Q causes Q to change from Oto 1 at tc + tpHL + tpLH· This
Q is fed back to NOR gate 2. However, the circuit is already stable with the following
values: S = 0, R = 1, Q = 0, and Q = 1.

At t = td and t = te, the changes at the R input have no effect on the state of the
flip-flop circuit, and the outputs Q and Q remain at 0 and l, respectively. At t = tr,
however, S changes from 0 to 1 to make both the S and R inputs equal to 1. Then, Q
becomes 0, but Q also remains 0, and the flip-flop circuit _is in a stable state with
S = 1, R = 1, Q = 0, and Q = 0. Since it is not meaningful to have both Q and Q

5.5 REALIZATION OF FLIP-FLOPS 143

J-K flip-flop r------------- ------------------7

J 3

4 I
I
I

Q

Q

L ____________ _j

Figure 5.14 Unclocked J-K flip-flop.

I
I _____________ .J

equal to O, this combination of inputs (S = R = 1) is not allowed for the unclocked S
R flip-flop.

The circuit for the unclocked S-R flip-flop has been considered in some detail here
because it is the basic flip-flop circuit upon which the more complex flip-flops are built.

5.5.1 J-K Flip-Flops

The flip-flop circuit of Fig. 5.13(a) can be modified to allow both flip-flop inputs to be
equal to 1. The result is the unclocked J-K flip-flop circuit shown in Fig. 5.14. As shown,
two AND gates are added along with feedback connections from Q to AND gate 3 and
from Q to AND gate 4. As can be verified with an analysis similar to that ·of the last
section, these additions change only the operation for two 1 inputs. Specifically, for J
= 1 and K = 1 applied, the output of either AND gate 3 or AND gate 4 becomes
1, the particular one depending on the values of Q and Q. If Q = 1 (and Q = 0), then
the output of AND gate 4 becomes 1 and so the next state Q + becomes O. But, if Q =
1 (and Q = 0), then the output of AND gate 3 becomes 1 and so the next state Q +

becomes 1. In other words, for the inputs J = K = 1, the state of the flip-flop is toggled.
This J-K flip-flop has two serious operational problems. First, to toggle the state

of the flip-flop, the J and K inputs must be made 1 simultaneously. Otherwise, a race
condition exists in which the flip-flop may be set to 1 if J is made 1 slightly earlier, or
it may be cleared to O if K is made 1 slightly earlier, and then the flip-flop will toggle
and return to its original state. Second, to toggle the state of the flip-flop just once, the
J and K inputs have to be pulsed to 1 , with the duration of the pulse being less than the
propagation delay of the flip-flop. Otherwise, if J and K are 1 too long, the change in

.144 5/SEOUENTIAL MSI CIRCUIT ELEMENTS

J-K flip-flop
r-----------------------------------7
I
I
I
I
I
I
I
I J
I
I
I
I
I
1CLK
I
I
I
I
I
iK

3

4

S-R flip-flop
r------- ----7
I I
IS

I

'R
!

1 I
I I
I I L _____________ _j

I
I
I

I
I
I
I
I

-I
Q,

I
I
I
I
I
I

I
I
I

QI

I

I
I
I
I
I
I

I
I
I

-- -·· - -- - - ----------------- - ___ ..J

Figure 5.15 Clocked J-K flip-flop.

Q will propagate back to the AND gates while J and Kare still 1, thereby causing another
change of state.

The race condition problem can be eliminated by adding a clock input (CLK), as
shown in Fig. 5.15. For this clocked J-K flip-flop, the changes in the J and K inputs
will not affect the state of the flip-flop unless the clock input is 1. Consequently, provided
that the changes in the J and K inputs are made before the clock pulse becomes 1 , the
timing of these inputs is not crucial as it was for the unclocked J-K flip-flop of Fig. 5 .14.
However, unlike the edge-triggered flip-flops that were presented earlier in this chapter,
the duration of the clock pulse is still undesirably restricted to being less than the pro
pagation delay of the flip-flop. To obtain an edge-triggered flip-flop, additional modifi
cations to the basic flip-flop circuit are required. An example of such modifications is
shown in Fig. 5.16, which is a circuit diagram for a 74' 114 negative edge-triggered J-K
flip-flop, with asynchronous preset and clear inputs. A detailed analysis of this flip-flop
is quite cumbersome and so will not be presented here.

At this point of our study, we have gained enough of an understanding of the
internal structure of flip-flops to use them effectively as circuit elements in digital sys
tems. Therefore, we will not belabor the realization details, but instead will proceed to
consider the applications of these devices.

5.6 COUNTERS

A digital counter is a sequential circuit element that counts through a prescribed sequence
of numbers repeatedly. A counter may, for example, count through a 3-bit binary se-

5.6 COUNTERS 145

PR
J Q

Q

(a) Block diagram

PRESET

Q

J

TTJ7_ C_L_K--+---+---e-------

K

CLEAR
(b) Circuit diagram

Figure 5.16 74' I 14 negative edge-triggered clocked J-K flip-flop.

quence such as

... , 101, 110,111,000,001,010,011, 100, 101, 110, 111, ...

or a 4-bit arbitrary sequence such as

. . . , 011 1 , 1010, 1001, 1111, 0000, 0110, 0011, 011 1, 1010, 1001 , . .

Counters are commonly used building blocks in the designs of digital systems.

Q

This section begins with methods for the design and realization of counters using
flip-flops. Then some commercially available realizations of counters, integrated as MSI
circuit elements, will be described. Finally, the applications of MSI counters will be
considered.

146 5/SEQUENTIAL MSI CIRCUIT ELEMENTS

5.6.1 The Design and Realization of Synchronous
Counters

In this subsection we will use examples to outline a systematic procedure for the design
and realization of synchronous counters using flip-flops. We will design a specific syn
chronous 3-bit binary counter using D flip-flops first, and then using J-K flip-flops. Last,
we will design and realize a synchronous counter with an arbitrary sequence.

Consider the synchronous 3-bit binary counter described in Fig. 5. 17. As shown
in the functional block diagram of Fig. 5. l 7(a), it has a single active-high clock input
and three active-high outputs: C, B, and A. The operation of this 3-bit counter can be

SI

S2

C=O
B = I
A= 0

C =O
B=O
A= l

C =O
B = 1
A= l

3·bit counter

C

B

A

(a) Functional block diagram

so

S4

C = 0
B = 0
A=O

C = 1
B =O
A=O

(b) State diagram

Figure 5.17 Definition of a 3-bit binary counter.

SS

C = 1
B = 1
A= l

S6

C = 1
B =O
A= 1

C = l
B = l
A=O

5.6 COUNTERS 147

1
SO

I
SI S2 S3 I S4 I S5 S6 S7 so SI

CLK

c!l ,
1'-· __ __,_, ---

i I

B l.._____.._...,:-1 ---
1 I

I

ti
I

:1
!

A

(c) Timing diagram with explicit propagation delays·

1
SO I SI S2 S3

l I
S4

1
S5 S6 S7

1
so

I
Sl

CLK

A

Propagation delay not shown

(d) Timing diagram without explicit propagation delays

Figure 5.17 (cont.)

described through the use of the state diagram shown in Fig. 5.17(b). In a state diagram,·
a state is represented by a rectangular box with the name of the state labeled on the
outside. For the state diagram of Fig. 5.17(b), there are eight states: SO, S 1, S2, S3,
S4, S5, S6, and S7. The duration of each state is one clock cycle of the counter clock
input. Conceptually, a state diagram describes the outputs of a sequential circuit element
over time. Specifically, the state diagram of Fig. 5.17(b) specifies that if the present
state outputs of the counter are C = 0, B = 0, A = 0, then the next state outputs
should be C = 0, B = 0, A = 1. Continuing, if the present state outputs are C = 0,
B = 0, A = 1, then the next state outputs should be C = 0, B = 1, A = 0. And if
the present state outputs are C = 1, B = 0, A = 1 , then the next state outputs should
be C = 1, B = 1, A = 0, and so forth. Essentially, the state diagram of Fig. 5. 17 (b)
specifies that the 3-bit binary counter is a modulo 8 counter that counts the number of
active clock transitions. In other words, it counts repeatedly through the following se
quence at a rate equal to the frequency of the counter clock input.

. . . , 101 , l10, 111, 000, 001, 010, 011, 100, 101 , 110, 111, 000, . . .

The operation of this 3-bit counter can also be described through the use of the
timing diagram shown in Fig. 5.17(c). This timing diagram contains the same information
as the state diagram of Fig. 5. 17 (b), but being more familiar, can be used to clarify and
confirm the explanation of the state diagram. Note from Fig. 5.17(c) that the counter
outputs change synchronously a propagation delay after the next active clock transition.

148 5/SEQUENTIAL MSI CIRCUIT ELEMENTS

This is the reason that this type of counter is called a synchronous counter. Note also
that the propagation delays are shown explicitly in the timing diagram, as they have been
in all the previous timing diagrams. However, in practice, the propagation delays are
usually not explicitly shown. Therefore, unless they are necessary to resolve ambiguities,
the propagation delays will just be assumed and not explicitly shown in subsequent timing
diagrams in this text. As an illustration, the timing diagram of Fig. 5. l 7(c) is reproduced
in Fig. 5. l 7(d) without an explicit showing of the propagation delays.

Example 5.5 Design and Realization of a Synchronous
3-Bit Counter Using D Flip-Flops
The design procedure for an N-bit synchronous counter is similar to that for a gated D
flip-flop, which was outlined in Sec. 5.3.4. In this design procedure, N flip-flops are
required to realize an N-bit counter. For an illustration, the functional block diagram of
a 3-bit counter with three D flip-flops is shown in Fig. 5.18(a). Incidentally, note its
similarity to the functional block diagram of the gated D flip-flop shown in Fig. 5. lO(a).
In Fig. 5.18(a) the D flip-flop outputs, which represent the present-state outputs of the
counter, are fed back as the inputs to the combinational circuit. Also, the combinational
circuit outputs, which represent the next-state outputs of the counter, are the inputs to
the D flip-flops. With inputs corresponding to the current number (i.e., the present-state
counter outputs), the combinational circuit is designed such that the next number in the

Synchronous 3-bit counter

- D Q -
~ -

Combinational circuit ~ t> Q

-+-- C De

- B Ds - D Q -- - -

•.,._...... > Q
- A DA

- D Q --

• Jt,---ti,.-~ Q
CLK

(a) Functional block diagram

Figure 5 .. 18 Design and realization of a synchronous 3-bit counter.

5.6 COUNTERS

Combinational circuit

C

B

A

(b) Combinational circuit

Present-state Next-state Required flip-flop
outputs outputs inputs

+ 1 l I t t i + l • - - -- - - - -C B A c+ s+ A+ De De DA

0 0 0 0 0 1 0 0 1
0 0 1 0 1 0 0 1 0
0 1 0 0 1 l 0 1 1
0 1 1 1 0 0 0 0

0 0 1 0 1 0 1
0 1 1 0 0

0 1 1 1 1 1
0 0 0 0 0 0

Next-state table

(d) Next-state table with required flip-flop inputs

BAc._o_.....,
00 0

i---;1-----1

01
1--==1i=:;;...i

1 1
~~

10

0 0
0 1
1 0

D

0
I
0

(c) D flip-flop excitation table

De = ABC + BC + AC D8 = AB + AB = A EBB DA = A

(e) K-maps for flip-flop inputs

Figure 5.18 (cont.)

149

sequence (i.e., the next-state counter outputs) is outputted. Consequently, at the next
active clock transition, this next number in the sequence is loaded into the D flip-flops
and outputted. It is apparent that the problem of counter design is reduced to the design
of the combinational circuit that will transform the present-state counter outputs into the
appropriate inputs for the flip-flops. A systematic procedure for the design and realization
of a synchronous counter will now be outlined.

150 5/SEQUENTIAL MSI CIRCUIT ELEMENTS

Synchronous 3•bit counter

Combinational circuit

D Q
C

C

I De > Q - H-

B

·gr=>- B
D Q A DB I

,..,__ t> Q -
D-DA A

D Q

CLK
Ito--- C> Q1

(f) Circuit diagram

Figure 5.18 (cont.)

Step 1: Using a state diagram, define the count sequence of the counter to be
designed. For this example, the count sequence for the 3-bit counter is defined by the
state diagram shown in Fig. 5 .17 (b).

. Step 2: Determine the functional block diagram of the N-bit counter to be designed.
It consists of N flip-flops and a combinational circuit for generating the valid inputs for
the flip-flops. For this example, the functional block diagram of the 3-bit counter is
shown in Fig. 5. 18(a).

Step 3: Determine the functional block diagram of the combinational circuit. It can
be readily extracted from the functional block diagram of the counter obtained in step
2. For this example, the functional block diagram for the combinational circuit is shown
in Fig. 5.18(b). The inputs are the present-state counter outputs C, B, A, which are fed
back from the outputs of the flip-flops. The outputs of the combinational circuit are De,
D8 , DA, which correspond to the respective D flip-flop inputs.

Step 4: Using the excitation table for the selected flip-flop type, determine the truth
table for the combinational circuit. For this example, the D flip-flop excitation table of
Fig. 5.18(c) is used.

5.6 COUNTERS 151

Step 4(a): Determine the next-state table for the counter. The next-state table
specifies, in a tabular form, the next-state outputs of the counter corresponding to the
present-state outputs. Since the next-state table contains the same information as the state
diagram, it can be easily derived from this diagram. For the 3-bit counter, the next-state
table, which is shown in Fig. 5.18(d), is derived from the state diagram of Fig. 5.17(b).

Step 4(b): Determine the required flip-flop inputs. Once the next-state table is
determined, we can readily obtain the required flip-flop inputs by using the excitation
table of the selected flip-flop type. For this example, the pertinent excitation table is that
of Fig. 5.18(c) for the D flip-flop. With it we can determine the D inputs required to
produce the desired D flip-flop output transitions. As indicated at the top of the table in
Fig. 5.18(d), the values of De are derived from those of C and c+, the values of D8

are derived from those of B and B + , and the values of DA from those of A and A+ .
Step 5: Realize the combinational circuit. Once the truth table for the combinational

circuit is determined from step 4, then the realization of this circuit is straightforward,
using the techniques presented in Chapters 2 and 3. The resultant circuit diagram is
shown in Fig. 5.18(f).

The operation of this counter circuit is verifiable from an exhaustive analysis of
the circuit. Specifically, for each of the eight possible present-state outputs, the next
state counter output (i.e., the next number in the sequence) should agree with the state
diagram of Fig. 5. l 7(b). • •

Example 5.6 Design and Realization of a Synchronous
3-Bit Counter Using J-K Flip-Flops
In this example, we will redesign the 3-bit counter, using J-K instead of D flip-flops.
The procedure outlined in Example 5.5 still applies, but in step 4 the excitation table of
a J-K flip-flop must be used. ·

Step 1: Using a state diagram, define the count sequence of the counter to be
designed. Since we are designing the same 3-bit counter, the state diagram of Fig. 5. l 7(b)
still applies.

Step 2: Determine the functional block diagram of the 3-bit counter. As shown in
Fig. 5.19(a), it consists of three J-K flip-flops and a combinational circuit for generating
the valid inputs for the J-K flip-flops.

Step 3: Determine the functional block diagram for the combinational circuit. The
functional block diagram is shown in Fig. 5.19(b). The inputs are the present-state counter
inputs C, B, A, and the outputs are Jc, Kc, J8 , K8 , JA, KA corresponding to the J and
K inputs of the three flip-flops.

Step 4: Using the excitation table for the selected flip-flop, determine the truth
table for the combinational circuit. In this case, we use the excitation table for the J-K
flip-flop shown in Fig. 5.19(c).

Step 4(a): Determine the next-state table. Since we are designing the same 3-bit
counter, the next-state table of Fig. 5.18(d) again applies. It is reproduced in Fig. 5.19(d).

Step 4(b): Determine the required flip-flop inputs. Once the next-state table is
defined, we can readily determine the required flip-flop inputs by using the J-K flip-flop
excitation table of Fig. 5.19(c). As indicated at the top of the table in Fig. 5.19(d), the

152 5/SEQUENTIAL MSI CIRCUIT ELEMENTS

Synchronous 3-bit counter

l - 1 Q -
. K

Combinational circuit ~ > Q

C le
Kc

B ls
. 1 Q r

Ks r K

A 1A j~ [> Q
KA

. 1 Q

. K .

•,......... t> Q

CLK

(a) Functional block diagram

Combinational circuit
Q o+ 1 K

le 0 0 0 X C
Kc 0 l I X

ls 0 X
B X 0

Ks

A 1A (c) 1-K flip-flop excitation table

KA

(b) Combinational circuit

Figure 5.19 Design and realization of a synchronous 3-bit counter
using J-.K flip-flops.

C .
p

B . .

A
r

values for Jc and Kc are derived from those of C and c+, the values of J8 and K8 are
derived from those of B and B +, and the values of J A and KA from those of A and A+.

Step 5: Realize the combinational circuit. Once the truth table for the combinational
circuit is determined from step 4, the realization is easy to obtain with the techniques of
Chapters 2 and 3. The resultant logic equations for the J-K flip-flops are given in Fig.
5.19(e). We will leave it to the reader to complete the drawing and verify the circuit
diagram. • •

5.6 COUNTERS

Present-state Next-state Required flip-flop
ou_tputs outputs inputs

t t t t • t ~ ~ ~ - - - - - - ,--.A----. ~

C B A c+ B+ A+ Jc Kc JB KB JA KA

0 0 0 0 0 0 X 0 X 1 X
0 0 0 0 0 X 1 X X 1
0 0 0 0 X X 0 1 X
0 1 1 0 0 1 X X 1 X 1

0 0 0 1 X 0 0 X 1 X
0 1 1 1 0 X 0 I X X I

0 1 1 X 0 X 0 X
0 0 0 X X X

Next-state table

(d) Next-state table with required flip-flop inputs

Jc= Kc= AB
JB =Ke= A
JA =KA= 1

153

(e) Logic equations for flip-flop inputs

Figure 5.19 (cont.)

Example 5. 7 The Design and Realization of a Synchronous Counter
with an Arbitrary Sequence
Counters with an arbitrary counting sequence can also be designed with the above pro
cedure. In this example, a counter is to be designed to count through the following
sequence:

. . . , 10 I , 001 , 000, 010, 110, 100, 101 , 001 , 000, 010, . . .

Additionally, there is an external input CLEAR that when true will synchronously clear
the counter. In other words, when CLEAR is made true, the normal count sequence is
interrupted. And, at the next active clock transition, the counter outputs are cleared to
000. Then, normal counting will continue from this 000. An example of this clearing is
shown in the following sequence:

. . . ' 101, 001, 000, 010, 110, 100, 000, 010, 110, 100, 101, 001, 000, .

i
CLEAR becomes true here

Step 1: Using a state diagram, define the count sequence of the counter that is to
be designed. For this example, the count sequence for the counter is defined by the state
diagram shown in Fig. 5.20(a). Note that when the CLEAR signal is false, the counter
counts through the normal sequence. At any time, however, that CLEAR becomes true,
the next state is SO.

154

so
C =O
B=O
A=O

C:; 0
B = I
A=O

C = l
B = I
A=O

C = 1
B =O
A=O

C = l
B =O
A= I

C=O
B =O
A= l

(a) State diagra~

T

T

T

T

Figure 5.20 Counter for Example 5. 7.

5/SEOUENTIAL MSI CIRCUIT ELEMENTS

5.6 COUNTERS 155

Counter

C .. -- D Q

Combinational circuit r-+-- r> Q

~ C De - B - D Q

LJ
r

~ B
DB 4~ > Q

r A

CLEAR . CLEAR DA r-, r . A . - D Q

CLK t> Q -

(b) Functional block diagram of counter

CLEAR C B A c+ s+ A+ De DB DA

0 0 0 0 0 1 0 0 1 0
0 0 0 1 0 0 0 0 0 0 De= CLEAR·B + CLEAR•C·A

0 0 0 1 1 0 1 1 0 DB= CLEAR•C•A

0 0 1 X X X X X X DA= CLEAR•C·B
0 1 0 0 1 0 1 0 1
0 1 0 1 0 0 1 0 0
0 1 0 1 0 0 1 0 0 (d) Logic equations for

0 1 X X X X X X flip-flop inputs

X X X 0 0 0 0 0 0

(c) Next-state table with required
flip-flop inputs

Figure 5.20 (cont.)

Step 2: Determine the functional block diagram of the counter to be designed. In
this example, we will arbitrarily decide to use D flip-flops. Since it is a 3-bit counter,
three D flip-flops are required, as is shown in Fig. 5.20(b).

Step 3: Determine the functional block diagram for the combinational circuit. This
circuit is also shown in Fig. 5.20(b).

Step 4: Using the excitation table for the selected flip-flop, determine the truth
table for the combinational circuit. For the selected D flip-flop, the result is shown in
Fig. 5.20(c). Note that the count sequence does not include the binary numbers 011 and
111. Consequently, in the next-state table shown in Fig. 5.20(c), the entries correspond
ing to those two numbers are don't cares.

Step 5: Realize the combinational circuit. The resulting logic equations for the flip-
flop inputs are shown in Fig. 5.20(d). • •

156 5/SEQUENTIAL MSI CIRCUIT ELEMENTS

5.6.2 MSI Counters

Digital counters are commercially available as MSI circuit elements in the form of
multi bit counters. Most common of. these are the 4-bit binary counters and the 4-bit
decade counters. A 4-bit binary counter is a modulo 16 counter that counts through the
following sequence:

. . . , 0000, 0001 , 0010, . . . , 1111, 0000, . . .

A 4-bit decade counter is a modulo 10 counter that counts through the following sequence:

... , 0000, 0001, 0010, ... , 1001, 0000, ...

Observe that this count does not include the numbers 1010 through 1111 of the count of
the modulo 16 counter.

4
I ,,

CLR

0
0

74'162 74'163

4
O3-Oo

4/
Q3-Qo ✓

.,
D3-Do ,

4/
Q3-Oo ,,.

: CLR -: CLR

: LO
,.

LD -
CEP CEP

CET TC CET TC

> [>

(a) Functional block diagram
for the 74' 162

(b) Functional block diagram
for the 74' 163

LD CEP CET Function For the 74'162

0 I 1 Nonna! count TC= CET·O3·Ch·Q1 ·00

1 X X Parallel load For the 74'163
X X X Clear TC= CET•Q3 ·02 ·01 ·00

(c) Functional descriptions

• • ·, 1111,0000,0001,0010, 1011, 1100, 1101, 1110, 1111,0000, • · •
t

during this clock cycle
LD = I and O3-D0 = IOI I

(d) Example of the LO input function

• • •, 1111, 0000, 0001, 0010, 0000, 0001, 0010, 00ll, 0100, • • •
t

during this clock cycle
CLR =I

(e) Example of the CLR input function

Figure 5.21 MSI counters.

5.7 REGISTERS 157

The 74' 163 is an example of a synchronous 4-bit binary counter, and the 74' 162
is an example of a synchronous 4-bit decade counter. The functional block diagrams and
the functional descriptions of both counters are shown in Fig. 5.21. Except for the count
sequence, both counters operate in an identical manner. Specifically, for a count in a
normal manner, both the count enable parallel input (CEP) and the count enable trickle
input (CET) have to be true (H). Also, the parallel load input (LD) and the clear input
(CLR) must be false (H).

There are other modes of operation. If the LD input is true (L) and the CLR input
is false (H), then any 4-bit number applied at the D3-D0 inputs is synchronously loaded
into the counter at the next active clock transition. So, the normal count sequence is
interrupted. Further, when the normal counting resumes, it will continue from the loaded
number, as shown in the example in Fig. 5.21(d). Finally, if the CLR input is true (L),
then the counter is synchronously cleared to 0000 at the next active clock transition. In
other words, the normal count sequence is again interrupted. And when normal counting
resumes, it will continue from 0000, as shown in the example in Fig. 5.2l(e). Inciden
tally, since in this example. as well as that of Fig. 5.21(d), the count is shown as
exceeding 1001, the specific counts shown must be from the 7 4' 163 binary counter.

Both the 74'162 and the 74'163 have a terminal count (TC) output. This output
becomes true (H) at the active clock transition at which the terminal count (I 001 for the
74' 162 and 1111 for the 74' 163) of the counter is reached, resulting in a positive-going
pulse that lasts for one clock period. This pulse can be applied as a control signal to
other circuit elements. Most often this TC output is used in the cascading of 4-bit counters
to obtain a counter of greater length. As an illustration, in Fig. 5.22 an 8-bit binary
counter is shown as constructed from two 74' 163 4-bit counters without any additional
circuitry. Note that the TC output from the low-order 4-bit counter controls the operation
of the high-order 4-bit counter so that this high-order counter counts only once for every
16 clock cycles. In general, a number of 4-bit counters can be cascaded in this manner
to produce a binary counter of any reasonable length.

5.7 REGISTERS

A register is a group of flip-flops that are used for data storage and perhaps also for
performing some function on the stored data. Strictly speaking, the counters of the last
section are also registers in which the function performed is counting through a prescribed
sequence. In this section, we will consider two common types of registers: storage
registers and shift registers.

5. 7 .1 Storage Registers

A storage register is a group of flip-flops that are used simply for data storage. The
simplest storage register consists of several flip-flops with common clock inputs. An
example of a 4-bit storage register is shown in Fig. 5. 23. It consists of four D flip-flops
in which 4 bits of data (D3-D0) are loaded into the storage register at each active clock

158

8·bit counter

74'163

0 7-04 4,,
OrOo /

,..,
CLR -,,.
LO """
CEP

- CET

t:>

74'163

03-0o 4/
OrOo /

CLR - CLR
LO ,,. - LO
CEP

CEP
CET

CET

C>

Figure 5.22 8-bit binary counter.

4-bit storage
register

4 4
-~ 03-0o Q3-Qo i--,..._

(a) Functional block diagram

Figure 5.23 4-bit storage register.

5/SEQUENTIAL MSI CIRCUIT ELEMENTS

4,, Q7-Q4
QrQo /

TC
TC

4/ QrQo
Q3-Qo /

TC

5.7 REGISTERS

4-bit storage register

D3 -D Q

->

D2
D Q

,.,__>

D1
D Q -~ ~

Do
D Q

CLK
>

(b) Realization

Figure 5.23 (cont.)

159

Q3

Q2

Ql

Qo

transition. With this type of storage register the data is stored in the register until the
next active clock transition.

Storage registers are commercially available as MSI circuit elements in various
forms, with various features. Three examples are shown in Fig. 5 .24. The 74'273 storage
register of Fig. 5.24(a) has an asynchronous master reset input MR. As shown in the
accompanying voltage table, if the MR input is false (H), then the 74'273 functions as
a normal storage register. If, however, the MR input is true (L), then the 8-bit register
is asynchronously cleared to 0.

The difference between an asynchronous operation and a synchronous operation is
illustrated in Fig. 5.25. An asynchronous operation is performed "immediately" after
the control input is applied, as shown in Figs. 5.25(a) and (b). In contrast, a synchronous
operation is synchronized by a clock input, and so the operation is performed only if the
control signal is true at the active clock transition, as is illustrated in Figs. 5.25(c) and
(d). In Fig. 5.25(d) note that the pulse at the MR input has no effect on the synchronous
clear operation.

In Fig. 5.24(b) is illustrated a 74'378 storage register with an enable input E. As
shown in the accompanying voltage table, the 6-bit storage register is loaded with new
data (D,D0) only if the enable input is true (L). Otherwise, the existing data will be
stored in the register indefinitely. A storage register is most useful if it has an enable
input, because then we can connect the system clock signal directly to the clock input
of the register and a control signal to the enable input.

Shown in Fig. 5. 24(c) is a 7 4' 163 counter, arranged to be a 4-bit storage register
with a synchronous master reset input (CLR) and an enable input (LD). This storage
feature is obtained by disabling the count enable (CEP = CET = false) and not using
the terminal count (TC) output.

160 5/SEQUENTIAL .MSI CIRCUIT ELEMENTS

74'273

8 8
DrDo Q7-Qo CLK MR Di Qi

X L X X
t H H X
t H L X

(a) 74'273 8-bit storage register

74'378

6 6
Ds-Do Qs-Qo CLK E Di Qi

X H X L
X H X H
t L H X
t L L X

(b) 74'378 6-bit storage register

74'163

4

4

F.H
TC t----- (not used)

(c) 74' 163 4-bit storage register

Figure 5.24 Commercially available storage registers.

Qt
L
H
L

Qt
L
H
H
L

5.7.2 Shift Registers

A shift register is a register in which the stored data can be shifted to the left or to the
right. The simplest shift register consists of flip-flops connected as shown in Fig. 5.26(b).
For this shift register, the contents of each flip-flop are loaded into the adjacent one on
the right at each active clock transition. In other words, the stored contents are shifted
to the right by one flip-flop. In this process, the old contents of the rightmost flip-flop
are lost, and the new contents of the leftmost flip-flop are the data applied at DIN.

Shift registers are commercially available as MSI circuit elements in various forms
and with various features. An example of one with many features is the 74'194 4-bit

. 5.7 REGISTERS

I I

CLK __f7_f1_
I I

Di j I I
I I

Asynchronous MR iLJ_
I I

Qi n ;
i~

I I

CLK --f7-fl-
Di J: I

I

Asynchronous MR -tut-
I I

Qi --rµ-
ta tb tc

I I
CLK --fl-fL

Di j I I
I :

Synchronous MR iLJ_
Qi -TTi-I

ta tb tc

I I
CLK __f7_f1_

I I
Di j I I

I I
Synchronous MR --ru-:

I

Qi
I

ta tb tc

ta • load in Di
tb • clear Qi "immediately"
tc • does not load in Di

(a) Asynchronous MR input

ta • load in Di
tb • clear Qi "immediately"
tc • load in Di

(b) Asynchronous MR input

ta • load in Di
tb • synchronous MR is applied
tc • Qi is cleared (synchronously)

(c) Synchronous MR input

ta • load in Di
tb • synchronous MR is pulsed
tc • load in Di (pulse is ignored)

(d) Synchronous MR input

Figure 5.25 Asynchronous and synchronous control inputs.

161

bidirectional universal shift register, which is illustrated in Fig. 5 .27. As shown in the
voltage table, it performs five major operations, all synchronously. If the CLR input is
true (L), then regardless of the other inputs, the shift register is synchronously cleared.
But if the CLR input is false (H), the operation of the shift register depends on the mode
control inputs S 1 ~d S0 • If S 1 S0 = LL, then the shift register retains the existing data
and functions essentially as a storage register. If S1S0 = LH, then the contents of the
shift register are shifted to the right by 1 bit at the next active clock transition, with the

162 5/SEOUENTIAL MSI CIRCUIT ELEMENTS

DIN
D Q

CLK l>
-

4-bit shift register

---DIN
4

QrQo--..,..,,/_

>

(a) Functional block diagram

Q3 Q2

D Q D Q

--> >

- -

(b) Realization

Figure 5.26 4-bit shift register.

74'194

4 4

DSLJ.-4---

(a) Functional block diagram

Operation CLK CLR S1 So DSR DSL Qt Qi"
Clear t L X X X X L L
Hold t H L L X X Q3 Q2

Shift right
t H L H L X L Q3
t H L H H X H Q3

Shift left
t H H L X L Q2 QI
t H H L X H Q2 Q1

Parallel load t H H H X X D3 D2

(b) Voltage table

Figure 5.27 74' 194 bidirectional universal shift register.

QI Qo

D Q -
-->

Qt Qt
L L

Q1 Qo
Q2 Qi
Q2 QI
Qo L
Qo H

D1 Do

5.8 SYNCHRONOUS VERSUS ASYNCHRONOUS DESIGNS 163

leftmost flip-flop (Q3) receiving the data applied at DSR. If S 1S0 = HL, then the contents
are shifted to the left by 1 bit, with the rightmost flip-flop (Q0) receiving the data applied
at DSL. Finally, if S1S0 .= HH, then the data applied at D3-D0 is parallel loaded into
the shift register, and there is no shifting.

5.8 SYNCHRONOUS VERSUS ASYNCHRONOUS DESIGNS

The difference between asynchronous and synchronous operations was illustrated by the
examples in Fig. 5.25. Generally, in the design of digital circuits, synchronous operations
using synchronous sequential circuit elements are preferred. To understand why, consider
the simple circuit shown in Fig. 5.28(a), and assume that the initial values for the inputs

A------i

B-----1

y

c--------------1

(a) Circuit diagram

CLK

H
A

L

H
B

L
I
I

H I

:1
y

L I
H I

I C
L

I
I

H

!U z
L

(b) Timing diagram

z

Figure 5.28 Glitch resulting from unequal path delays.

164 5/SEQUENTIAL MSI CIRCUIT ELEMENTS

are A = H, B = L, and C = H. For these inputs, the output Z, of course, should be
H, as shown in Fig. 5.28(b). Now if B is changed from L to Hand at the same time C
is changed from H to L, then logically the output Z should remain H. Unfortunately, as
shown in the timing diagram of Fig. 5.28(b), these changes of inputs cause a momentarily
unwanted glitch to occur at the output Z. This is a result of the unequal path delays
through the combinational circuit between B to Z and C to Z. In other words, a race
condition exists between the two signals. The change in C arrives at Z first, after one
gate delay, causing Z to become L momentarily. Finally, after two gate delays, the
change in B arrives and the Z output settles down to its correct H value. The circuit
becomes stable at two gate delays after the changes. But if the Z output is used as an
input to an asynchronous control input such as a clear input, then the circuit element
would be cleared erroneously by the glitch.

In general, asynchronous operations and asynchronous circuit elements are to be
avoided in the design of a digital circuit. In addition to erroneous operations such as the
one just illustrated, there can be other serious operational problems and restrictions. Not
being synchronized by a clock signal, the outputs of an asynchronous digital circuit
element depend on the order of the changes in the asynchronous inputs. As a result, the
element outputs can be transiently unstable and unpredictable. Because of these and other
problems related to timing, the design of asynchronous digital circuits is much more
difficult than that of synchronous digital circuits.

In Chapter 7, a procedure for designing synchronous digital circuits is described
and formalized. The general idea is to avoid the use of asynchronous operations and to
have the transient inputs and outputs isolated in the early part of the clock cycle. In this
manner, all inputs to the sequential circuit elements are assured of being stable at the
next active clock transition. Before considering this design procedure, however, we will
complete the study of digital building blocks by considering LSI and other circuit ele
ments in the next chapter.

SUPPLEMENTARY READING (see Bibliography}

[Bartee 85], [Blakeslee 79], [Hill 81], [Mano 79], [McCluskey 75], [Motorola], [Peatman
80], [Prosser 87], [Roth 85], [Texas Instruments]

PROBLEMS

5.1. How does a sequential circuit element differ from a combinational circuit element?

5.2. A clock signal has a frequency of 5.0 MHz and a 30 percent duty cycle. Draw and label
the waveform for the clock signal.

5.3. Given the circuit diagram of Fig. 5.29(a), complete the timing diagram of Fig. 5.29(b) for
QM Q 8 , and Qc, Show the propagation delays tpHL and tpLH·

PROBLEMS
~-

165

H
CLK

X.H J L

K
Q QA.H

H
X

L I

H I
y I

L I
Q QB.H H

I
Y.H I QA

L --1
I

H I
Os L _J

D Q Oc-H I

Qc H I

CLK.H L _J

(a) (b)

Figure 5.29 Circuit diagram and timing diagram for Problem 5.3.

5.4. Figure 5.30(a) shows a J-K flip-flop with an active-low clock input.

H
CLK

L

J Q H n_J LJ J

K L

H
Q K

L

H-
Q/Q+

L
(a) (b)

Figure 5.30 J-K flip-flop and timing diagram for Problem 5.4.

(a) Complete the timing diagram of Fig. 5.30(b) and compare it with the one shown in
Fig. 5.2(c). Show the propagation delays tpHL and tpLH·

(b) Redraw the timing diagram without showing the propagation delays.

5.5. Recall that binary subtraction can be performed by adding the 2s-complement fonn of the
subtrahend to the minuend. In other words,

A - B =A+ (-B)

With this in mind, convert the serial adder shown in Fig. 5.5(a) into a serial subtractor.
What must be the initial value of the D flip-flop output? Assume that a 74'74 D flip-flop,
as shown in Fig. 5.6(a), is to be used. Be sure to initialize the contents of the D flip-flop
with an active-low signal, INILPULSE (---i..._r-).

5.6. Convert the serial adder of Fig. 5.5(a) into a serial adder/subtractor, the block diagram of
which is shown in Fig. 5.31. The operation is as follows: When A/S is false (L), the
addition operation is performed. But when A/S is true (H), the subtraction operation is
performed. The active-low signal IN]T_PULSE is used to initialize the D flip-flop contents.
Assume that a 74'74 D flip-flop is to be used. -w Also use an XOR g~ m~yer,tj:.:p
, _ : - , .. · l/4 .r'fin NI? q;M:, /t I-< /w.u./d)

l' / ' .

166 5/SECUENTIAL MSI CIRCUIT ELEMENTS

ADD/SUB

- Xi

Yi zi --

- A/S

- INIT PULSE - - -

Figure 5.31 Serial adder/subtractor for Problem 5.6.

5.7. (a) Analyze the circuit diagram of Fig. 5.32(a) and complete the timing diagram of Fig.
5.32(b). Do not show the propagation delays.

(b) Assuming that the circuit of Fig. 5.32(a) represents a type of flip-flop, derive its char
acteristic table and its condensed characteristic table.

(c) Derive its excitation table.

Q ----

Q ----

(a)

H
CLK

L I
H I

A I L I
H

--W B
L

H I
Q/Q+ I

L --1
I

(b)

Figure 5.32 Circuit and timing diagrams for Problem 5. 7.

5.8~ Repeat Problem 5.7 for the circuit and timing diagrams of Fig. 5.33. Note that the clock
input is active-low.

:::-[>~ ~1 l
CLK.L-~ Q1-:--

(a)

: PROBLEMS 167

H
CLK

L
I I

H I I

A I LJJ L I I
H

I , I
B I I

L I I
I I

Q/Q+
H I I
L ____J I

I I

(b)

Figure 5.33 Circuit and timing diagrams for Problem 5.8.

5.9. Implement a J-K flip-flop using a 74'74 D flip-flop and any gates that are needed. Label
all gates.

5.10. Implement a T flip-flop using a 74'74 D flip-flop and any gates that are needed. Label all
gates.

5.11. Implement the unclocked S*-R* flip-flop of Fig. 5.34 with a normal unclocked S-R flip
flop and any gates that are needed. An unclocked S*-R * flip-flop functions exactly like a
normal unclocked S-R flip-flop except that S* = R * = l is allowed. For this input the
S*-R * flip-flop retains its previous Q value.

S* R* Q+

S* Q 0 0 Q
0 I 0

R* Q I 0 I
I Q

Figure 5.34 Flip-flop for Problem 5. 11.

5.12. The A-B flip-flop of Fig. 5.35 is to be implemented. Note that this flip-flop functions as a
J-K flip-flop except for the inputs A = B = l, for which the ''set" input A dominates.

A

B

Q

Q

Figure 5.35 Flip-flop for Problem 5.12.

A B
0 0
0 I

0
I

Q
0

(a) Implement it using a 74' 109 J-K flip-flop plus any gates that are needed.
(b) Implement it using a 74'74 D flip-flop plus any gates that are needed.
(c) Implement it using the T flip-flop of Fig. 5.7 plus any gates that are needed.

168

A

B

Q

Q

Figure 5.36 Flip-flop for Problem 5. 13.

A B
0 0
0 1

0

5/SEOUENTIAL MSI CIRCUIT ELEMENTS

Q
0
1
0

5.13. Repeat Problem 5.12 for the A-B flip-flop of Fig. 5.36. Note that this flip-flop functions
as a J-K flip-flop except for the inputs A = B = 1, for which the "clear" input B dominates.

5.14. (a) Given the truth table of Fig. 5.1 l(b) for an unclocked S-R flip-flop, determine the logic
equation for Q+ as a function of S, R, and Q.

(b) The circuit diagram of Fig. 5. l 3(a) is the most popular gate implementation for an S-R
flip-flop. Algebraically show that this implementation is consistent with your answer to
part (a).

(c) Draw a mixed-logic circuit diagram corresponding to your answer to part (a).

5.15. Using commercially available gates. implement the unclocked S-R flip-flop of Fig. 5.37.
Note the active-low inputs. Specify and label all components and signals.

s Q

R Q

FigQre 5.37 S-R flip-flop for Problem 5.15.

5.16. The operation of the switch debouncing circuit of Fig. 5. l2(c) depends upon the voltage
levels at the S and R inputs being both L when the switch arm is not in contact with either
the ON or OFF terminal. For this L voltage level to occur, the resistor resistances must be
small enough that the voltages at the S and R inputs are less than or equal to V1L, which is
0.8 V for LS-TTL. With this in mind, determine the maximum resistance, Rrnax, allowable
for the resistors. Use LS-TTL values.

5.17. The unclocked S-R flip-flop with active-low inputs that is specified in Problem 5.15 can
also be used to debounce a mechanical switch. The circuit will be similar to that shown in
Fig. 5.12(c). In this case, however. a high voltage is required at the S and R inputs to
present a false value when the switch arm is between the ON and OFF terminals. With this
in mind,
(a) Design a switch debouncing circuit using this ''active-low'' S-R flip-flop.
(b) Determine the minimum resistance, Rmin, of the resistors that will give proper operation

when the switch arm is between the ON and OFF tenninals. Use LS-TTL values.

5.18. Complete the timing diagram of Fig. 5.38, which is for the unclocked J-K flip-flop shown
in Fig. 5.14. Show the propagation delays tpHL and tpLH· Also, what happens after tf?

PROBLEMS 169

H _J7 J
L I I

H I I

K I I w L I I
I I I

H I I I
Q I I I

L --I I I

H~
I I

I I I
Q I I I I

L I I I I
I I I I tr

Figure 5.38 Timing diagram for Problem 5. 18.

5. 19. The circuit diagram of Fig. 5 .15 is for a clocked J-K flip-flop.
(a) How does this flip-flop differ from the clocked J-K flip-flop discussed in Sec. 5.3. l?
(b) What is the restriction on the clock signal for the flip-flop shown in Fig. 5.15? Why?

5.20. Complete the timing diagram of Fig. 5.39 for the 74' 107 J-K flip-flop of Fig. 5.3(a) to
demonstrate the difference between a synchronous and an asynchronous clear operation.
Do not show the propagation delays.

H
CLK

L I
I rn H I

J I L I I I I
H rn :n: K
L I I
H I

CLR I L
I

Q/Q+
H ----,
L

I

Figure 5.39 Timing diagram for Problem 5.20.

5.21. Given the circuit diagram of Fig. 5.40(a) consisting of a normal D flip-flop and a gated D
flip-flop (see Example 5.2 and Fig. 5.8 for details), complete the timing diagram of Fig.
5.40(b). Do not show the propagation delays.

FFA

DATA.ff D Q QA.H QB.H

LOAD.H

SYSCLK.H
(a)

170 5/SEQUENTIAL MSI CIRCUIT ELEMENTS

I
I I

H I I I
DATA _JJ I q 4-L I I

I I
H I

LOAD I I L I I
H I I

QA/QA+ I I I
L --t I I

I I I
H

I I l QB/QB+
L ----, I I

I I I
(b)

Figure 5.40 Circuit diagram and timing diagram for Problem 5. 21.

5.22. A 4-bit binary counter is to be designed and realized using D flip-flops. The count is to be
as follows:

... , 0000, 0001, 0010, 0011, 0100, ... , 1110, 1111, 0000, 0001, ...

(a) Draw the state diagram for the count sequence.
(b) Draw the functional block diagram for the counter, including the D flip-flops and the

corresponding combinational circuit, in the manner shown in Fig. 5.18(a).
(c) Determine the required logic equations and draw the circuit diagram for the counter.

5.23. Repeat Problem 5.22 using J-K flip-flops.

5.24. Repeat Problem 5.22 using T flip-flops.

5.25. Design and realize a 3-bit counter that counts in the following sequence:

... , 111,010,001, 110,100,000,111,010,001,.

(a) Use D flip-flops.
(b) Use J-K flip-flops.
(c) Use T flip-flops.

5.26~ Design and realize a 4-bit decade counter with a synchronous CLEAR input. Use D flip
flops.

5.27. Design and realize a 3-bit Gray-code counter with an enable (EN) input. Use J-K flip-flops.
The counter is to count in the prescribed Gray-code sequence if EN is true at the next active
clock transition. But if EN is false at this transition, then the counter does not count and,
instead, retains its current value. The Gray-code sequence is as follows:

... , 000, 001, 011, 010, 110, 111, 101, 100,000, 001, ...

Observe for the Gray code that only one bit value changes from one number to the next in
the sequence. This is an important feature in some applications.

5.28. A counter is to be designed for counting in four different sequences under the control of
two inputs X 1 and X2 as follows:

'pROBLEMS

For inputs

x,
0
0

0
l
0

The sequence is

... , 00. 0_l, 10, l l, 00, .. .

... , 11. lO,Ol,00, ll, .. .

... , 10.11,0,,00, 10, .. .

... , 01. l l, 10, 00, 01, .. .

The inputs X1 and X2 can affect the count sequence at any point during the sequence.
(a) Draw a state diagram for this counter.
(b) Design and implement this counter. Use J-K flip-flops.

171

5.29. Determine the count sequence for the counter of Fig. 5.41. Also, draw a state diagram for

'
it.

Q C
Q

c
A

Q B
B
A

C
B Q A

Q
CLK

Figure 5.41 Counter circuit for Problem 5.29.

5.30. Design the 4-bit binary down-counter shown in Fig. 5.42 using a 74' 163 plus any gates
that are necessary. This counter is to have the same features as the 7 4' 163 except for the
count sequence, which is as follows:

... , 0000, 1111, I 110, 1101, 1100, 1011, ... , 0010, 0001, 0000, 1111, ..

Down-counter

4,,,
DrDo /

4 /
Q3-Qo /

: CLR
~ LD

CEP
CET TC
t>

Figure 5.42 Down-counter for Problem 5.30.

172 5/SEQUENTIAL MSI CIRCUIT ELEMENTS

5.31. Show that the 4-bit binary down-counter of Fig. 5.43 can be realized with only a 74' 163.
No additional components are needed.

Down-counter

4

TCi-----

Figure 5.43 Down-counter for Problem 5.31.

5.32. Using a 74' 163 and any gates that are needed, realize a decade counter similar to the
74' 162.

5.33. Design and implement the counter circuit of Fig. 5.44 using a 74'163 and any gates that
are needed. This circuit is to be used to determine if an event has occurred ten or more
times. It is synchronously cleared when the CLR input is equal to true or when the count
has reached 1111. This counter circuit will count only if it detects a true value at the
EVENT input at an active clock transition. The (COUNT > = 10) output is true only when
the count is greater than or equal to 1001.

Event counter

----1~....iEVENT
(COUNT> = 10) ..-----1-

--......,..0u CLR

>
Figure 5.44 Counter circuit for Problem 5.33.

5.34. Show what must be done to the 74' 194 to transform it into a 4-bit storage register.

5.35. Using a 74'194 and any gates that are needed, design and implement the sequence detector
circuit shown in Fig. 5.45(a). The circuit input is a sequence of I-bit values (either a O or
a 1) detected at each active transition of the clock signal. When the circuit detects the
sequence 1101, the output FOUND.SEQ becomes true for one clock cycle, as shown in
the timing diagram of Fig. 5 .45(b).

Sequence detector

----11-..-.t DATA.BIT

FOUND .SEQ i---------1-.....

>

PROBLEMS 173

(b)

Figure 5.45 Sequence detector and timing diagram for Problem 5.35.

5.36. By cascading two 74' 194 shift registers, construct an 8-bit universal bidirectional shift
register.

Chapter 6

LSI Circuit Elements

6.1 INTRODUCTION

174

Recent rapid advances in large-scale integration technology have resulted in a larger and
larger number of standard logic functions being integrated on a single chip. A single LSI
(large-scale integrated) chip ~an now perform a number of logic functions that formerly
required an entire circuit board of MSI (medium-scale integrated) and SSI (small-scale
integrated) circuit elements.

There are, of course, significant advantages in the use of the LSI circuit elements
instead of SSI or MSI. For a given number of logic functions, the use of the LSI circuit
elements results in a reduction in the IC package count. This translates into a reduction
of power consumption as well as of the PC (printed circuit) board space that is required.
A reduction in the number of IC packages also results in an increase in reliability since
the number of interconnections, a major source of failure, is reduced. The end result is
a reduction in the total cost of the digital product. Less than half the cost of a digital
product is in the actual purchase price of the I Cs. Most of the cost relates to PC board
area, assembly, and the testing associated with the product, all of which are reduced
with the use of LSI circuit elements.

A less obvious but more important advantage of using higher-density circuit ele
ments is the decrease in design complexity. In the top-down design approach to be
presented in Chapter 7, the design process naturally leads into the use of high-level logic
functions that are realized as LSI and MSI circuit elements. This design, being systematic
and less complex, results in an increase in the ease of realization, testability, and main
tainability of the digital circuits.

In the preceding two chapters common MSI circuit elements were presented. In
this chapter we will conclude the presentation of the digital building blocks with the
study of the commonly used LSI circuit elements, including the arithmetic logic unit
(ALU), the look-ahead carry adder, the programmable logic array (PLA), and the pro
grammable array logic (PAL). Also presented in this chapter are the various types of

. 6.2/AAITHMETIC LOGIC UNIT 175

random access memories, including the read-write memories (static and dynamic RAMs)
and the read-only memories (ROM, PROM, and EPROM). The currently most important
LSI circuit element, the microprocessor, is omitted from this chapter, but it is the major
topic, along with microprocessor-based design, of the second half of this book.

6.2 ARITHMETIC LOGIC UNIT

An arithmetic logic unit (ALU) is a combinational circuit element that performs a set of
commonly used arithmetic and logic operations. A representative example of a com
mercially available ALU is the 74' 181, a block diagram of which is shown in Fig. 6. l(a).
The corresponding functional description is given by the table of Fig. 6. l(b).

74'181

4,
A3-Ao ,

4,.
4, F3-Fo ✓

/ BrBo
G
p

(A B)

: en en+ 4 ::;

M S3-So

/4

(a) Active-high view

Active-high data

Selection
M = L; Arithmetic operations

M=H
logic Cn =H en= L

S3 S2 SI so functions (no carry) (with carry)

L L L L F=A F=A F= A PLUS 1
L L L H F=A+B F=A+B F = (A + B) PLUS I
L L H L F=AB F A+B F = (A + B) PLUS I
L L H H F=0 F = MINUS I (2's COMP) F= ZERO
L H L L F=AB F=APLUSAB F = A PLUS AB PLUS I
L H L H F=B F = (A + B) PLUS AB F = (A + B) PLUS AB PLUS 1
L H H L F=AEBB F =A MINUS B MINUS I F= A MINUS B
L H H H F=AB F=ABMINUS I F=AB
H L L L F=A+B F=APLUS AB F == A PLUS AB PLUS I
H L L H F=AEBB F = A PLUS B F = A PLUS B PLUS I
H L H L F=B F = (A + B) PLUS AB F = (A + B) PLUS AB PLUS I
H L H H F=AB F = AB MINUS I F=AB
H H L L F=l F=APLUSA F = A PLUS A PLUS 1
H H L H F=A+B F = (A + B) PLUS A A= (A + B) PLUS A PLUS I
H H H L F=A+B F = (A + B) PLUS A F = (A + B) PLUS A PLUS I
H H H H F=A F= A MINUS I F=A

(b) Functional description of the active-high view

Figure 6.1 The 74'181 ALU.

176 6/LSI CIRCUIT ELEMENTS

74'181
4 ,

: ArAo ' 4
FrFo::

,

4
,

~ - BrBo , -
G --
p --(A= B)

en Cn + 4

M SrSo

}'4

(c) Active-low view

Active-low data
Selection

M = L; Arithmetic operations
M=H
logic Cn = L Cn = H

S3 S2 SI so functions (no carry) (with carry)

L L L L F=A F= A MINUS l F=A
L L L H F=AB F= AB MINUS l F=AB
L L H L F=A+B F = AB MINUS l F=AB
L L H H F=l F = MINUS 1 (2's COMP) F=ZERO
L H L L F=A+B F = A PLUS (A + B) F = A PLUS (A + B) PLUS l
L H L H F=B F = AB PLUS (A + B) F = AB PLUS (A + B) PLUS l
L H H L F=A<:BB F = A MINUS B MINUS 1 F=A MINUS B
L H H H F=A+B F=A+B F = (A + B) PLUS l
H L L L F=AB F = A PLUS (A + B) F = A PLUS (A + B) PLUS 1
H L L H F=AEBB F= A PLUS B F = AfLUS B PLUS 1
H L H L F=B F = AB PLUS (A + B) F = AB PLUS (A + B) PLUS 1
H L H H F=A+B F =(A+ B) F = (A + B) PLUS 1
H H L L F=0 F = A PLUS A F= A PLUS A PLUS l
H H L H F=AB F = AB PLUS A F = AB PLUS A PLUS l
H H H L F AB F=ABPLUSA F = AB PLUS A PLUS 1
H H H H F=A F=A F = A PLUS 1

(d) Functional description of the active-low view

Figure 6.1 (cont.)

The primary inputs to this ALU are two 4-bit operands: ArAo and B3-B0 • The
ALU performs some operation on these operands to produce a 4-bit output FrF0 . The
specific operation that is performed depends on the function selection inputs, S3-S0 , as
well as on the mode control input M. As shown in the table of Fig. 6. l(b), if M == 1
(H), then one of the 16 logic operations is performed, the particular one depending on
the values of S3-S0 • If M = 0 (L), however, then one of the 32 predominantly arithmetic
operations is performed, the particular one depending on the values of S3-S0 and en.

The input en is the carry-in input for arithmetic operations. And en+ 4 is the carry
out output. The output (A = B) is for magnitude comparison operations. It is true (H)

6.3/LOOK·AHEAD CARRY CIRCUITS FOR ADDERS AND ALUs 177

when A3-A0 is equal to B3-B0 , and is false (L) otherwise. The group-generate output G
and the group-propagate output P will be discussed in following sections.

With mixed logic, a second view of the 74' 181 ALU, with active-low operands,
is possible. The block diagram of it is shown in Fig. 6. I (c). As specified by the corre
sponding functional description of Fig. 6. l(d), this view gives rise to a new set of
arithmetic and logic operations.

From Figs. 6. l(b) and· (d), it is evident that the 74' 181 performs all the commonly
used arithmetic and logic operations, along with some not so common ones. The 7 4' 181
provides a powerful building block and an economic means for the design of digital
circuits that require a variety of these operations.

6.3 LOOK-AHEAD CARRY CIRCUITS FOR ADDERS AND ALUs

As was explained in Sec. 4.2.2 of Chapter 4, parallel adders may require excessive
amounts of time for adding operations. Consider the 4-bit parallel adder of Fig. 4.3,
which is reproduced in Fig. 6.2 for convenience. Since the carry-out of each full-adder
stage is connected to the carry-in of the next stage, the carry-in for each stage is not
stable until the preceding stage produces a stable carry-out output. For example, the
carry-in for Stage 1 is not stable until Stage O produces a stable output at C 1• Similarly,
the carry-in to Stage 2 is not stable until Stage 1 produces a stable output at C2, and so
forth. In this manner, the carry "ripples" down the chain of full adders. Consequently,
after the inputs are applied to an N-bit ripple adder, the outputs do not become stable
until a time equal to N x tp(FA), in which tp(FA) is the propagation delay of a full
adder stage. If N is large, say 64 bits, then the time for the carry to propagate to the last
stage can be substantial.

Since the addition operation is a fundamental arithmetic operation upon which other
arithmetic operations are frequently based, it is extremely desirable to optimize its per
formance and reduce the time for the carry-in of e·ach adder stage to become stable. The
most common technique to accomplish this is with look-ahead carry circuits. Recall
from Sec. 4.2.1 that the equations for the outputs for the full adder at each adder stage
are

and

,-- -- ----- -1---- -,
I A3 B3 A2 B2 A1 B1 Ao Bo I
I I
I I
I. I
I C4 Stage 3 C3 Stage 2 C2 Stage I c, Stage 0

c0 I

I FA FA FA FA I
I I
I I
l I
I S3 S2 s, So I L __ ------ ------- ------- _ __ _J

Figure 6.2 Parallel adder circuit diagram.

178 6/LSI CIRCUIT ELEMENTS

Let us now define the following variables:

G- = A-B-l l l and

With the substitution of these variables, the Ci+ 1 equation becomes

Ci+ I = G i + p ;Ci

The variable G; is called the carry-generate for the ith adder stage. It is the logic
AND of the two input bits to that stage, Ai ahd B;. Its significance is that a carry-out is
generated by Stage i if G1 = I (i.e., A; = I and Bi = 1), regardless of what transpires
in the adder stages preceding Stage i. In other words, if G; = l, then C;+ 1 = I regardless
of the value of C;, For example,

Stage (i + l) (i) (i - l) (0)
C l X X X
A X X
B X X

Sum X X X

where X = don't care

The variable P; is called the carry-propagate for the ith adder stage. It is the
Exclusive OR of the two input bits Ai and B; to that stage. Consequently, if Pi = 1
(i.e., A; = 1 and B; = 0, or A; = 0 and B; = 1), then the carry-in C1 for this stage
will be propagated to the carry-out C;+ 1• In other words, if P; = 1, then Ci+ 1 = C;,
as is illustrated by the following examples:

Stage (i + 1) (i) (i - l) (0)
C 0 0 X X
A l X X
B 0 X X

Sum X X X

Stage (i + l) (i) (i - l) (0)
C 1 l X X
A l X X
B 0 X X

Sum X X X

Using this modified C;+ 1 equation, we can calculate the values of the carries at
each adder stage:

cl =Go+ PoCo

C2 = G 1 + P 1C 1 = G~ + P1.Go + P1P0C0

C3 = 0 2' + P2C2 = G2 + P2G 1 + P2P 1G0 + P2P 1P0C0

C4 = G3 + P3C3 = G3 + P3G2 + P3P2G1 + P3P2P1G0 + P3P2P1P0C0

,.,.-.~~

6.3/LOOK·AHEAD CARRY CIRCUITS FOR ADDERS AND ALUs 179

In general,

en = Gn l + pn_ .en I

= Gn- l + Pn lGn-2 + pn_ 1Pn-2Gn-3 + • · · + pn_ 1Pn-2Pn 3 • • • PoCo

Note that C0 is the only carry that appears in this equation. Consequently, the carry-in
of any adder stage in an N-bit parallel adder can be determined from only the Ai and Bi
inputs and C0• Thus, to calculate the value of any C11 we do not need the value of C11 _ 1,

Cn_ 2, or of any of the preceding carries except C0 • Clearly, then, it is possible to design
a parallel adder in which the carry-in of any adder stage does not have to wait for the
carry to be propagated down the adder chain.

In terms of hardware, each C; can be realized as a combinational circuit consisting
of two levels of AND-OR gates, as shown in Fig. 6.3. This circuit is called a look-ahead
carry circuit. After the inputs have been applied, the outputs of an N-bit adder with look
ahead carry circuitry will be stable at a time equal to tp(CLA) + tp(FA), independently
of the value of N. Here, tp(FA) is again the propagation delay of a full adder, and
tp(CLA) is the propagation delay of the two-level AND-OR look-ahead carry circuit.

Look-ahead carry circuits based on the above discussion are frequently used in
commercially available ICs. For example, both the 74'83 and 74'283 MSI 4-bit adders,
described in Sec. 4.2.2, have look-ahead carry circuitry for faster addition. The 74' 181
ALU, described in the preceding section, also has the look-ahead carry feature. Fur-

A3 B3 A2 B2 A1 81 Ao Bo

., ~ ~' ,,.,

CLA4 CLA3 CLA2 CLA1

. , 1. ,. ' . .
.... Stage 3

f-,,,4- Stage 2 --- -+ Stage 1 Stage 0 - FA FA FA FA -
C4 C3 C2 C1 Co

S3 S2 S1 So . '

C1 =Go+ Po Co
C2 G1 + P1 C1 G1 + P1 Go+ P1 Po Co
C3 = G2 + P2C2 = G2 + P2G1 + P2P1 Go+ P2P1P0Co
C4 = G3 + P3C3 = G3 + P3G2 + P3P2G1 + P3 P2P1 G0 + P3P2P1 P0 C0
in which Gi = Ai Bi and Pi= Ai EB Bi

Figure 6.3 4-bit adder with carry look-ahead circuitry.

180

74'182 74'182

Go en +x:;
Po
G1 en +y =
P1
G2 Cn + z ::
P2
G3 G
P3

: en p

(a) Active-high view (b) Active-low view

en+ X = Go + Poen
Cn+y=G1 +P1Go+P1Poen
en +z = G2 + P2G1 + P2P1 Go "f: P2P1 Poen

G=G3 +P3G2 +P3P2G1 +P3P2P1G0
P=P3P2P1P0

(c) Functional description

Figure 6.4 The 74' 182 look-ahead carry generator.

6/LSI CIRCUIT ELEMENTS

thermore, look-ahead carry circuits themselves are commercially available as ICs. An
example is the 74' 182 look-ahead carry generator. Two functional block diagrams for it
are shown in Figs. 6.4(a) and (b), and the corresponding functional description is given
in Fig. 6.4(c). The inputs to the look-ahead carry generator are the various carry-generates
and carry-propagates (G;'s and P/s) and the carry-in (Cn) for the group of adders. The
outputs from it are the carries (C 11 +x, Cn+y, and Cn+z), the group-generate (G), and the
group-propagate (P). The use of the 74' 182 look-ahead carry generator will be illustrated
in the next section.

6.3.1 Modified Look-Ahead Carry Approaches

In the look-ahead carry scheme, the price that is paid for the performance improvement
is the additional hardware, which consists of the look-ahead carry circuit for each adder
stage. As is evident from Fig. 6.3, for each successive adder stage, the look-ahead carry
circuit becomes more complex and can quickly become unmanageable. As an illustration,
the look-ahead carry circuit for Stage 15 requires 33 inputs. Clearly, to handle look
ahead carry for larger multibit adders, the look-ahead carry scheme needs to be modified.

One approach is to have a scheme that is a combination of look-ahead carry and
ripple carry. This approach is illustrated by the 16-bit adder shown in Fig. 6.5. In this
approach, look-ahead circuitry is used within each of the 4-bit adder groups, but carries
are rippled between each group. The propagation delay for this 16-bit adder is equal to
4 x tp(adder group), in which tp(adder group) is the time required for an adder group
to produce the sum and the carry-out for that group. Although this delay time is greater
than that of a 16-bit adder that employs full look-ahead carry across all 16 bits, the
hardware requirement is far less. Also, this delay time is still substantially less than that
of a 16-bit ripple adder without any look-ahead carry circuitry.

6.3/LOOK•AHEAD CARRY CIRCUITS FOR ADDERS AND ALUs 181

B15-812

A1s-A12

4! • 4 4 4

74'283 74'283 74'283 74'283
C16 C12

4 4 4 4

S1s-S1.:: S1 i-Ss S7-S4 S3-So

Figure 6.5 16-bit adder with look-ahead carry and ripple carry.

Another approach is to have a multilevel look-ahead carry scheme. Let us define
the following variables for a multibit adder group (here they are defined only for a 4-bit
adder group for simplicity of explanation):

G(group) = G3 + P3G2 + P3P2G 1 + P3P2P1G0

P(group) = P3P2P1P0

The variable G(group) is the group-generate for a multibit adder group. In general, it is
some logic function of the individual carry-generates (G;'s) and carry-propagates (P/s)
within that group. This definition is such that a carry-out, e

0
ui(group), is generated out

of this multibit adder group if G(group) = 1, regardless of what transpires in the adder
groups preceding this group. So if G(group) = l, then e0 ui(group) = 1. The variable
P(group) is the group-propagate for this multibit adder group. It is the logic AND of the
individual carry propagates within that group. If P(group) is equal to 1, then the carry
in for this adder group is propagated to the carry-out of the adder group. In other words,
if P(group) = 1, then e0 ur(group) = ei0 (group). From what has been stated, it is evident
that the G(group) and P(group) variables are defined such that

e0 ui(group) = G(group) + P(group)ei0 (group)

For the 74' 181 ALU of Fig. 6.1, the group-generate G and the group-propagate P
outputs are produced in this manner. Using these group-generate and group-propagate
outputs with look-ahead carry generators, such as the 74' 182 shown in Fig. 6.4, we can
connect a number of 74' 181 ALUs in a multilevel look-ahead scheme. Shown in Fig.
6.6 is a 16-bit ALU constructed in this manner. Note that in performing the addition
operation each of the 74' 181 ALUs cannot produce stable outputs until its respective en
input is stable. This 16-bit ALU functions as follows: Given that the two 16-bit operands
and the ein are applied, look-ahead circuitry within each 74' 181 produces the group
generate and group-propagate outputs after a delay of tp(181 PG). Then, it talces the
74' 182 look-ahead carry generator a delay of tP(l82) to produce en+x, en+y, ahd en+z•
At this point in time, the en for each of the 74'18ls is stable. Therefore, the outputs for
the 16-bit ALU become stable after another delay of tP(181ADD), which is the time
required for the 74' 181 to produce the sum. So, the total propagation delay for the 16-
bit ALU for the addition operation is tP(181P9) + tP(182) + tp(ADD).

182 6/LSI CIRCUIT ELEMENTS

A1s-A12 B1~-B12 A11-As Bu-Bs A7-A4 87-84

4 4 4

74']81 74'181 74'181 74'18]

Cn+4 Cn en en

G p G p G p G p

74'182
G p

Figure 6.6 16-bit ALU with multilevel look-ahead carry structures.

As shown in Fig. 6. 7, additional levels of look-ahead carry generators can be used
to realize larger multi bit ALU s. What is the propagation delay for this 64-bit ALU for
the addition operation? (See Problem 6.8.) In general, with this multilevel look-ahead
carry scheme, the addition operation delay is determined by the propagation delays
through the levels of look-ahead circuitry. Certainly this delay is less than for the com
binational approach of Fig. 6.5, where the carry is rippled down a chain of ALUs. Also,
although the delay is somewhat greater, the hardware required is far less than that of an
N-bit adder that employs full look-ahead carry across all N bits.

16 74'18ls

Figure 6. 7 A 64-bit ALU with multilevel look-ahead carry structures.

6.4/PROGRAMMABLE LOGIC ARRAY (PLA) AND PROGRAMMABLE ARRAY LOGIC (PAL) 183

This discussion of the various approaches to look-ahead carry provides a good
illustration of the typical design trade-off between performance and hardware complexity.
Which approach to be taken is, of course, a function of the performance requirements
of the particular digital circuit along with other constraints such as cost, and also the
quantities of the parts that are to be manufactured.

6.4 PROGRAMMABLE LOGIC ARRAY (PLA)
AND PROGRAMMABLE ARRAY LOGIC (PAL)

Consider a digital circuit with ten inputs and eight outputs, as shown in Fig. 6.8(a).
Suppose that each of the outputs is some combinational function of the ten inputs:

Zi = f(Xo, X1, X2, · · · , X9)

A typical output, Zr, can be realized with a two-level, sum-of-products, AND-OR gate
structure, as shown in Fig. 6.8(b). Consequently, the entire circuit of Fig. 6.8(a) can be

Xo
X1 Zo
X2 Z1
X3 Z2
X4 Z3
Xs l4
x6 Zs
X7 z6
Xs Z7
X9

(a) Functional block diagram

X's and X's

(b) Two-level AND-OR structure

Figure 6.8 Conventional realization of a multiinput and multioutput circuit.

184 6/LSI CIRCUIT ELEMENTS

realized with eight of these structures. If this circuit is realized with discrete SSI circuit
elements, such as the AND and OR gates of Chapter 3, then the package count for the
circuit would be substantial. Fortunately, there are attractive alternatives.

In this section we will study two circuit elements, programmable logic arrays
(PLAs) and programmable array logic devices (PALs), that can be used as alternatives
to discrete logic circuit elements for the realizations of multi .. input, multioutput combi
national circuits. Conceptually, PLAs and PALs are straightforward circuit elements that
simply realize sum-of-products gate structures in a systematic manner. The power of the
PLAs and P ALs is that a large number of these sum-of-products structures can be inte ..
grated on a single IC.

6.4.1 Programmable Logic Array

As is illustrated by the one shown in Fig. 6.8(b), logic diagrams are convenient for
representing small logic functions. They can, however, become cumbersome for the
large logic functions that are typically used with PLAs. Consequently, it is desirable to
devise a shorthand notation to simplify logic diagrams for use with PLAs. The notation
that will be used here has been adopted by IC manufacturers.

Shown in Fig. 6.9 are three common logic diagram representations and their equiv
alent PLA representations. In the PLA logic diagram of Fig. 6.9(a), the AND gate for

A-------\

B------+--

(a) AND gates

(b) OR gates

A------1 ---A

--C>-A
(c) Inverter

Figure 6.9 Equivalent PLA logic diagrams.

A B C

A B C

A---

1 6.4/PROGRAMMABLE LOGIC ARRAY (PLA) AND PROGRAMMABLE ARRAY LOGIC (PAL) 185

output Y has three inputs. But only two of the inputs are connected to A and B, as
indicated by the two "x's:· and one input is left unused (absence of an "x"). Similarly.
the OR gates in the PLA logic diagram in Fig. 6.9(b) have three inputs. and an x indicates
a connection to an input. The PLA diagram of Fig. 6.9(c) for an inverter is self-explan
atory.

Example 6.1 PLA Equivalent of a Two-Level AND-OR Circuit
Using the notation just described for the circuit diagram of Fig. 6. I O(a), we can obtain
the equivalent PLA circuit diagram of Fig. 6. IO(b). Note that the full capacity of the

A------------------1 ABC

AB

B ______ _..,._...,__ ___
ABc

ABC

BC

(a) Common circuit diagram

ABC AB ABC ABC BC

A

B

C

(b) PLA circuit diagram

Figure 6.10 PLA circuit diagram for Example 6.1.

>--+--- y

>--+--- z

186 6/LSI CIRCUIT ELEMENTS

PLA structure is not utilized. This PLA has four inputs, four outputs .. and eight product
tenns (AND terms). Thus it can realize up to four logic functions (outputs of the OR
gates), but only two of them, Y and Z, are used. Also, each of the OR gates can have
up to eight inputs, and so OR up to eight product terms each. And, each of the AND
gates can have up to eight inputs (actually four inputs or their complements). 1111 •

Example 6.2 PLA Realization of a Truth Table Specification
In this example, the PLA of Fig. 6. IO(b) is used to realize a combinational logic circuit
of four inputs and two outputs, the functional block diagram of which is shown in Fig.
6.1 l(a). The functional description of the circuit is given in Fig. 6. l l(b) in the form of
a truth table, and the corresponding PLA circuit diagram is in Fig. 6. l l (c).

We can program the PLA by finding the minterms corresponding to ls in the output
columns of the truth table, and by making suitable connections (the x's), as should be
apparent. And, we can associate these mintenns with the AND gates which are numbered
0 through 7. Note that mintenn O is XoX 1X2X3 , and is used by OR gate 0, the output
of which is Z0 • Minterm l is XoX 1X2X3 , and is used by both OR gate O (Z0) and OR
gate 1 (Z1), and so forth with the other connections. With this approach we can program
the PLA connections in a straightforward manner. Note from the truth table that the total
number of minterms for the two functions Zo and Z 1 is ten. The number of distinct
minterms, however, is only seven. Three of them (1, 2, and 4) are shared. Since the
required number of min terms is fewer than that provided by the PLA, we can program
the PLA connections directly from the truth table without the need of any reduction
process. • •

Example 6.3 PLA Realization That Requires Reduction
In this example, the same PLA is used to realize another combinational logic circuit.
The functional block diagram of this circuit is shown in Fig. 6.12(a), and its truth table
is given in Fig. 6.12(b). As is evident from the truth table, and unlike the circuit of
Example 6.2, the total number of distinct minterms (12) exceeds the capacity of eight
that is supported by this PLA. Consequently, we cannot program the PLA connections
directly from the truth table, but first must reduce the number of product terms.

Using conventional minimization techniques, as shown in Fig. 6.12(c), we can
reduce the number of distinct product terms to nine, but this number still exceeds the
capacity of the PLA. As shown in Fig. 6.12(d), however, some of the K-map implicants
[(a), (b), (c), and (d)] can be grouped such that they can be shared by both functions.
With this grouping, the total number of distinct product terms is reduced to seven, and
so within the capacity of the PLA. The resultant PLA circuit diagram is shown in Fig.
6. 12(e). An important conclusion from this example is that it is more important to
minimize the number of distinct product terms than to minimize the number of gates in
the conventional sense. • •

In general, a PLA has N inputs, M outputs, and supports K distinct product terms,
as shown in Fig. 6.13. For a PLA realization of a combinational digital circuit, the
number of circuit inputs must be less than or equal to N. Also, the number of circuit
outputs must be less than or equal to M. Furthermore, if after reduction the number of
distinct product terms still exceeds K, then a PLA with a larger capacity is required.

Xo X1 X2 X3 Zo 21
0 0 0 0 0 0
0 0 0 1 0
0 0 0 l l
0 0 I I 0 0
0 0 0 0 0
0 0 l
0 I 0 0
0 1 1 I 0 0

0 0 0 I 0
0 0 I 0 0

Xo Zo 0 0 0 0
0 I I 0 0

X1 0 0 I 1
X2 0 1 0 0

X3 Z1
I 0 0

0 0

(a) Functional block diagram (b) Truth table

Xo I ---+----+------+-----------1--------+--_.,____,.

X1 •~--+---+--~~-....... -----~~-----+--_.,__.....,.

X3 •~------+-----:----,.._--+-----+--+---+---i--__.

(c) PLA realization

Figure 6.11 Illustration for Example 6.2.

187

188

Xo X1 X2 X3 Zo
0 0 0 0 1
0 0 0 1 I
0 0 0 1
0 0 1 0
0 0 0 0
0 0 1
0 0 0
0 1 1

0 0 0
0 0 t I
0 0 0

(a) Functional block diagram 0 I I 0
0 0
0 I 0
l 0 0

(b) Truth table

Xo
X2 X1

X3 00 01 11 10

oo o ! o I 1

01 o :CD, o
11

t-:::=:::;:::;;::::±::::-+-=-J
10 C=::J::::=:::t::::::::...L__J

(c) Conventional minimization results in a total of nine distinct AND tenns

Xo Xo
X2 X1 X2 X1

X3 X3 00

00 00

01 01

11 11

10

(a) Zo
(c)

21

(d) Minimization for PLA realization - a total of seven distinct AND terms

Figure 6.12 Illustration for Example 6.3.

Z1
0
0
1
0
0

0

0
0

1
0
I
0

:xo~---+--+---+----+-~:----t--~:-----t---_.,..____,.

(e) PLA realization

Figure 6.12 (cont.)

PLA

AND Array .
KAND terms

'

...

OR Array . .

Figure 6.13 PLA with N inputs, M outputs, and KAND tenns.

189

190 6·LSI CIRCUIT ELEMENTS

Commercially Available PLAs and FPLAs

9

8

7

6

5

4

3

2

27

26

25

24

23

.,., --
2 l

20

I II

Commercially available PLAs come in two forms: PLAs that are programmed by the IC
manufacturer, and field-programmable PlAs (FPLAs) that can be programmed by users
with FPLA programmers. An FPLA comes from the manufacturer with all the connec
tions intact as integrated fuses. Using an FPLA programmer, a user can program an
FPLA by leaving intact the desired connections (the x's in a PLA logic diagram) and
blowing the fuses of the other unused connections.

1111 1111 1111 I I 1111 II II 1111 111 I 1111 II 11 II D 111 I 1111 1111 1111 111 I JI JI JIJl JlJl JI J I JI II 1111 1111 II I s '
~Der-@
ct X1 D >--@]

ct X2 D ~
ct X3 D ~
ct X4 D ~
ct Xs D r-@

ct
X5 D >---{DJ

47• • • • • •4039• • • • • •3231 • • • • • •2423• • • • • •16 15• • • • • • 8
~

7 • • • • • • 0 X1 D-c ~
Notes: -==- -<P-@
1. All AND/XOR gate inputs with a blown hnk float to a logic I
2. All OR gate inputs with a blown link float to a logic 0

Figure 6.14 82S100 FPLA. (Courtesy of Signetics Corporation.)

· 6.4/PROGRAMMABLE LOGIC ARRAY (PLA) AND PROGRAMMABLE ARRAY LOGIC (PAL)

~ _,w...... __ __,

""""""'--
CE

(a) Active-high

~ _....,__ __ __, ----
CE

(b) Active-low

Figure 6.15 Programming the polarity of an FPLA output tenninal.

191

A typical example of a commercially available FPLA is the 82S 100 shown in Fig.
6.14. With its 16 inputs, 8 outputs, and support for up to 48 product terms, it is capable
of replacing quite a few SSI circuit packages. In addition to the normal functions of a
PLA, commercially available PLAs typically provide other functions as well. The
82S 100, for example, provides a chip enable CE input (pin 19) that allows the outputs
to be three-stated. Additionally, each output can be programmed to be active-high or
active-low.

As shown in Fig. 6.15 for an 82S 100, the programming of an output F; to be
active-high is obtained by leaving the fuse for Xi connected to ground as is graphically
shown by the x. This ground provides a logic Oto an input of the XOR gate, which also
has an Si input, thereby giving S; Et) 0 = S;. On the other hand, for the programming
of an output F; to be active-low, the fuse for X; is blown. This causes the input X; to be
left floating high, as shown in Fig. 6.15(b), thereby giving Si Et) 1 = Si.

Other features are also available in other commercially available PLAs. Included
is the ability to program a terminal to be an input or an output terminal. Also, some
PLAs have on-chip flip-flops for the realization of a single-chip ''state machine,'' such
as those to be presented in Chapter 7.

6.4.2 Programmable Array Logic

The programmable array logic (PAL) also realizes sum-of-products gate structures in a
systematic manner. It is a special case of the PLA, having a fixed-OR array instead of
the PLA programmable OR array. Consequently, it is sometimes called a fixed-OR array.
PALs are commercially available in various sizes for providing various functions. Shown
in Fig. 6.16 is a relatively small PAL, the PAL14H4, which has 14 inputs, with internal
inverters to provide the respective complements. It also has four active-high outputs,
each from an OR gate that can accommodate only four product terms.

192

A
I

B
2

C 3

4

- >
v-

..._
.....

v-

V -

V""'

Inputs (0-31)
=- ,. =-N~ ~~Q~ Z~-- --

6 ~r--.,.--~....i--~-+-+--+-+-.....+--+-+--'
v-

7
v-

8
.........

9

:.r.:-::-:
'"•'"'•....,""'":

6/LSI CIRCUIT ELEMENTS

15

14

-

12
.....+-i-+,,i-------o~ ~.-----

0-N,.,.. "l"V)..0~ CC:,CJ'I.Q-
,....,...,..,.,..,. ...,..NNN NNf'W"'llf'W"')

Figure 6.16 PALl • H4 realization of Y = ABC + AB + ABC and Z = AB + ABC + BC
from Fig. 6. IO(a) of Example 6.1.

Figure 6.16 also illustrates the use of a PAL. The shown x's provide the realization
of the combinational circuit in Fig. 6. lO(a) of Example 6.1. Note the x's in two of the
AND gate symbols. When an input of an OR gate is not used, an xis graphically placed
in the corresponding AND gate symbol. As shown in Fig. 6. l 7(a), the x is simply a
shorthand notation to designate that all the inputs (including the complement values) are

6.4/PROGRAMMABLE LOGIC ARRAY (PLA) AND PROGRAMMABLE ARRAY LOGIC (PAL)

A A B B A A B B

X z

Z = A•A·B·B = 0

(a) All inputs are connected

A A B B

Z=l

Z=l

(b) All inputs are disconnected and left floating high

Figure 6.17 PAL shorthand notation.

193

z

left connected. As a result, the output of the AND gate is false (L) and so will not affect
the function of the following OR gate. Note also that since the OR array is fixed (four
AND gates are permanently assigned), the AB product term cannot be shared by the
outputs, as it was in the PLA realization of Fig. 6. lO(b). Instead, the product term AB
has to be generated for both Y and Z.

In addition to providing the normal functions of a PAL, commercially available
PALs typically provide other functions as well. Shown in Fig. 6.18 is the PAL16L8,
which illustrates some of these additional functions. It has ten dedicated inputs (pins l,
2. 3, 4, 5, 6, 7, 8, 9, and 11), and two dedicated active-low outputs (pins 12 and 19).
Additionally, there are six 1/0 pins (pins 13-18), each of which can be programmed to
be either an input or an output pin, as controlled by a three-state inverting buff er. Each
output can accommodate up to seven product terms. With the programmable pins, the
PAL16L8 can have up to 16 inputs and 2 outputs, or 10 inputs and 8 outputs, or any
combination in between.

For an 1/0 pin to be programmed as an input, the output of the AND gate that
controls the three-state buffer must be false (L). As is shown in Fig. 6.19(a), this is
obtained by leaving connected all the inputs to that AND gate. For the programming of
an 1/0 pin to be an output, the output of the controlling AND gate must be true (H).
As is shown in Figs. 6 .17 (b) and 6. l 9(b), this is obtained by disconnecting all the inputs
to that AND gate.

For an illustration of the use of a PAL, connections are shown in Fig. 6.18 for
realizing the functions specified in the truth table in Fig. 6.12(b) of Example 6.3. The
inputs Xo, X1, and X2 are assigned to dedicated input pins, but input X3 is assigned to
an 1/0 pin that is programmed as an input pin. The output Zo is assigned to a dedicated
output pin, and output 2 1 is assigned to an 1/0 pin that is programmed to be an output
pm.

Inputs (0-31)

..,...,.,..0 o- Nf"l"'l~•r • ..c ~:,,, 0-N.......-:. ;z~~!:; x:-:,-c-
::,-Nl"'I"".: .::c-:,,.-- r•Nr•r• N r"';.~

() -
I "

r-J ~
2

' 19 J
4

: = = -
5
6
7 .

2 ...
::i,

L 1---.... - -""
II -
<J = r-J_ 10 -- = 18 11

..
I 2 = = I J

~ 14
I~

3
"' C I---

v- -"
16 -
17 = r-J_ 111 = 17 ,~ =
20 = ~

2 I =
= 22 = ' 2.l -

4 ...
::i, L 1---

v- -
~4 -= rt 1 ~ -26

'27 = 16 = HI = 2'1 = JO
.ll = - '

5 ...
"' L 1---- - "'I

.12 -
JJ "'

r-J .l4 =
.l5 = 15
.lt, --
.l7 = -.lK = .W - ' 6

1---.... - - ""'
40 -
41 = r--J_ 42 =
4J = 14 = 44 -45
46
47 - ' 7 ...

... ~ "' - - "'
411 -

=

>-t
411 = 50 = 13 5 I = ~2
5.l = = ~4 = ~5 - ' 8 A

::i,
C 1---... - --

56 -
q "' >-t 5H =
<;<J 12
1'10
Ill = h2 -hl -

9 ...
I

11
i C ... - - "'I

From Fig. 6.12(c):

20 = X1 X2 + X0 X1 X2X3 + X0 X1 X2X3 + X1 X2X3 + X0 X2X3
Z1 = XoX2X3 + XoX1 X2X3 + XoX1 X2X3 + XoX1 X2X3 + X1 X2X3

Figure 6.18 PAL16L8 realization of Example 6.3.

194

6.4/PROGRAMMABLE LOGIC ARRAY (PLA) AND PROGRAMMABLE ARRAY LOGIC (PAL) 195

--X)o-----------

3-stated

(a) PAL 1/0 terminal programmed as an input

(feedback)

(b) PAL 1/0 terminal programmed as an output

Figure 6.19 Programming of an 1/0 terminal of a PAL.

Observe that Z0 and Z1 are active-low outputs. If active-high outputs are required,
there are three ways of obtaining them. External inverters can be used to change the
polarity of the outputs. Alternatively, DeMorgan's laws can be used to convert the logic
functions to obtain Z0 and Z1, and then these can be realized with the PAL. [Recall that
Z.L is equal to Z.H. (See Problem 6.14.)] Finally, of course, another comparable PAL
with active-high outputs can be used.

In summary, a PAL can be used to realize sum-of-products expressions in a sys
tematic manner, and it is a special case of the PLA. Since the number of product terms
for a PAL is fixed to a limited number for each output, a PAL is more restrictive in use
than a PLA. However, when applicable, a PAL is less expensive and is generally easier
to program than a PLA. These attributes make the PAL an attractive alternative to discrete
SSI gates as the basic components·of a digital system. According to PAL manufacturers,
a single PAL package can realize the equivalent logic of 4 to 12 SSI and MSI packages.

196

2 ...
::It -

3 ...
::It

..... -

4 ..
.::It ... -

5
:-. -

6
"' -

7
"' ... -

8
~ ... -

9
i ... -

0
I
2
3
4
5
6
7

1$
9

10
II
12
13
14
I 5

16
17
18
19
20
21
22
23

24
2S
26
27
28
29
30
31

J2
33
34
JS
Jt,
J'l'
38
39

40
41
42
43
44
45
46
47

48
49
50
SI
S2
SJ
S4
55

S6
57
S8
59
60
61
62
63

Inputs (0 31) -
o- =~:::.~ .Qr-OOC:,, ~;::;~;::; ;?;~~~ ~~~;:; O-N~ ,i;;t"~.,()r-,,, x.~--

o-~~ ~~~,..,. ~~o- N~~~ ~,..,.~~ 0-N~ ~~~~ ~~o
-- ---- ---- NN~N ~NNN NN~~

6/LSI CIRCUIT ELEMENTS

...
=

~
=
= 19 ;:::

=

'

C 1---
,...
=

-~

= - 18
"' ~
= -- '

L 1----
-
=

-~ C

= D Q-= =
;::: -~7 -

' -
-

~
= -"= -D Q-
= _/

=
;:: -2:__9_7 ,..

!-J
-

~
=
=
= -.. D Q-
= -- --?__2.7 -

IC I -
-

~
=

DO-
-

C

-~ 07
-

-= _n! -= 13 = --=
'

C 1----
-..

)--A-:::

= 12 =
= ..
;a. - '

.~ C I---

Figure 6.20 Logic diagram of the PAL16R4.

Additionally, other PALs, such as the PAL16R8, the PAL16R6, and the PAL16R4, have
on-chip flip-flops along with the PAL arrays, as is shown in Fig. 6.20 for the PAL16R4.
With one of these it is possible with a single IC to realize a state machine, such as one
of those that are discussed in Chapter 7.

6.5/MEMORIES 197

6.5 MEMORIES

Memories are circuit elements that are used in digital circuits for storing large amounts
of information. A general model of a memory circuit element is shown in Fig. 6.2l(a).
Conceptually, it is a collection of 2n addressable storage registers, each of which contains
m bits. Associated with each storage register, which is called a memory location, is a
unique memory address. As shown in Fig. 6.2l(a), the address of the first memory
location is 0, that of the second memory location is 1, and so forth up to the last memory
location which has an address of 2n - 1. With the specification of an n-bit address at
the ADDRESS inputs, the contents of any of the 2n memory locations can be accessed
directly (i.e., randomly), without the need to sequentially traverse the preceding locations
to get to the specified location. For this reason, this type of memory is commonly called
a random access memory. The m-bit data is transferred to and from a memory location
through m bidirectional (input/ output) DAT A lines of the memory unit.

Memory

0

n, - l
, - ADDRESS

2

m,.
DATA •

•
•

,
CONTROL ,

2° - l 11 • • • I

10 ,

- 8,. -, -

,, -,

l K X 8 memory

0

1

2
A9-Ao

10
DrDo

11

CONTROL

1023

m

(a) General model of a memory

•
•
•

•
•
•

1111111
"---v------'

8

10,

- 8,
,

,
,

(b) 1 K X 8 memory with addresses
in decimal

Figure 6.21 Models of memories.

-

lK X 8 memory

000H

001H

002H
A9-Ao

•
• .

D7-Do
00AH

00BH

•
•

CONTROL •

3FFH

'
8

(c) l K X 8 memory with-addresses
in hexadecimal

198 6/LSI CIRCUIT ELEMENTS

. In general, two types of memory operations can be perf onned: memory read and
memory write. For a read operation, data is retrieved from one of the memory locations
by specifying an n-bit address at the ADDRESS inputs, and applying appropriate control
signals at the CONTROL inputs to cause the contents to be read from the specified
location. After a time equal to the access time of the memory, the m-bit contents of that
memory location are available on the DATA outputs. For a write operation, data is stored
into one of the memory locations by specifying an n-bit address at the ADDRESS inputs
and applying the m-bit data to be stored at the DAT A inputs. At the same time, appro
priate control signals are applied at the CONTROL inputs to cause the m-bit data to be
stored at the specified memory location.

The capacity of a memory unit is characterized by the number of memory locations
that it contains and the number of bits per memory location. The capacity of a memory
unit can be determined from the number of its ADDRESS input lines and the number of
its DATA lines. For an illustration, consider the memory unit of Fig. 6.2l(b) which has
ten ADDRESS lines and eight DATA lines. With a IO-bit address, we can generate
unique addresses for up to 210 = 1024 different memory locations, which means that
this memory unit has this number of memory locations. Also, since the memory has
eight DA TA lines, each memory location contains 8 bits. Consequently, the memory
unit of Fig. 6.21(b) has a capacity of 1024 x 8 bits. In the terminology of random
access memory, it is a lK x 8 memory unit, in which K represents 1024. In general,
a memory unit with n ADDRESS lines and m DATA lines has a capacity of 2n x m
bits. Note that in Fig. 6.21(b): the memory addresses are specified in decimal, from 0
to 1023. In digital design, though, it is frequently more useful to specify the memory
addresses in hexadecimal, as shown in Fig. 6.2l(c). Hex notation for memory addresses
will be generally used in this book.

Any random access memory can be classified as either a read-write memory (RWM
or RAM) or a read-only memory (ROM). Read-write memory is commonly referred to
as RAM (random access memory), which is a misnomer since a read-only memory is
also a random access memory. Although a misnomer, the tenn RAM is universally
accepted, and so it will be used throughout this book to refer to read-write memory.

Read-write memory can be further classified as static RAM or dynamic RAM. A
static RAM is a read-write memory in which data is stored in flip-flop storage elements.
With such storage, the data bits retain their values as long as the memory is supplied
with power. In contrast, a dynamic RAM is a read-write memory in which data is stored
as charges on capacitors. Left unattended, any capacitor will eventually lose its charge.
Consequently, periodic refresh operations are required in a dynamic RAM to retain the
data bit values. Static RAM is discussed in Sec. 6.5.1. and dynamic RAM in Sec. 6.5.3.

A read-only memory is a random access memory in which, under normal operation,
the data stored in each memory location can be read by a read operation, but cannot be
altered by a write operation. An advantage of the read-only memory over RAM is that
the data storage is nonvolatile. In other words, data stored in a read-only memory is
retained even if there is a temporary loss of power. Different versions of ROM are
available, including masked programmed read-only memory (ROM), field-programmable
ROM (PROM), and erasable program ROM (EPROM). Read-only memories are dis
cussed in Sec. 6.5.2.

6.5/MEMORIES 199

6.5.1 Static RAM

A general model of the static RAM is shown in Fig. 6.22(a). It is essentially the same
block diagram as that of Fig. 6.2l(a) except for having a detailed specification of the
control inputs, which are the (nonnally) active-low inputs WE and CE. The functions
of these inputs are given in the table of Fig. 6.22(b).

For a read operation, the n-bit address is specified at the ADDRESS inputs. and
the chip-enable (CE) input is made true (L) and the write-enable (WE) input is made
false (H). After a time equal to the access time of the memory, the m-bit contents of the
specified location become available at the DATA outputs. For a write operation. the
n-bit address is specified at the ADDRESS inputs. Additionally, the m-bit data to be
stored is applied at the DATA inputs. Also, the CE and WE inputs are made true (L).
Then, after a time equal to the access time of the memory, the data is stored in the
specified memory location.

Static RAMs are commercially available in various sizes, such as, for example,
256 x 4, lK x I, IK X 4, 4K x 1, 2K x 4, 2K X 8, and up. Shown in Fig. 6.23
is a typical example of a commercially available l K x 4-bit static RAM with three-state
outputs. As shown in the block diagram of Fig. 6.23(a), it has ten address lines (A9-A0)

and four data lines (DrD0). There are also two active-low control inputs: WE (write
enable) and CS (chip select). The controls for the operations of the RAM are summarized
in the table of Fig. 6.23(b). The WE input specifies the operation, and is false (H) for
a memory read and true (L) for a memory write. The chip is functional only if the chip
select input (CS) is true (L). Otherwise, the data lines, DrDo, are put into a high
impedance (high-Z) state that electrically disconnects them from the data outputs.

Often in the design of a digital system, the desired memory module requires a
capacity greater than that provided by any commercially available memory chip. Then
it is necessary to construct this memory module from several memory modules of smaller
sizes. Shown in Fig. 6.24 is a technique for realizing a memory module with an additional
number of bits per memory location. For the realization of the lK x 8 memory of Fig.

Static RAM

n,, - 0
, ADDRESS

)

m,/' 2
" DATA

•
•
•

::; WE

: CE
2n - 1 11 • •

(a) A model of static RAM

Figure 6.22 Static RAM.

Operation CE WE

Disable RAM F(H) X

Read T(L) F(H)

Write T(L) T(L)

Where F : false
T: true
X: don't care

• I
L: low
H: high

(b) Operations

200

10,.

"
4 / ,

I K x -t. RAM

000H I .
A9-Ao

001H I

002H I . D3-Do

. -
"' WE

:; cs

3FFH
I

I I

I I

I I

• .
•

I I

Operation

High-Z outputs

Read

Write

cs

H

L

L

WE

X

H

L

Where L: Low-voltage level
H: High-voltage level
X: Don't care

(a) Block diagram (b) Operations and control

Figure 6.23 Typical commercially available I K x 4 RAM.

lK X 8 RAM

10 000H
A9-Ao 00IH

8
O7-Do . .
WE •
CE

3FFH

(a) Block diagram of a I K X 8 RAM

lK X 8 RAM

10,, A9-Ao
,,

1 K X 4 RAM

000H I I I

10,.
A9-Ao 00IH I I I 10/ _

/ /

4 / .
O3-Do • 4,, -

/ /

•
r+-0 WE • r--+-0

+-c cs ...a
3FFH I I I

,,,,,. 8 ,. D7D0
C / ,,,

WE
I -

CE
\,,,

(b) Realization with two lK X 4 RAMs

Figure 6.24 Realization of a I K x 8 RAM.

lK X 4 RAM

000H

A9-Ao
00IH

D3-Do

WE

cs .
3FFH

I I I

I I I

•
•
•

I I I

ems
Stamp

ems
Stamp

6.5/MEMOAIES 201

6.24(a) with IK x 4 RAMs, two of these RAMs are required, as shown in Fig. 6.24(b).
Note that the inputs to the two sets of address lines are identical. Consequently, when a
10-bit address (A9-A0) is applied, the same relative memory locations for both memory
chips are accessed, with the high nibble being found in one memory chip and the low
nibble in the other. Together they form the 8-bit data for that address.

In Fig. 6.25 is shown a technique for realizing a memory module having an ad
ditional number of memory locations. For the realization of the 2K x 4 RAM of Fig.
6.25(a) with lK x 4 RAMs, two of these RAMs are again required, as shown in Fig.
6.25(b). In this figure note the convention used for labeling the addresses of the memory

2K X 4 RAM

11 , 000H I I I

A10-Ao 001H , I I I

• 4 •
D3-Do • ,

3FFH I I I

400H I I I

401H I I I

: WE • • •
7FFH I I I

(a) Block diagram of a 2K X 4 RAM

2K X 4 RAM

lK X 4 RAM

000H
A9-Ao 00lH

- D3-Do
A10

A9-Ao ~ WE

: cs
D3-Do 3FFH

I

lK X 4 RAM

000H
- A9-Ao 001H

~ DrDo

WE
~ WE - Y>= : cs

3FFH

(b) Realization with two 1 K X 4 RAMs

Figure 6.25 Realization of a 2K x 4 RAM.

I I I 000H
I I I 00IH

•
•
•

I I I 3FFH

I I I 400H

I I I 401H

•
• .

I I I 7FFH

202 6/LSI CIRCUIT ELEMENTS

locations. The 000H to 3FFH addresses labeled on the inside of each 1 K x 4 RAM are
the addresses of the locations with respect to that particular lK x 4 RAM. But the 000H
to 7FFH addresses labeled on the outside of the l K x 4 RAMs are the addresses of the
locations with respect to the entire 2K x 4 RAM.

Observe that the chip-select (CS) inputs of the two lK x 4 RAMs are controlled
by the high-order address bit A 10• A value of A 10 = 0 enables the top lK RAM~
representing the first lK block of memory (Q0000000000B to Ql 111111111B). At the
same time, this value disables the bottom lK RAM, representing the second lK block
of memory (!0000000000B to !l 111111111B), and three-states it from the external data
lines. Conversely, a value of Aio = 1 enables the bottom lK RAM and disables the top
lK RAM. As a result, each location of the 2K module has a unique 11-bit address even
though the corresponding locations of the two lK RAMs have the same 10-bit address.
For example, the first location of the top 1 K RAM has an 11-bit address of Q0000000000B
and the first location of the bottom 1 K RAM has an 11-bit address of ! 0000000000B.

With a combination of these techniques, a memory module of any reasonable size
can be realized with smaller memory modules, along with some external circuitry. For
example, a realization of a 2K x 8 RAM requires four 1 K x 4 RAMs and an inverter
(see Problem 6. 19). A 4K x 4 RAM requires four lK x 4 RAMs and a 4-to-2 decoder
(see Problem 6.20). And a 2K x 4 RAM with a chip-enable input requires two IK x
4 RAMs along with inverters and AND gates (see Problem 6.21).

RAM Timings

RAMs, which are LSI devices, have more complex timing requirements than SSI and
MSI devices such as gates and flip-flops. RAM operation requires strict adherence to the
proper sequencing of the address, data, and control signals, and also to the required
durations of these signals. In this section we will consider the most important and com
monly used RAM timing parameters. The block diagram of a static RAM shown in Fig.
6.26(a) will be used as the basis of our discussion.

The timing diagrams illustrating the timing requirements for a memory read cycle
and for a memory write cycle of a RAM are shown in Figs. 6.26(b) and (c), respectively.
In the memory read cycle, the read-cycle time, tRc, is the total time required for the
memory read operation, and is the minimum amount of time that then-bit address must
be stable on the ADDRESS inputs. As shown in Fig. 6.26(b), the read cycle begins
when the address becomes stable (graphically indicated by the crossing lines) and ends
when the address is changed (again indicated by the crossing lines).

The read-cycle time is a function of other timing parameters, the most important
of which are the access-time-from-address, tA(AD), and the access-time-from-chip
enable, tA(CE). The parameter rA(AD) is the time delay from the beginning of the read
cycle, when the address is changed, until the time the data becomes valid on the DAT A
lines. Consequently, for a certainty of data validity, data should not be accessed and
used by another system component until after a time equal to this parameter tA(AD),
which is published on the memory device sheet provided by the manufacturer. The other
parameter, tA(CE), is the delay from the time that a CE input of true (L) is applied, until
the time that the data becomes valid on the DATA lines. Consequently, enabling the CE
input earlier will result in the data being valid earlier, thereby reducing the read-cycle

6.5/MEMORIES

n,. ADDRESS r
m,.

DATA r

: WE
~ CE

(a) Block diagram of a RAM

""'4----------tRc---------1....,
i I
r"'f-----tA (AD)----- I

n-bit =x! \J/1

1

1

ADDRESS I ADDRESS ST ABLE A
I·-----------~------ -----
1 I --1----

CE 1 tv(AD)
1~
I I

I I
I I

I I WE
I I

~~~ _______ (H_i_gh_Z_) _____ -""!Ci<---D-A_T_A_V_A_L_ID---.)r!---

1 I I 
I f"""I'- tam-+i 

I 

(b) Timing diagram for a memory read cycle 

twc I 
I 

~tH(AD)~ I 
I 

j 
n•bit =x ADDRESS STABLE 

ADDRESS I 
I 
I 

CE 
1 • 

t5u(CE) 
I 
I 
I 

WE , . tw(WE) . I 
I 

I 
m-bit 

(don't care) 

* 
DATA STABLE 

! X DATA 
I 

I tsu(DA) l 
I I 
I I 
'---y---1 

tH(DA) 

(c) Timing diagram for a memory write cycle 

Figure 6.26 Memory read and memory write cycles. 

~ 
I 

203 

time tRe· As a rule of thumb, for the minimization of tRe, it is best to apply the CE input 
at the same time as the address and to keep it stable for the entire duration of the read 
cycle. Of course~ the write enable WE should be false (H) for the duration of the read 
cycle. Minimizing the read-cycle time improves the performance of the digital system 
since this time tRe determines the maximum rate at which the memory can be read. 



204 6/LSI CIRCUIT ELEMENTS 

The two timing parameters toTo and tv(AD), which are of less importance, are 
also shown in Fig. 6.26(b). The parameter toTD is the time required for the data outputs 
to three-state from deselection. More specifically, if the CE input is changed to false 
before the address is removed, then the chip is no longer enabled. The data, however, 
still remains available on the DATA lines for a period of time equal to toTD until the 
data outputs become three-stated. The other parameter tv(AD) is the output-valid-after
address-change time. More specifically, when the address is changed, then the current 
read cycle is terminated. The current data, however. will still remain valid on the DAT A 
lines for a time equal to tv(AD) after the address change. 

For the memory write cycle shown in Fig. 6.26(c), the write-cycle time, twc, is 
the total time required to complete a memory write operation. The n-bit address must be 
stable on the ADDRESS lines for the entire duration of twc· As shown in Fig. 6.26(c), 
the write cycle begins when the address becomes stable, and it ends when the address 
is changed. 

The write-cycle time is a function of other timing parameters, the most important 
of which are the write-pulse width, tw(WE), the chip-enable-setup time, tsu(CE), and 
the data-setup time, t 50(DA). The write operation is performed during the time that the 
WE input is true (L)-that is, during tw(WE). So the write operation must be completed 
and the data stored by the time the WE input is changed from true (L) to false (H), 
which means that tw(WE) is the minimum time that the write signal must be true (L). 
The most important timing consideration for the write cycle is to make certain that the 
required signals are applied for the required durations ( setup times) before the write 
operation is completed. Specifically, by the time of the end of the write operation, when 
the WE input is changed from true to false, the chip-enable input (CE) must have 
remained true (L) for at least a time equal to tsu(CE). Also, by that time, the data must 
have been stable on the DATA lines for a time at least equal to tsu(DA). As a rule of 
thumb, to ensure .that all the timing requirements for a memory write are going to be 
satisfied, it is best to apply the CE, WE, and data inputs all at the same time as the 
address and have them all remain stable for the duration of the write cycle. 

Two other timing parameters tH(DA) and tH(AD), which are of much less impor
tance, are also shown in Fig. 6.26(c). They are required to obtain proper write operations 
for certain types of memory chips. The parameter tH(DA) is the data hold time. It is the 
time that the data must be maintained on the DAT A lines after the WE input has become 
false. The parameter tH(AD), the address hold time, is somewhat similar except that it 
applies to the address instead of to the data. It· is the time that the address must be 
maintained on the ADDRESS lines after the WE input has become false. For most of 
the memories that are currently available, both tH(DA) and tH(AD) are usually zero. 

6.5.2 Read-Only Memory 

Functionally, a read-only memory, such as is shown in Fig. 6.27, is a special case of a 
read-write memory. For the normal operation of a read-only memory, the data that is 
stored in each memory location can be read with a read operation but cannot be altered 
by a write operation. As already stated, the principal advantage of the read-only memory 
over RAM is that the data storage is nonvolatile. More specifically, unlike for a RAM, 
the data stored in a read-only memory will be retained even after a loss of power. 



6.5/MEMORIES · 

/ -
/ 

,. 
/ 

- --

Read-only memory 

ADDRESS 

DATA 

• 
• 
• 

CE 

Operation CE 

Disable memory 0 

Read 

Where O: false 
l: true 

Figure 6.27 A model of a read-only memory under normal operation. 

205 

Therefore, a temporary loss of power will not cause a loss of data-a feature that is 
important in many applications. 

The different types of read-only memories can be distinguished by the manner in 
which the data is originally stored. For a masked programmed read-only memory (ROM), 
the data is permanently stored by the manufacturer during the fabrication of the chip. 
Once stored, the contents of a ROM are fixed and cannot be altered. Since a custom 
mask has to be produced for each design of a ROM, mask programmed ROMs are 
economical only if manufactured in large quantities. 

A field-programmable read-only memory (PROM) is the functional equivalent of 
a ROM under normal operating conditions. However, the one-time programming of a 
PROM is performed by the user, using a PROM programmer, rather than by the man
ufacturer. Physically, the PROM construction is based on the same integrated fuse tech
nology used for field-programmable PLAs, as discussed in Sec. 6.4.1. A PROM comes 
from the manufacturer with all the connections intact as fuses. The user, using a PROM 
programmer, programs the PROM by leaving intact the fuses repr~senting the I-value 
bits and blowing the fuses representing the 0-value bits. The flexibility and relatively 
low cost of PROMs make them attractive for the small quantity production of parts that 
require read-only memories. 

The erasable programmable read-only memory (EPROM) is another type of read
only memory. Under normal operation, an EPROM is the functional equivalent of a 
ROM or a PROM. Like a PROM, an EPROM can be programmed by the user, by means 
of an EPROM programmer. Unlike the ROM and PROM, however, the programming 
of an EPROM is not irreversible. The stored data, although nonvolatile, can be erased 
by placing the EPROM in an EPROM eraser. During the erasing process, ultraviolet 
radiation slowly releases the charge that has been stored as data and thereby restores the 
EPROM to its original state. The flexibility of the EPROM makes it ideal for develop
mental prototype implementation, and also for low-volume production in applications 
where the contents of a read-only memory need to be changed. 

As mentioned, the functions of the various types of read-only memories are equiv
alent under normal operating conditions. For convenience, therefore, we will subse
quently use the generic term read-only memory (ROM) to refer to all types of read-only 
memories (ROM, PROM, and EPROM), unless otherwise specified. 



206 6/LSI CIRCUIT ELEMENTS 

Read-Only Memory Applications 

Read-only memories are required for applications in which a large amount of information 
needs to be stored in a nonvolatile manner. By far the most important application of the 
ROM is for the pennanent storage of microprocessor programs and fixed tables of data 
for a microprocessor system. Microprocessors and microprocessor-based design are the 
subjects of the second half of this book. We will, therefore, defer this application till 
then. 

Another common application of the ROM is for the systematic realization of com
plex combinational circuits. Perhaps this application of the ROM is best understood from 
a simple example. 

Example 6.4 BCD-to-7-Segment Conversion 
Consider the design and realization of a combinational circuit for converting a 4-bit BCD 
number to a 7-bit number that corresponds to the seven segments of a 7-segment display. 
The problem statement is summarized in Fig. 6.28(a), and the resultant truth table is 
shown in Fig. 6.28(b). Since this is strictly a combinational circuit, it can be realized in 
a straightforward manner with the techniques presented in Chapters 2 and 3, and so it 
will not be shown. Obviously, though, the realization would have seven sum-of-product 
AND-OR structures, with a substantial package count. 

Alternatively, this combinational circuit can be realized with a single ROM that 
has a capacity greater than or equal to 16 x 7 bits. The result is shown in Fig. 6.28(c). 
Note that the right-hand side of the truth table of Fig. 6.28(b) is simply stored as the 
contents of the 16 x 7 ROM. Then when a particular set of inputs is applied, this set 
of incoming 4 bits is used as the address for looking up the c~:mtents of the corresponding 
ROM location, whose contents correspond to the valid outputs for that set of inputs. 

From an input-output point of view, the operation of this ROM is indistinguishable 
from that of a traditional combinational circuit realization. For example, for an input of 
B3B2B1B0 = 0101, a traditional realization with discrete SSI components would output 

Z6Z5Z4Z3Z2Z 1Z0 = 1011011 

For the ROM realization of Fig. 6.28(c) the resultant output would also be 

D6D5D4D3D2D1D0 = Z6Z5Z4Z3Z2Z1Z0 = 1011011 

And for any other of the 16 possible sets of inputs, the same outputs would be obtained 
for either realization. Consequently, if the circuits resulting from the two different real
ization techniques were put into two separate ''black boxes,'' they would be functionally 
indistinguishable. • • 

It should be obvious that a ROM can be used for the realization of any combina
tional logic function. One important application is the realization of a microprogrammed 
controller, which is one of the subjects of the next chapter. This realization consists of 
a relatively complex combinational circuit, along with a number of flip-flops. For multi
input and output combinational realizations, the ROM method is generally superior to 
the traditional method, as is apparent from the power of, for example, the commercially 
available 8K x 8 EPROM, which can be used for the realization of a combinational 



6.5/MEMORIES 207 

BCD-to-7-segment 
com·erter 

(a) (b) (c) (d) (e) (f) (g) 
83 B2 B1 Bo Z5 Zs 24 Z3 Z2 Z1 Zo 

4 0 0 0 0 1 1 1 I 1 I 0 
B3-Bo 26-Zo 0 0 0 1 0 0 0 0 0 

0 0 0 1 0 I 0 1 
0 0 I I 1 I 0 0 
0 0 0 0 1 0 0 
0 0 I 1 0 0 

Where z6 = a 0 1 0 0 1 I a 
2 5 = b r/~ 0 I l 0 0 0 0 
24 = C 0 0 0 l I I I 
2 3 = d 1 /4 0 0 1 1 I 0 1 I 
2-y_ = e 0 0 0 0 0 0 0 0 0 
Z1 = f d 0 1 1 0 0 0 0 0 0 0 
lo= g 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 

( a) Problem definition 0 0 0 0 0 0 0 

(b) Truth table 

BCD-to-7 •segment converter 

16 X 7 ROM 

26 Zs 24 23 Z2 Z1 Zo 

OOH I 1 1 1 1 I 0 

OlH 0 1 1 0 0 0 0 

83-80 
02H 1 1 0 I 1 0 1 

4,,, 4,. 
ArAo 03H I I I I 0 0 1 ,. ,. -

04H 0 1 1 0 0 1 I 
OSH 1 0 I I 0 I 1 
06H 1 0 1 I 1 I 1 

7,,, 07H I 1 I 0 0 0 0 26-Zo 7,,, 
/ D6-Do 08H 1 1 1 1 1 I 1 I' 

09H l 1 1 1 0 l I 

OAH 0 0 0 0 0 0 0 

OBH 0 0 0 0 0 0 0 

:: CE OCH 0 0 0 0 0 0 0 
I ODH 0 0 0 0 0 0 0 

T.L OEH 0 0 0 0 0 0 0 

OFH 0 0 0 0 0 0 0 

(c) ROM realization 

Figure 6.28 ROM realization of a BCD-to-7-segment converter. 

circuit having as many as 13 inputs and 8 outputs. The disadvantage of the ROM method 
is speed. The access time for a ROM, as for any memory, is slow compared to the speed 
of operation of a discrete logic realization. . 

The ROM method has the same advantage of package count reduction as does the 
PLA/PAL method of combinational circuits presented in Sec. 6.4. A ROM realization, 



208 6/LSI CIRCUIT ELEMENTS 

however, is slower. When speed is not a constraint, then the choice of a PLA/PAL 
realization versus a ROM realization is dependent on the nature of the design. As is 
evident from Sec. 6.4, the PLA/PAL realization is ideal for a design with a truth table 
that is sparsely populated by 1 s, corresponding to relatively few distinct product terms. 
For example, the 82S100 PLA described in Sec. 6.4.1 can realize a combinational circuit 
with as many as 16 inputs and 8 outputs, but only if the corresponding truth table has 
48 or fewer distinct product terms. For this number of inputs and outputs, a ROM 
realization would require an absurdly huge (2 16

) 64K ,x 8 ROM, even if the number of 
distinct product terms were fewer than 48. In summary, for a complex combinational 
circuit with a truth table that has relatively few distinct product terms, a PLA/PAL 
should be used. For a circuit with a truth table that has many product terms, then a ROM 
is the appropriate choice. 

Commercially Available EPROMs 

EPROMs are commercially available in various sizes, usually in the form of nK x 8 
bits, where n = 2, 4, 8, 16, 32, 64, .... As an example, we will describe the original 
EPROM, the 2716, which is from the--Intel Corporation. It illustrates the most important 
features of a commercially available EPROM. The 2716 EPROM is a 2K x 8 EPROM 
with three-state outputs. As is shown in Fig. 6.29(a), it has 11 address lines (A 10-A0) 

and 8 data lines (D7-D0). Also, it has an output-enable input (OE), a chip-ena
ble/EPROM program input (CE/PRG), and inputs Vee and VPP for two voltage supplies. 

As is summarized in the table of Fig. 6.29(b), the 2716 EPROM has five main 
operations. Under normal operating conditions, if the chip-enable (CE/PRG) and the 
output-enable (OE) inputs are true (L), then the operation is a memory read. But if the 
chip-enable input is false, then the EPROM outputs (D7-D0) are three-stated, and the 
EPROM is in the standby mode. 

2716 EPROM 

11 ,, 
OOOH 

/ A10-Ao OOIH 

002H 

8 
/' - DrDo / 

• Operation 

• Read 

,:; OE • Standby 
Program 

Program verify 

Program inhibit 
: CE/PRG 

Yee VPP 7FFH . .. 

(a) Block diagram of the 2716 EPROM 

Figure 6.29 The 2716 EPROM. 

CE/PRG OE vPP Vee Outputs 

L L +5 V +5 V D7-D0 OUT 
H X +5 V +5 V High Z 

Pulsed L-H H +25 V +5 V D7-D0 IN 
L L +25 V +5 V D7-D0 OUT 
L H +25 V +5 V High Z 

(b) Table of operations 



6.5/MEMORIE·s 209 

The other three operations are for initially programming or for reprogramming the 
contents of the EPROM. An EPROM is usually programmed through the use of an 
EPROM programmer, a design tool that is widely available. The sequencing and timing 
of the various programming operations are the responsibility of the EPROM programmer. 
The steps for programming a 2716 EPROM are as follows: The 2716 EPROM is first 
put into the program-inhibft mode by setting CE/PRG to Land OE to H, and by raising 
the VPP voltage supply to 25 volts. Also, the address of and the contents for the specified 
memory location are applied at the address and data lines, respectively. Next, the 2716 
EPROM is put into the program mode by applying at the CE/PRG input an L-to-H pulse, 
which causes the data to be stored into the specified location. At the end of the L-to-H 
pulse, the return of the CE/PRG and OE inputs to L puts the 2716 into the program
verify mode, during which the contents of the just-programmed location are available on 
the data lines where they can be verified by the EPROM programmer, if desired. Finally, 
the OE input is changed to false (H) and so the program-inhibit mode is entered again. 
This programming cycle must be repeated for each location of the EPROM. 

Again, the sequencing and timing of the various programming operations are the 
responsibility of the EPROM programmer. Consequently, EPROM programming is rela
tively easy for a digital designer. Because of its flexibility and ease of use, the EPROM 
is a very important tool for developmental and prototype implementations. 

6.5.3 Dynamic RAM 

As has been stated, read-write memory can be classified as either static RAM or dynamic 
RAM. A static RAM is a read-write memory in which data bits are stored in flip-flop 
storage elements. With this type of storage, the data bits retain their values as long as 
the memory is supplied with power. On the other hand, a dynamic RAM is a read-write 
memory in which data bits are stored as charges on capacitors. Unfortunately, left un
attended, any capacitor will eventually lose its charge. Consequently, a dynamic RAM 
requires periodic refresh operations to retain the values of the stored data bits. 

Dynamic RAMs offer several advantages over static RAMs. First, dynamic RAMs 
are approximately four times as dense as static RAMs. The result is a fourfold reduction 
of board space required for a given amount of memory. Second, and also as a result of 
the density, the cost per bit of dynamic RAMs is approximately one-fourth that of static 
RAMs. Finally, the power consumption of dynamic RAMs is significantly less than that 
of static RAMs. 

On the other hand, one disadvantage of dynamic RAMs is that they are generally 
slower in operation than static RAMs. Another disadvantage of dynamic RAMs is the 
complexity of the functions required to support their operations. The additional support 
circuitry is justified only if a large memory module is required. Static RAMs are more 
cost-effective for smaller memory modules. 

A general model of a dynamic RAM (DRAM) is shown in Fig. 6.30(a). It has n 
address lines and separate m-bit data-in (D1N) and data-out (DouT) lines. For a reduction 
in the number of address pins, the n address lines are used to specify a 2n-bit address. 
This is accomplished by time-multiplexing the required 2n-bit address into two halves 
over the same n-bit address lines. The first half is commonly called the row address, and 
the second half is commonly called the column address. The row address is applied first 



210 6/LSI CIRCUIT ELEMENTS 

at the address lines, and is latched internally by the dynamic RAM at the trailing edge 
of the RAS (row address strobe) input. Then the column address is applied at the address 
lines, and latched internally at the trailing edge of the CAS (column address strobe) 
input. Together, they form a 2n-bit address that is capable of addressing up to 22n memory 
locations. 

Shown in Fig. 6.30(b) is a typical example of a commercially available dynamic 
RAM. It is a relatively small 16K x l dynamic RAM; for it, n = 7 and m = l. 

In general, a dynamic RAM has three basic operations: memory read, memory 
write, and memory refresh. For a read or a write operation, the row and column addresses 
must be applied sequentially, and then latched, respectively, by the negative going edges 
of the RAS and CAS inputs. For a read operation, the WE (write enable) input must be 
made false (H), usually before the CAS input is made true (L), as shown in Fig. 6.31 (a). 
After a time equal to the memory access time (measured from the trailing edge of CAS), 
the m-bit contents of the specified location are available on the DouT outputs. For a write 
operation, the row and column addresses are also latched. Additionally, the m-bit data 

22" X m dynamic RAM 

0 
n , 

ADDRESS 1 
/ 2 

m, 
DIN / 

m 
/ 

Dour , 
• 

~ RAS • 
• 

- -CAS -
: WE 

22n _ 1 

'--v---' 
m 

(a) General model of a dynamic RAM 

16K X 1 DRAM 

OOOOH 
7 / 

A5-Ao 
OOOIH ,, 
0002H 

DrN 

DouT 
• 

: RAS • 
• 

: CAS 

: WE 

3FFFH 

(b) 16K X 1 dynamic RAM Figure 6.30 Dynamic RAM. 



6.5/MEMORIES 

ADDRESSES : J( ROW 
ADDRESS ';C)<.____~_g_tu_Rr_~_s_---'x .... _______ _ 

RAS 

CAS 

WE 

DouT 

H 

L 
H 

L 
H 

L 
H 

L 

_______ H_...1 ...... G ...... H ________ .--(( VALID 

IMPEDANCE DA TA OUT >-
(a) Read cycle 

ADDRESSES : J( ROW 
ADDRESS • --~_gD_L~-~_s_~ __ x ________ _ 

RAS 

CAS 

WE 

H 

L 
H 

L 

H 

L 

H-----------x., __ s_T_A_B_L_E_--.J 
DATA IN X L ..__._._ 

(b) Write cycle 

ADDRESSES : =x AD~'i~sS x"-----------------
H 

RAS 
L 
H 

CAS 
L 
H 

L 

HIGH 
IMPEDANCE 

(c) RAS-only refresh cycle 

Figure 6.31 Basic operations for a dynamic RAM. 

211 

to be stored is applied at the D1N inputs, and the WE input is made true (L). Then the 
data is latched by the dynamic RAM at the trailing edge of the CAS or WE signal, 
whichever occurs last, and is stored in the specified location. 



16K X 8 memory module 

16K XI DRAM 

7, 
ADDR . 

DIN 
~ ,.. RAS -- CAS . .... 

DouT 
i--+-C WE 

16K XI DRAM· 
7 , . 

ADDR , . 
DrN 

: RAS 
- CAS ..... 

DouT -~ WE 

16K XI DRAM 
7, 

ADDR . 
DIN - RAS . -

,,.. 
CAS ..... 

DouT 1r----c WE 

16K XI DRAM 
7.,, 

ADDR Dynamic RAM controller DIN 
--: RAS 

14,, ,. 
CAS 

~~ 
. -

DouT ,, . 
ADDRIN ADDRouT I~ WE 

RD 
RAS i:, - ..... 
CAS; 

16K X I DRAM 
WR 

WE~ 
7 - • ADDR .. 

DIN ,.. 
RAS . -

: CAS 
DouT 

'~ WE n 
16K X l DRAM 

7 , 
. ADDR 

DrN ,.. 
RAS 

. 

. -
: CAS 

DrnrT 
I~ WE 

16K XI DRAM 
7 , .. ADDR 

DlN . ,.. 
RAS -,. 
CAS . -

DouT 
I~ WE 

16K XI DRAM 
7,, 

ADDR . . 
DIN 

':: RAS 
'.: CAS 

DouT L-+-C WE 

Figure 6.32 A ,16K x 8 memory module constructed from dynamic RAMs. 
212 

- I-+ 
~ 

. 

. 

~ 

. 

. 

-~ 

. 

. . 

. 

. 

-

DrN7 

DrN6 
DrNs 
DIN4 
DIN) 

D1N2 

DINI 

DINO 

DouT1 

DoUT6 

DouTs 
DouT4 

Dour3 
DouT2 
Doun 

Douro 



PROBLEMS 213 

As mentioned earlier, the data bits in a dynamic RAM are stored as charges on 
capacitors, and these charges must be periodically refreshed. For current commercially 
available dynamic RAMs, each bit-cell must be refreshed approximately every two mil
liseconds or less. Fortunately, dynamic RAMs are designed such that an entire row of 
bit-cells can be refreshed at once during the latching of the row address by the RAS 
input. Consequently, either the memory read operation or the memory write operation 
can be used to refresh a row of bit-cells. If we can be certain that every row of the 
memory will be accessed every 2 milliseconds or less by either a read or a write operation, 
then we can be certain that the memory will be properly refreshed. This is, of course, 
not generally the case. Therefore, a special memory refresh operation is required. The 
refresh cycle for a dynamic RAM is shown in the timing diagram of Fig. 6.3 l(c). It 
consists simply of latching the row addresses by the RAS input. Each refresh cycle 
refreshes one row of the dynamic RAM. Consequently, in order to refresh the entire 
dynamic RAM, a dynamic RAM controller needs to step through every row address 
within 2 milliseconds. 

Shown in Fig. 6.32 is an example of a 16K x 8-bit memory module constructed 
from eight 16K x l dynamic RAMs and a dynamic RAM controller. Note that the 
inputs to the address lines of all eight 16K x l DRAMs are identical. Consequently, 
when an address is specified, the same relative memory location for all eight memory 
chips are accessed, with bit i being found in memory chip i. Together, the 8 bits from 
the eight chips form the 8-bit data for that address. 

The inputs to the 16K x 8 memory and the dynamic RAM controller comprise a 
14-bit address along with the RD and WR signals. The controller has the responsibility 
of time-multiplexing the 14-bit address into a 7-bit row address and a 7-bit column 
address. The controller must also generate and properly sequence the RAS, CAS, and 
WE signals as is required for the read and write operations. Furthermore, the controller 
also has the responsibility for generating and sequencing the signals that are required for 
refreshing the dynamic RAM bit-cells. Because of their complexity and common use, 
dynamic RAM controllers are commercially available in IC form. 

A dynamic RAM controller is a state machine similar to those that will be studied 
in the next chapter. Therefore, the design methods of the next chapter will provide the 
reader with some insight into the design and realization of_such a digital circuit. 

SUPPLEMENTARY READING (see Bibliography) 

[Blakeslee 79], [Intel-A], [Kline 83], [Mano 84], [Monolithic], [Motorola], [Short 81], 
[Signetics], [Texas Instruments] 

PROBLEMS 

6.1. What are the advantages of using LSI circuit elements in a digital circuit as compared to 
using MSI and SSI circuit elements? 

6.2. A 16-bit ALU is to be realized by interconnecting four 74' 181 ALUs .. 
(a) Draw the circuit diagram. 
(b) Given that the propagation delay for a 74' 181 to perform an add operation is 



214 6/LSI CIRCUIT ELEMENTS 

tp(181ADD), how long does it take your ALU to perform a 16-bit add operation? 
Explain. 

(c) Given that the propagation delay for a 74' 181 to perform a logic operation is 
tp(181LOG), how long does it take your ALU to perform a 16-bit logic operation? 
Explain. 

6.3. Using a 74'181 and any additional logic that is required, design and realize the simplified 
ALU shown in block diagram form in Fig. 6.33. This ALU produces an output F that is 
the result of some operation on the inputs A and B. The particular operation depends on 
the control word SEL, as follows: 

SEL Operation Definition 

0 Add F ,('-A plus B 
1 Subtract F ~ A minus B 
2 Increment F ,('-- A plus 1 
3 Decrement F ~ A minus 1 
4 Complement F ,('-- NOT A 
5 OR F,('--A+B 
6 XOR F~AEBB 

Simplified ALU 

74' 181 

4,. 4/ A / / 

4,. 4/ 
B F 

4,.. 4 / 
/ , 

/ / 

SEL2 M M en+ 4 :: -

- SEL1 en::: : en 
SELo S3-So 

4,.. 
S3-So / -

Figure 6.33 Simplified ALU for Problem 6.3. 

6.4. Repeat Problem 6.3 using the block diagram of the simplified ALU shown in Fig. 6.34 and 
also the active-low view of the 74' 181. 

Simplified ALU 

4,. . """ A r - -
4,.. ,. 

B F: 4,.. 
/ - - r 

SEL2 

. SEL1 en +4 -

SELo 

Figure 6.34 Simplified ALU for Problem 6.4. 



PROBLEMS 215 

6.5. For the chain of full adders shown in Fig. 6.2. what is the logic equation for the look
ahead carry circuit for C2? 

6.6. The following 2-bit numbers A and B are to be added: 

Stage 
A 
B 

N N-
O l 

0 

N-2 N-3 N-4 N-5 N-6 
0 0 0 l 
0 0 

Find the values of the carry-outs produced by the following stages: (a) N - 4, (b) N - 2, 
(c) N - 3, (d) N - l, and (e) N - 5. Explain your answers. 

6. 7. Convert the ripple adder circuit shown in Fig. 6.2 into a 4-bit adder with look-ahead carry 
circuitry, using a 74' 182 and any additional logic that is required. (Hint: The carry-in of 
each adder stage will be generated by the 7 4' 182.) 

6.8. Determine the propagation delay required by an add operation for the 64-bit ALU with 
multilevel look-ahead carry structure shown in Fig. 6. 7. Assume the following delay values: 

tP(l8IPG) = 33 ns to produce G and P 

tp(l81ADD) 27 ns to perform an add operation 

tp(l82PG) = 25 ns to produce the Pi and Gi 

tp(l82Cxyz) = 26 ns to produce Cn+x, Cn+_,., and C11 +z 

6.9. Transform the logic diagram of Fig. 6.35 into a PLA circuit diagram similar to the one 
shown in Fig. 6. lO(b). 

A.H-----------~ 
A.H-------t--

Figure 6.35 Logic diagram for Problem 6. 9. 

6.10. Given the truth table of Fig. 6.36 for the combinational circuit shown in block diagram 
form, realize the combinational circuit with a PLA that is similar to the one shown in Fig. 
6. lO(b) (i.e., one with four inputs, four outputs, and supporting eight product terms). 



216 6/LSI CIRCUIT ELEMENTS 

A B C D Zo Z1 Z2 

0 0 0 0 I I 0 
0 0 0 I 0 0 0 

A 0 0 0 0 0 0 
2o 0 0 I I 0 0 0 

B 0 0 0 0 0 0 

21 0 0 I 0 I 

C 0 I 0 0 
0 I I 0 

D 22 0 0 0 0 
0 0 I 0 0 0 
0 0 I I 0 
0 0 0 0 

0 0 0 0 0 
0 0 1 

0 0 0 0 
I I 0 I 

Figure 6.36 Block diagram and truth table for Problem 6.10. 

6.11. Repeat Problem 6.10 for the block diagram and truth table shown in Fig. 6.37. 

A B C D Zo Z1 22 
0 0 0 0 I I 0 
0 0 0 I I 0 0 
0 0 1 0 0 0 1 

A 0 0 I 1 0 0 0 
2o 0 0 0 0 0 0 

B 0 0 1 0 1 1 

21 0 1 0 I 0 

C 0 1 1 0 I 
0 0 0 0 I I 

D 22 0 0 0 0 1 
0 0 I I 0 
0 1 1 0 0 0 

0 0 0 0 0 
0 1 0 1 

0 0 0 0 
1 0 

Figure 6.37 Block diagram and truth table for Problem 6.11. 

6.12. Given the programmed PLA of Fig. 6.38 with functions similar to those of the 82S100 
FPLA, 
(a) What are the logic/voltage assignments (i.e., active-high or active-low) fo.i; the inputs 

A, B, C, D, and CE and for the outputs Z0 , Z 1, and Z2? 
(b) Draw the mixed-logic block diagram for the corresponding combinational circuit. 
(c) Determine the logic equations for Zo, Z 1, and Z2 . 



PROBLEMS 

A 

B 

C 

D 

Figure 6.38 Programmed PLA for Problem 6.12. 

217 

3-statc 
buffer 

CE 

6.13. What is the main difference between a PLA and a PAL? 

6.14. Using the same PAL16L8, realize the following logic equations and have the realizations 
based on the following assignments: 

Inputs: X1 .H is assigned to pin 2. X2.H is assigned to pin 3, S1.H is assigned to pin 17, 
and S:?.H is assigned to pin 16. 

Outputs: 2 1.L is assigned to pin 19, Z2.L is assigned to pin 18. 2 3.L is assigned to pin 12, 
and 2 4 .H is assigned to pin 13. 

All the other pins are not to be used unless specified otherwise. 
(a) Z1 = S2 • X 1 (Hint: Pin 16 needs to be programmed as an input.) 

(b) Z2 = S1 + S1 • X2 

(c) 23 = X2 • (S 2 + S1 • X1) (Hint: You can use pin 1 also if necessary.) 
(d) 24 = X1 + X2 (Hint: Since 24 is active-high, you may need to use DeMorgan's 

laws.) 

6.15. Using a PAL16L8, realize a BCD-to-7-segment decoder similar to the one shown in Fig. 
6.28. However, the outputs a, b, c, d, e, f, and g are to be active-low. 

6.16. Using a PAL16R4, realize a 4-bit decade counter with a synchronous CLEAR input. Com
pare your realization with the one obtained in Problem 5.26. 

6.17. Draw block diagrams corresponding to the following static RAM module specifications. 
Specify the number of address lines and data lines. 
(a) 64 X 4 bits (b) 4096 X 8 bits (c) 64K x 8 bits 



218 

6.18. What is the capacity of a static RAM module that has 
(a) Seven address lines and eight data lines? 
(b) Fourteen address lines and four data lines? 
(c) Ten address lines and sixteen data lines? 

6/LSI CIRCUIT ELEMENTS 

6.19. Realize the 2K x 8 RAM module of Fig. 6.39 by using four lK x 4 RAMs, as shown 
in Fig. 6.23, and an inverter. 

2K X 8 RAM 

11,, A A 
' - 10- 0 

-= WE 

Figure 6.39 2K x 8 RAM module for Problem 6.19. 

6.20. Realize the 4K x 4 RAM module of Fig. 6.40 by using four lK x 4 RAMs, as shown 
in Fig. 6.23, and a 4-to-2 decoder. 

4K X 4 RAM 

- :; WE 

Figure 6.40 4K x 4 RAM module for Problem 6.20. 

6.21. Realize the 2K x 4 RAM module with chip-select input of Fig. 6.41 by using IK x 4 
RAMs, as shown in Fig. 6.23, and any additional logic that is necessary. 

2K X 4 RAM 

11,. - A10-Ao , 

4,. 
D3-Do . 

- .... WE 

: cs 

Figure 6.41 2K x 4 RAM module for Problem 6.21. 

ems
Stamp



PROBLEMS 219 

6.22. Realize the memory module of Fig. 6.42 by using a lK x 4 RAM, as shown in Fig. 6.23, 
and any additional logic that is necessary. Note that the bidirectional data lines of the 
IK x 4 RAM become two sets of data lines, DIN and DOUT. (Hint: Use three-state 

buffers.) 

10 

__ 4.,..,_�DI 
4 

__ ....,.._ .... DOUTrDOUTo 

---□WE

Figure 6.42 Memory module for Problem 6.22. 

6.23. The static RAM chip shown in Fig. 6.26(a) has the following timing parameter values: 

tRc = 100 ns minimum

tA(AD) = 100 ns minimum 

tA(CE) = 75 ns minimum 

At t = 0 s, a valid address is applied· and the WE signal is set to false (H). 
(a) If the chip-enable signal (CE) is applied at t = 10 ns, then when is the time t at which

the data first becomes valid?
(b) If the chip-enable signal (CE) is applied at t = 50 ns, then when is the time tat which

the data first becomes valid?

6.24. The static RAM chip shown in Fig. 6.26(a) has the following timing parameters: 

twc = l 00 ns minimum 

t5u(CE) = 70 ns minimum 

tw(WE) = I 00 ns minimum 

t
5
u(DA) = 70 ns minimum 

At t = 0 s, a valid address is applied and the WE signal is set to true (L). 
(a) If CE and the data are applied at t = 0 s, then the WE signal must remain true (L)

until a time tx to ensure a valid write operation. What is this time tx?
(b) If CE is applied at t = 50 ns and the data is applied at t = 0 s, then what is this time

tx?
(c) If CE is applied at t = 0 s and the data is applied at t = 50 ns, then what is this time

tx?

6.25. Discuss the similarities and differences among ROMs, PROMs, and EPROMs. 

6.26. The hardware multiplier of Fig. 6.43 can multiply two 4-bit numbers (MCAND and 
MPLIER) and produce an 8-bit product (PRODUCT). 
(a) Derive the truth table for this circuit. Use don't cares when convenient.
(b) If a ROM is used to realize this circuit, what must be the ROM capacity?
(c) Draw a block diagram of the ROM realization, specifying all connections to the address

and data lines.
(d) What are the contents of the ROM? Explain in words.



220 6/LSI CIRCUIT ELEMENTS 

Multiplier 

~-- -; MCAND 

PRODUCT.__-~.,...---.,_ 

--~.,../---1""""·MPLIER 

Figure 6.43 Multiplier for Problem 6.26. 

6.27. Use a ROM to realize the four logic functions 2 1 .L, 2 2.L. 23.L, and 24 .H specified in 
Problem 6. 14 as follows: 
(a) Draw a block diagram design of the ROM realization. specifying all connections to the 

address and data lines. 
(b) Specify in hexadecimal the contents of the ROM. 
(c) Explain what an active-low output does to the corresponding contents of the ROM. 

6.28. Consider a PLA with 12 inpµts (actually 12 inputs and 12 complements), 8 outputs, and 
64 AND gates. Can it be· used to realize the following combinational circuits? 
(a) A circuit with eight inputs and six outputs. 
(b) A circuit with six inputs and eight outputs. 
In each case answer yes, no, or maybe, and explain your answer. 

6.29. Can you implement the logic equations of the following combinational circuits with a 
128 x 8 ROM? 
(a) A circuit with eight inputs and six outputs. 
(b) A circuit with six inputs and eight o.utputs. 
In each case answer yes, no, or maybe, and explain your answer. 

6.30. Construct the memory module of Fig. 6.44 that provides 6K x 8 bits of EPROM and 
2K x 8 bits of RAM. [Hint: Use three 2716 EPROMs and two IK x 8 RAM modules . 
(see Fig. 6.24), a 2-to-4 decoder, and any additional logic that is necessary.] 

13,, 
' 

8., 
, 

BK X 8:AA~ !/ )!J/"rJ~-f1'/ 

- A1i-Ao 

D7-D0 

: WE 

: cs 

0000H-l 7FFH : EPROM locations 
l 800H-l FFFH : RAM locations 

Figure 6.44 Memory module for Problem 6.30. 

6.31. Discuss the advantages and disadvantages of using static RAMs versus dynamic RAMs in 
a digital circuit. 

6.32. Consider the dynamic RAM of Fig. 6.45 that functions similarly to the one shown in Fig. 
6.30(b). 
(a) What is the capacity of this DRAM? 



PROBLEMS 221 

DRAM 

8.,. - ADDR 
" 

DIN -

: RAS '. 

- - CAS .... 
DOUT 

- .... WE - ... 

Figure 6.45 Dynamic RAM for Problem 6.32. 

(b) Explain in words the sequence of steps (in terms of signals and order of events) that 
are required to perform a memory read operation. 

(c) Explain in words the sequence of steps that are required to perfonn a memory write 
operation. 

(d) Explain in words the sequence of steps that are required to perform a memory refresh 
operation. 

6.33. Construct the 16K x 4 memory module of Fig. 6.46 by using four 16K x I dynamic 
RAMs [as shown in Fig. 6.30(b)], a DRAM controller (similar to the one shown in Fig. 
6.32), and any additional logic that is needed. Note that the data lines of the memory 
module are bidirectional. whereas the data lines of the 16K x 1 dynamic RAMs are divided 
into DIN and DOUT. (Hint: Use three-state buffers.) 

16K X 4 memory module 

14, 
A13-Ao " -

4, - DrDo - r -

: WE 

: CE 

Figure 6.46 Memory module for Problem 6.33. 



Chapter 7 

Digital Circuit Design 

7.1 INTRODUCTION 

222 

The digital circuit design process, as opposed to that of digital system design (to be 
discussed in Chapter 8), begins with a clear and unambiguous requirement specification 
of the digital circuit. The final product is a detailed design of the circuit. In between is 
the design process. Like any design process, the digital design process requires a com
bination of creativity, experience, and understanding of the general design principles. In 
particular, one does not become a good designer from simply reading a textbook. On 
the other hand, mindlessly designing digital circuits without any awareness of the general 
design principles often produces mindless results. 

Our purpose in this chapter is to present the general principles of digital circuit 
design and to discuss various techniques that are useful in the design process, thereby 
providing a solid foundation on which to build a knowledge of design. But providing 
the necessary creativity or experience is beyond the scope of this book. 

In this chapter we will study the design of sequential circuits using circuit elements 
that were introduced in the preceding chapters. Sequential circuits are classified into two 
main types: synchronous and asynchronous. In a synchronous sequential circuit, the 
circuit elements respond to input signals only at discrete instants of time-at the ·active 
transitions of the clock signal. A sequential circuit having this feature is called a clocked 
sequential circuit, as was stated in Chapter 5. All the digital circuits considered in this 
chapter are clocked sequential circuits. 

In an asynchronous sequential circuit, each circuit element operates at its own rate, 
and there are no clock signals to synchronize operation. Consequently, asynchronous 
sequential circuits can operate at faster rates than can synchronous sequential circuits. 
However, there can be serious operational problems because the outputs of the circuit 
elements depend on the order of the change in the input signals. As a result, the element 
outputs can be transiently unstable and unpredictable. For these and other problems 
relating to timing, the design of asynchronous sequential circuits is much more difficult 



7.2/A MODEL FOR DIGITAL CIRCUIT DESIGN 223 

than that of synchronous sequential circuits and is p.ot considered in this introductory 
text. 

We begin with a discussion of the digital circuit design fundamentals: the concepts 
of a controller anct"" the controlled circuit elements, and the various phases of the design 
process. The next topic is Algorithmic State Machine (ASM) fundamentals, along with 
the various techniques for directly translating ASM charts into hardware controller cir
cuit::.. (ASM charts are useful tools in the design and implementation of the controller 
of a digital circuit.) Finally, a series of detailed design examples are given to illustrate 
the digital circuit design concepts presented. 

7.2 A MODEL FOR DIGITAL CIRCUIT DESIGN 

As mentioned, the digital circuit design process begins with a clear and unambiguous 
requirement specification of the digital circuit. The final product is a detailed design of 
the circuit. In between is the design process. In its most unrefined sense, the digital 
design process can be viewed as being merely the selecting of the appropriate circuit 
elements and the interconnecting of them such that they function as specified. 

We can formalize this idea into the concept of a controller and the controlled 
circuit elements. In other words, ·a digital circuit design is conceptually divided into two 
parts, as shown in the general circuit design of Fig. 7.1. The controlled circuit elements 
comprise a set of circuit elements, like those presented in the preceding chapters, that 
are selected to implement the functions that are specified for the digital circuit. The 
controller provides these circuit elements with the appropriate input control signals at 
every moment in time so that the circuit elements properly implement the specified 
functions and produce the required external output signals. In this manner, the controller 
functions as the ''brain'' of the digital circuit. 

External 
input 
signals 

, 

--,4-

Controller 

State generator 

State 
signals . , . 

r"'"" 

Feedback signals 

Additional 
circuitry Controlled circuit elements 

Control r+ 
signals ,, 

, 

Figure 7 .1 General model for digital circuit design. 

, 
, External 

output 
sign~ 



224 ?/DIGITAL CIRCUIT DESIGN 

The controller. itself a digital circuit, consists. of a state generator and additional 
circuitry for producing the signals required for controlling the circuit elements. The inputs 
to the state generator are the external input signals and also feedback signals from the 
controlled circuit eiements. The outputs of the state generator are the state signals. each 
representing a state of the controller. The function of the state generator is to place the 
controller in the appropriate state at the appropriate time so that it generates the appro
priate control signals. 

i The concepts introduced above are among the most important and fundamental in 
digital design. Unfortunately, they are also among the most difficult ones to explain and 
comprehend. The remainder of this chapter will be devoted to making these concepts 
clearer. More details will be provided. Also, design techniques will be introduced. and 
design examples given. 

7.3 DIGITAL CIRCUIT DESIGN PROCESS 

The digital circuit design process can be divided into three major phases: 

1. Preliminary design phase 
2. Refinement phase 
3. Realization phase 

These phases occur in the indicated order. Before starting the preliminary design phase 
of a digital circuit, a designer must be given a well-defined requirement specification of 
the digital circuit that is to be designed. 

In the preliminary design phase, the designer makes certain of obtaining a good 
understanding of the given requirement specification. The designer should develop a 
block diagram of the overall digital circuit, with the input and output signals well defined, 
and may use timing diagrams of relevant signals for further clarification. Given that the 
designer has conceptually formulated a solution for the design problem, the final product 
of the preliminary design phase is the preliminary design, consisting of the following. 

1. A set of major circuit elements with the major data paths defined. The designer 
should, of course, have some idea of how the major circuit elements eventually 
will be realized. 

2. A preliminary plan (algorithm) for the control of the circuit elements. This 
control algorithm can be stated in·' words, or, if the algorithm is sufficiently 
concrete, in a more formal representation such as a flowchart. 

In the refinement phase, the designer iteratively refines the circuit design for both 
the controller and the controlled circuit element parts. For the circuit element part, circuit 
elements are added or eliminated as the solution becomes more in focus. During this 
iterative process, the signals of the circuit elements become more defined, and the set 
of controlled circuit elements converges to a set of actual ICs. Correspondingly, for each 
iteration of the refinement of the circuit elements, the control algorithm itself becomes 
more refined. The number of states becomes more stable and the control signals become 
more defined. Also, the timing among the signals increases in importance. During all 



7.4/ALGORITHMIC STATE MACHINE (ASM) 225 

this, the flowchart of the earlier design steps is converging to an ASM chart. Of course, 
the number of iterations required in the refinement phase depends on the complexity of 
the de.~ign. The end product of this phase is the following: 

1. A set of detailed circuit elements with completely defined functions and com
pletely d_efined signals. At this point of the design the circuit elements are 
sufficiently defined that they can be realized with available ICs in a straight
forward manner. 

2. The control algorithm in the fonn of an ASM chart in which the timing is 
unambiguously represented. 

The final phase of the design process is the realization phase. At this point of the 
design, the hard work is over. and the realization of the detailed circuit elements with 
available !Cs is straightforward. As we will see shortly, the hardware realization of an 
ASM chart is also straightforward, employing the techniques to be discussed in Sec. 7. 5. 

Examples are given at the end of this chapter to illustrate these design concepts 
and the entire design process. Before considering those examples, however, we will 
study some design tools and techniques that are necessary for digital design. 

7.4 ALGORITHMIC STATE MACHINE (ASM) 

The design of the controHer, and the state generator section in particular, is the most 
difficult part of the digital circuit design process. If the complexity of the controller is 
nontrivial, then trying to realize the controller through trial and error is not desirable, 
even if possible. A systematic design procedure is necessary. Central to such a procedure 
is an unambiguous notation for representing the control algorithm. This notation enables 
the designer to bridge the gap between the conceptual control algorithm and the actual 
hardware realization of that algorithm. 

Two characteristics are essential for this notation: 

1. For the designer to use it effectively, the notation must provide a clear descrip
tion of the algorithm, and in tenns to which the designer can relate. 

2. The notation must support a direct translation into a hardware realization of the 
control algorithm. 

Traditional state diagram methods, such as the Mealy and Moore state machines discussed 
in Sec. 7. 7, satisfy the second condition. Translation from a traditional state diagram to 
a hardware realization is straightforward~ Unfortunately, though, with such diagrams it 
is difficult to represent complex control algorithms clearly. Moreover, representing a 
control algorithm with more than a limited number of input and output signals can be 
unwieldy. 

A notation that has both essential characteristics is the Algorithmic State Machine 
(ASM) chart. Translation from an ASM chart to a hardware realization is practically 
identical to that for the traditional state diagram. And since the syntax of an ASM chart 
is very similar to that of a software flowchart, the control algorithm can be expressed in 
terms that are familiar to the designer. 



226 ?'DIGITAL CIRCUIT DESIGN 

The most important concept in the algorithm of a controller is the concept of a 
state. The term ustate" refers to a stable condition 'of the· controller over a fixed period 
of time. In terms of a sequential digital circuit., a state is represented by the binary 
information stored .. in the memory elements during that period of time. The notation of 
state will become clearer with the use of the term. 

On an ASM chart, a state is represented by a state box, which is a rectangle with 
the name of the state encircled and placed at the upper left corner or at the side of the 
rectangle. In the ASM chart example of Fig. 7.2(a)� there are four states: A, B, C, and 
D. Tnis chart is for a controller that has two input signals: IN.BIT and BUF.FUL, and
three output control signals: COUNT.EN, REG.LO, and OUT.FLAG.

Over time the controller, guided by the control algorithm. moves through a se
quence of states. The state transition from the present state of the algorithm to the next
state of the algorithm occurs at the active edge (leading edge in this case) of the system 
clock signal. In between state transitions the controller is stable. 

There are two types of state transitions: unconditional and conditional. For an 
unconditional state transition the next state depends only on the present state of the 
controller and not on any input signals. As an illustration, in Fig. 7 .2(a) the transition 
from state B to state A is unconditional. In other words, if the present state of the 
controller is state B, then the next st?,te.is state A regardless of the input signals IN.BIT 
and BUF.FULL. Similarly, the fransition from state D to state A is unconditional. 

In a conditional state transition the next state depends not only on the present state 
but also on the present values of the input signals. In an ASM chart a conditional state 
transition is represented by a decision diamond. Note from Fig. 7 .2(a) that if the controller 
present state is state A, then the next state is either state B or state C, depending on the 
value of the input signal IN.BIT. As you can see from Fig. 7.2(b), the decision is made 
at the end of the present clock cycle, at the next active edge (leading edge) of the system 
clock signal. For example, for state time Tl in Fig. 7.2(b) the value of IN.BIT is false 
at the end of Tl, and so the next state is state B. On the other. hand, at the end of T3 
the value of IN .BIT is true, and therefore the next state is state C. 

ASM charts also specify controller output values. There are two types of controller 
outputs: unconditional and conditional. They differ in that the value of an unconditional 
output depends only on the present state, but the value of a conditional output depends 
not only on the present state but also on the present values of the input signals. Uncon
ditional outputs are specified within the state boxes as shown for state boxes A, C, and 
D in Fig. 7 .2(a). As will be described in Sec. 7. 7, unconditional outputs are essentially 
Moore state machine outputs. Conditional outputs are specified in an oval associated 
with the state and its decision diamond. For·"the example of Fig. 7 .2(a), the only ·con
ditional output is the COUNT.EN associated with state C. Conditional outputs are es
sentially Mealy state machine outputs. 

Note from Fig. 7.2(a) and (b) that the unconditional outputs COUNT.EN and 
REG.LO are true every time the controller is in state A (Tl, T3, and T7), and that 
unconditional output REG.LO is also true every time the controller is in state C (T4 and 
TS). Further, unconditional output OUT.FLAG is true when the controller is in state D 
(T6). Finally, the conditional output COUNT.EN is true when the controller is in state 
.C only if the input signal BUF.FULL is true (TS and not T4). 



, 0-----

F 

COUNT.EN 
REG.LO 

T 

®----- ©---
REG.LO 

T 

COUNT.EN 

®-----
OUT.FLAG 

(a) 

Tl T2 T3 T4 TS T6 T7 

CLK 

State A B A C C D A 

IN.BIT 
I 
I I 

BUF.FULL :7 
I 

COUNT.EN 

REG.LO 

OUT.FLAG 

(b) 

Figure 7 .2 Example ASM chart and timing diagram. 

F 

227 



228 7/0IGITAL CIRCUIT DESIGN 

Conceptually, we must specify the values for ~very output signal for every state. 
So. for the example of Fig. 7 .2(a), we should specify the values of COUNT .EN, 
REG.LO. and OUT.FLAG for every state. But to do so would unnecessarily clutter the 
ASM chart. Therefore, we will adopt the following convention. For each state we will 
specify only those control signals having a true value; we will not show those output 
signals having false values in that state. Following are some examples of equivalent 
notations: 

COUNT.EN =T 
COUNT.EN ¢::> REG.LO =T 

REG.LO OUT. FLAG = F 

EJ COUNT.EN = F 
REG.LO <~ ;, REG.LO = T 

OUT.FLAG= F 

D COUNT.EN = F 

<C ;> -R-EG_._Lo __ = F_ OUT.FLAG= F 

7.5 TRANSLATION FROM ASM CHART TO 
HARDWARE REALIZATION 

In this section we will study some systematic methods for translating an ASM chart 
representation of the controller into a hardware realization. In most of the examples that 
illustrate these methods, D flip-flops will be used. Other types of flip-flops, however, 
could be used just as well. · 

7.5.1 Code Assignment 

We can use a binary code to represent the states of a controller. For the ASM chart of 
Fig. 7.2(a), a 2-bit code suffices for representing the four states A, B, C, and D. For 
them we will arbitrarily make the following assignments: 

Cl co 
State A: 0 0 
State B: 0 l 
State C: 0 
State D: 

In general, an N-bit code can represent 2N states. 
The 2 bits of the code can correspond to the outputs of two D flip-flops, as in the 

state generator circuit of Fig. 7.3. The output signal Cl of one flip-flop corresponds to 
the second bit of the code, and the output signal CO of the other flip-flop corresponds to 



7.5/rRANSLATION FROM ASM CHART TO HARDWARE REALIZATION 229 

State generator 

>' l ,, 

IN.BIT 
DI 

D Q Cl 

Combinational 
circuit 

BUF.FULL 
DO 

D Q co 

Figure 7.3 State generator circuit. 

the first bit. From the ASM chart of Fig. 7 .2(a) we can determine how this circuit must 
function. If the present state of the controller is state A and the input IN. BIT is true at 
the end of the present state time, then_ from Fig. 7 .2(a) the next state of the controller is 
state C. Thus. for the state generator circuit of Fig. 7 .3, if the present state of the 
controller is state A (Cl = 0, CO = 0), and the input IN.BIT is l (true) at the end of 
the present clock cycle, then the combinational circuit should be designed such that 
D l = l and DO = 0, so that at the next active edge of the clock signal. C l = 1 and 
CO = 0. Referring back to Fig. 7.2(a), if the present controller state is C and the input 
BUF.FULL is true at the end of the present state time, then the next controller state is 
state D. Consequently, for the state generator circuit of Fig. 7. 3, if the present state of 
the controller is state C (Cl = l, CO = 0), and the input signal. BUF.FULL is 1 (true), 
then the combinational circuit should produce D 1 = l and DO = 1, so that at the next 
active edge of the clock cycle, Cl = 1 and CO = l, and so forth. In the following 
sections, we will consider three systematic methods for designing and realizing such a 
combinational circuit. 

7:5.2 Traditional Method with D Flip-Flops 

In the traditional method of ASM realization we follow the same procedure we used in 
Chapter 5 for the design of c::ounters and shift registers. Basically, we just derive a next
state table for the state generator circuit, and then determine the input equations for the 
flip-flops. We will use the ASM chart of Fig. 7 .2(a) to illustrate this method. This chart 
is shown in Fig. 7.4 along with the arbitrary code assignments for each state specified 
at the upper right-hand corner of each state box: state A is 00, state B is O 1, state C is 
10, and state D is l I. 

Using information obtained from this ASM chart, we can form the next-state table 
of Table 7. I for the state generator circuit. Each row of Table 7. l contains the present 
values of the flip-flop output signals C 1 and CO, the present values of the input signals 
IN.BIT and BUF.FULL, and the desired values for the flip-flop outputs (Cl+ and co+) 
immediately after the next active clock edge. For example, the first row shows that when 



230 

F 

© 01 B ,___ __ 

fi:'\ 00 0.,)---'--
COUNT.EN 

REG.LO 

T 

© 10 c---
REG.LO. 

T 

COUNT.EN 

(';::;\ 11 .~----
OUT.FLAG 

Figure 7 .4 Example ASM chart with state assignments. 

?/DIGITAL CIRCUIT DESIGN 

F 

the present state of the controller is A (Cl = 0 and CO = 0), and the inputs are IN .BIT 
= 0 and BUF.FULL = 0, then the desired next state of the controller is B (Cl = 0 
and CO = 1). Similarly, the third row shows that if the present state of the controller is 
A (Cl = 0 and CO = 0) and the inputs are IN.BIT = 1 and BUF.FULL = 0, then 
the desired next state is C (CI = 1 and CO = 0). Finally, the last four rows of the table 
show that if the present state is D (Cl = 1 and CO = 1), then the next state is A (Cl 
= 0 and CO = 0), regardless of the values of IN.BIT and BUF.FULL. 

To design the combinational circuit of Fig. 7.3, we need the logic equations for 
the inputs DI and DO of the D flip-flops. As in the designs of the counters in Chapter 
5, we can get these equations by making a new table from Table 7.1, using the excitation 
table for the D flip-flop: 

D Q Q+ Q Q+ D 

0 0 0 0 0 0 
0 1 0 rearrange 0 l 1 
1 0 0 0 

1 

characteristic table excitation table 

The result is shown in Table 7 .2. 



TABLE 7.1 NEXT-STATE TABLE FOR THE STATE GENERATOR 
CIRCUIT 

Present- Next-
state code Inputs state code 

C1 co IN.BIT BUF.FULL c1+ co+ 

0 0 0 0 0 
0 0 0 l 0 
0 0 0 0 
0 0 0 

0 0 0 0 0 
0 0 l 0 0 
0 0 0 0 
0 0 0 

0 0 0 0 
0 0 l l 
0 0 .0 

1 0 

0 . 0 0 0 
0 l 0 0 

0 0 0 
0 0 

TABLE 7.2 NEXT-STATE TABLE WITH CORRESPONDING D FLIP-FLOP 
INPUTS 

r1=, ~ r1-, ~ r1i l n 
C1 co IN.BIT BUF.FULL CP co+ D1 DO 

0 0 0 0 0 1 0 
0 0 0 1 0 1 0 1 
0 0 0 0 0 
0 0 0 0 

0 0 0 0 0 0 0 
0 0 1 0 0 0 0 
0 0 0 0 0 0 
0 1 0 0 0 0 

0 0 0 0 1 0 
1 0 0 1 1 1 1 

0 0 0 0 
0 1 1 1 

0 0 0 0 0 0 
0 1 0 0 0 0 

0 0 0 0 0 
1 0 0 0 0 

231 



232 

IN.BIT.H 

BUF.FULL.H 

7 DIGITAL CIRCUIT DESIGN 

For Table 7.2, we can readily determine the pl and DO entries by ~ecalling from 
Chapter 5 that each row of the D flip-flop excitation table indicates the value required 
for the D input for the desired D flip-flop output transition. As indicated at the top of 
Table 7 .2, the values of DI are derived from those of Cl and C 1 + in agreement with 
the D flip-flop excitation table. For example, in row 3, for the transition from Cl = O 
to CI + = 1, the value of D l must be l. In row 13, for the transition from C 1 = l to 
C 1 + = 0, the value of DI must be O, and so forth. Similarly. the values of DO are 
derived from. the values of CO and co+. 

Cl 
IN.BIT CO 
BUF.FULL 00 01 11 IO 01 11 IO 

00 0 0 0 00 0 0 0 

01 0 0 0 01 0 

0 0 11 0 0 0 

0 0 IO O O 0 

DI = CO· IN.BlT + Cl ·CO DO= cT•CO·IN.BIT + Cl •CO·BUF.FULL 

(a) 

State generator 

Combinational circuit 
74'08 

Cl.H 
74•74 

74'04 
Dl.H 

D Q 
74'08 Cl.H 

CO.H 
74'04 

74'1 l 

74'74 

D0.H 
D Q 

74'11 CO.H 

(b) 

Figure 7 .5 D flip-flop state generator realization. 



7.5/TRANSLATION FROM ASM CHART TO HARDWARE REALIZATION 233 

Using Table 7 .2 we can derive the logic equations for D 1 and DO as functions of 
Cl, CO, IN.BIT, and BUF.FULL. The K-maps for DI and DO are given in Fig. 7.5(a) 
and the resulting circuit diagram in Fig. 7.5(b). 

To complete the controller design, we must have a circuit for decoding the state 
code and producing the control signals REG.LO, OUT.FLAG, and COUNT.EN, which 
are the ASM outputs. From the ASM chart of Fig. 7.4 we see that REG.LD = I when 
the controller is in state A or state C. Consequently, REG.LO = A + C. Similarly, 
OUT.FLAG = D. The third output, COUNT.EN, is I if the controller is in state A or 
if it is in state C and if BUF.FULL = 1. Therefore, COUNT.EN = A + C·BUF.FULL. 
Using a 74' 139 decoder, we can decode the state code. The complete controller circuit 
is shown in Fig. 7 .6 . 

. 7.5.3 PLA/PAL Method of ASM Realization 

In the traditional method of ASM realization that we have just considered, we first derive 
the next-state table of the state generator circuit (e.g., Table 7 .2), then determine the 
input equations for the flip-flops [e.g., Fig. 7.5(a)], and finally realize the input equations 
with AND, OR, and NOT gates [e.g._, Fig. 7.5(b)]. Note that the combinational circuit 
of Fig. 7 .5(b) is a two-level AND-OR realization. Recall from Sec. 6.4 that a program
mable logic array (PLA) or a programmable array logic (PAL) is essentially a two-level 
AND-OR circuit element. Consequently, we can replace the combinational circuit in Fig. 
7 .5(b) with a single PLA or PAL circuit element. We will now do this with a PLA. 

The design procedure for the PLA/P AL method of ASM realization is identical to 
that of the traditional method up to the realization step. In other words, the PLA/PAL 
method also involves the derivation of the next-state table, which is Table 7 .2 here. 
From this table we see that the minterm expansions for DI and DO are 

Dl = CI·C0·IN.BIT·BUF.FULL + CI·CO·IN.BIT·BUF.FULL 
+ CI·CO·IN.BIT·BUF.FULL + Cl·C0·IN.BIT·BUF.FULL 
+ CI·CO·IN.BIT·BUF.FULL + Cl·CO·IN.BIT·BUF.FULL 

DO= CI·C0·IN.BIT·BUF.FULL + Cl·CO·IN.BIT·BUF.FULL ---- -+ CI·CO·IN.BIT·BUF.FULL + CI·CO·IN.BIT·BUF.FULL 

We can directly realize these logic equations with a single PLA, as shown in Fig. 7. 7. 
The obvious advantage of this method is the replacement of several IC packages 

with a single IC. This advantage is more dramatic when the controller circuit is complex 
and many IC packages are required for the traditional method. This PLA/P AL method 
is even more attractive with. PLAs and PALs that have built-in flip-flops on-board the 
chips. With one of these PLAs or PALs, we can realize an entire controller with a single 
chip. 

, 7.5.4 ROM Method of ASM Realization 

Recall from Sec. 6.5.2 that a read-only memory (ROM) can also be used to realize 
random logic. Obviously, we can replace the combinational circuit in Fig. 7.5(b) with 
a ROM just as we did with a PLA in the last section. In addition, we can use the same 
ROM to generate the controller outputs. We will now show how to do this. 



N w 
.s:i.. 

Controller 

State generator 

Combinational circuit 
74'08 

CUI I 
1~~ I DI.H 

l 74•04 

A I I I 
74'04 

IN. I I 
I C0.H 

IC>o t 11 I 74'1 I 

r--,__, 7.:1'1? I BIT.H T 
D0.H 

I I I I ~ I I 
BUF. -

FULL.H 

Figure 7 .6 Contro1ler realization with D flip-ftops for the ASM chart of Fig. 7.4. 

74'74 

r;-- 0 ~ I 74•,39 
LA.LI 

74'00 
CLH I - ,r--,...,. 

I REG. 
LD.H 

I. I I I I I U I I I I ~ I 

n ~OUT. 74'74 

ID 0
1 CO.H 

~ ~ HAG.H 

COUNT. 
EN.H 



N w 
U1 

1 

Controller 
-

IN.BIT.ff 

BUF.FULL.H 

7 
1 

· 1 State generator -

. -1~ 

I 
I' I PLA I ' ,! J J I I I I 

I • , 

I -t:,r, ' : . 

c1-:-H ·- · · - 74'74 - l 74• 139 74'oo 

',..,,... , • , , .' DI.HI Q. - - I - A.L . D 
I__ H rlL I~ ' - 1-~---~ D Cl II :>- I ~ co. - ' , . , . ,., 

' .. .. ,. - , BL I 1--t:> ,. . ., . . - . ~ - - ,_ . . . - . '- ,.,- -
I ., • ~ 

1--t:> • . - · t:__. -1 C.L 74'04 -· - ·- . - -~ - --1' --

- - ' _D.LJ ~ ------ · -1--t:> , 14•14 I r- ~ 
. - L DO H I • ' -

1 
_J J _ r . D Q CO.II I 74'00 . " ., ' ., :. --~ :. . --D- vJ 

· '" •e ''' • , 74'32 ,t •1· ~ 
. •e •• D->- t': I 

. ' I '-0->- I 
I L I I I I I t -• 

- I • • • -1 I I 

- ., 
' !f-74'04 ~ I 

l 
I -

Figure 7.7 Controller with PLA state generator realization for the ASM chart of Fig. 7.4. 

REG LD.H 

OUT.FLAG.H 

COUNT. EN.II 



236 ?/DIGITAL CIRCUIT DESIGN 

In the ROM method of ASM realization. we follow the same initial steps as for 
the traditional method. Doing this for the ASM chart .of Fig. 7.4, we derive, as before, 
Table 7 .2, which is reproduced in Table 7 .3 with the addition of the controller output 
columns. The first row of Table 7 .3 shows that if the present-state code is 00 and the 
inputs are IN.BIT ~ 0 and BUF.FULL = 0. then the outputs should be REG.LO = 
I, OUT.FLAG = 0, and COUNT.EN = L as is evident from the ASM chart of Fig. 
7.4. Furthennore, the desired next-state code is 0 I, which implies that the inputs to the 
D flip-flops are DI = 0 and DO = I. Likewise, all the other entries of Table 7 .3 can 
be verified from the ASM chart of Fig. 7 .4. 

Using a fictitious 16 x 5 ROM and two D flip-flops, we can realize the controller 
circuit represented by Table 7 .3. The circuit diagram for the controller is given in Fig. 
7.8. As shown, the address bits A3, A2, A 1, and A0 correspond, respectively, to the 
inputs CI, CO, IN.BIT, and BUF.FULL. Also, the stored bits Z4 , Z3, Z2 , Z,, and Zo 
correspond, respectively, to the outputs REG.LO, OUT.FLAG, and COUNT.EN and 
the D flip-flop inputs DI and DO. The shown stored values are easy to determine from 
Table 7.3. For example, for the present-state code of 00 (Cl = 0, CO = 0) and the 
inputs IN.BIT = 0 and BUF.FULL = 0, the address of the memory location to be 
referenced in the ROM is 0000 (A3 = 0, A2 = 0, A1 = 0, A0 = 0). In this case, the 
outputs of the ROM are Z4 = I, Z3 = 0, Z:z = I, Z1 = 0, and Z0 = 1. Consequently, 
the outputs of the controller are REG.LO = 1. OUT.FLAG = 0, and COUNT.EN = 

TABLE 7.3 INPUT AND OUTPUT VALUES FOR ROM REALIZATION 

D flip-
Present- -Input values flop 

state for the Next-state input 
code present state Output values for the present state code values 

C1 co IN.BIT BUF.FULL REG.LO OUT.FLAG COUNT.EN c1+ co+ D1 DO 

0 0 0 0 0 0 0 
0 0 0 I 0 0 I 0 I 
0 0 0 0 0 0 
0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 
0 0 I 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 
0 0 I 0 I I I 
0 0 0 0 0 0 
0 0 

0 0 0 0 0 0 0 0 
0 I 0 0 0 0 0 0 

0 0 0 0 0 0 0 
0 0 0 0 0 0 



N w ..._. 

IN.BIT.II 

BUF.FULLH 

Controller 

16 X 5 ROM 

- A3 
CJ 

A2 - co 
A1 

Ao 

A3 A2 A1 Ao 
(0 0 0 0) 

(0 0 0 I) 

(0 0 l 0) 

(0 0 I 1) 

(0 I 0 0) 

(0 I 0 I l 

(0 l I 0) 

(0 I I I) 

( I 0 0 0) 

( I 0 0 l ) 

(I 0 1 0) 

(I 0 1 I) 

(I I 0 0) 

(I I 0 I) 

(I I I 0) 

(I I I I) 

24 23 22 21 Zn 

I 0 I 0 I 

I 0 I 0 I 

I 0 I I 0 

l 0 I I 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

I 0 0 I 0 

I 0 I I l 

1 0 0 I 0 ., . 
C 

I 0 I l 1 

0 I 0 0 0 

0 I 0 0 0 

0 I 0 0 0 

0 I 0 0 0 

Figure 7 .8 ROM realization of the controller for the ASM chart of Fig. 7.4. 

24 REG.LD.H 

23 OUT.FLAG.H 

Z2 ('OUNT.l:N.11 

DI z, -Cl 

[> 

Zo 
DO 

co 

C> 
', 



238 7/DIGITAL CIRCUIT DESIGN 

1, the same as for the circuit of Fig. 7 .6. Other combinations of inputs and present-state 
codes produce equivalent results. In fact, the circuit of Fig. 7.8 is functionally equivalent 
to that of Fig. 7 .6 .. In other words, if both circuits were in black boxes, we could not 
functionally distinguish them-we could not tell one from the other. In effect, instead 
of designing a cird.1it by using the traditional method to realize Table 7. 3, we have stored 
the required values in a table in a ROM. Then when a certain combination of inputs is 
given, we simply look up the desired output values and next-state code. 

7.6 AN ADDITIONAL CONTROLLER DESIGN 

For this design, the ASM chart shown in Fig. 7. 9 will be realized using J-K flip-flops. 
This ASM chart represents a controller that has one input (IN.BIT) and three outputs 
(COUNT.EN, FLAG.SET, and COUNT.LO). For the five states, we need a 3-bit code 
(C2, C 1, CO) and a code assignment, which we will arbitrarily make as follows: 

State C2 Cl co 
so 0 0 0 
Sl 0 0 I 
S2 0 0 
S3 0 I I 
S4 0 0 

This assignment is shown in Fig. 7.9. Now we are ready to realize this chart. 
Just as we used different types of flip-flops to realize counters in Chapter 5, we 

can use different types· for an ASM realization. The procedure with J-K flip-flops is 
basically the same as for the D flip-flop procedure, which we have just considered. But, 
of course, we must determine the logic equations for J and K inputs instead of D inputs. 

For an illustration of the J-K procedure we will use J-K flip-flops in a realization 
of the ASM chart of Fig. 7 .9. Since this chart has a 3-bit code, the state generator for 
the controller must have three J-K flip-flops, as is shown in Fig. 7 .10. Of course, the 
three flip-flop outputs C2, Cl, and CO represent the 3 bits of the code. 

To design the combinational circuit of the state generator of Fig. 7.10, we need 
the logic equations for the flip-flop inputs C2(J), C2(K), Cl(J), Cl(K), C0(J), and C0(K). 
As in Chapter 5, these equations are obtained by using the excitation table for the J-K 
flip-flop, which basically is just a rearrangement of the characteristic table. 

J K Q Q+ 

0 0 0 0 
0 0 1 

Q Q+ J K 0 0 0 
0 I 1 0 rearrange 

0 0 0 X 
0 0 

0 I I X 
0 1 

0 X I 
0 1 

0 
X 0 

characteristic table excitation table 

As is explained in Chapter S, each row of the excitation table specifies the J and K inputs 
for the desired flip-flop output transitions. 



7.6/AN ADDITIONAL CONTROLLER DESIGN 

0 

0 

~ 000 @----
COUNT.EN 

COUNT.EN 

COUNT.EN 

COUNT.EN 

FLAG.SET 
COUNT.LO 

0 

239 

Figure 7 .9 ASM chart for a controller that 
has one input and three outputs. 

Using information from the ASM chart of Fig. 7.9, we can readily determine the 
values of c2+, Cl+, and co+ as a function of IN.BIT and the values of C2, Cl, and 
CO, as shown in Table 7 .4. Then, we can use the J-K excitation table to derive the values 
of C2(J) and C2(K) from the values of C2 and C2 + . Similarly, we can derive the values 
of Cl(J) and Cl(K) from the values of Cl and Cl+, and the values of CO(J) and CO(K) 



240 7/DIGITAL CIRCUIT DESIGN 

State 
generator 

' i t 
Combinational C2(J) 

circuit C2(K) J 
K Q C! 

> 
IN.BIT 

CW) 
j 

CHK) 
K Q - Cl 

> 
CO(]) 

J CO(K) 
K Q co 
> 

Figure 7.10 State generator circuit for the controller of Fig. 7. 9. 

from CO and co+. The result is shown in Table 7 .4. Incidentally, note in Table 7.4 that 
for the unused state codes 10 I. 110, and 11 I (rows I I through 16), the next-state code 
is arbitrarily specified as 000. 

Using Table 7.4 we can derive the logic equations for C2(J), C2(K), Cl(J), Cl(K). 
CO(J), and CO(K) as functions of C2, CI, CO, and IN.BIT. The K-maps are shown in 

TABLE 7.4 J AND K INPUTS FOR PRODUCING THE STATE TRANSITIONS 

C2 C1 co IN.BIT c2+ c1-+- co+ C2(J) C2(K) C1 (J) C1(K) C0(J) C0(K) 

0 0 0 0 0 0 0 0 X 0 X 0 X 
0 0 0 l 0 0 l 0 X 0 X l X 
0 0 0 0 1 0 0 X l X X 1 
0 0 0 0 0 X 0 X X 0 

0 0 0 0 0 0 0 X X I 0 X 
0 0 1 0 l 0 X X 0 l X 
0 0 0 0 0 X X 0 X 1 
0 0 0 X X X 

0 0 0 0 l 0 X l X 0 X 
0 0 1 0 0 1 X 0 X X 
0 0 0 0 0 X 0 X X 
0 0 0 0 X 0 X X 

0 0 0 0 0 X X 0 X 
0 1 0 0 0 X X 0 X 

0 0 0 0 ·X X X 
0 0 0 X X X 



7.7/TRADITIONAL STATE MACHINES 

C2 C:2 C:! 
co Cl CO Cl 

IN.BIT 00 01 l l 10 IN.BlT 00 01 11 10 
CO Cl 

IN.BIT· 00 01 l l 10 

00 0 0 X X 00 Xi XI l l 00 i O IX X 1 

01 0 01 XIX i l 1 01 ! 0 

111 0 1 1 x! 1 j 1 0 

10/ 0 0 X X 10 l ; 0 

C(J) = Cl ·CO• IN.BIT C:::(K) = I Cl(J) = C2•C0•IN.BIT + C2·C0·IN.BIT 

C2 
co 

IN.BI 
Cl 

T 00 01 

00 :x 1 

01 xjo 
· l I X I 

10 X 0 

11 10 

1 x: 
1 X 

I X 

'-
I ~-

C2 
CO Cl 

[N.BIT 00 01 11 10 

00 0 0 \ 0 ! 0 \ 

01 l O I l 

11 
~a:i:::==::.J__...:...:::::::=:r-

10 ...__....__.......__..,___, 

C2 
co 

IN.B 
CI 

IT 
00 

01 

11 

IO 

00 01 11 l 0 

'"x rx X' X 

X X X X 

0 l l l 

r l ,___L J_; 1 I 

241 

Cl(K) = C2 + CO· IN.BIT 
+ C0·IN.BIT 

C0(J) = Cl·IN.BIT C0(K) =IN.BIT+ Cl + C2 

Controller 

State generator 74'109 

(Cl •C0• IN.BIT).H ---4 J 

TRUE.L n---n 

(C2·C0·IN.BIT + 74' 109 

C2.H 
Q 

C2•C0•IN.BIT).H Cl(J) J 
(C2 + CO· IN.BIT Cl(K) Q CI.H 

+ C0· IN.BIT).L 

+ C2•IN.BIT 

(a) 

74'138 

(b) 

Figure 7.11 J-K flip-flop controller realization. 

74'20 

COUNT.EN.H 

r:>----+-----t1t-------t-e:J FLAG.SET. L 

--- I COUNT.LD.L 

Fig. 7.1 l(a), and the resulting circuit diagram. along with the decoded state signals and 
ASM outputs, is given in Fig. 7.1 l(b) . 

. 7.7 TRADITIONAL STATE MACHINES 

As stated in Sec. 7.4, two characteristics are essential for the notation used to represent 
the control algorithm of a digital circuit: 



242 7/DIGITAL CIRCUIT DESIGN 

I. For the designer to effectively use it, the notation must provide a clear descrip
tion of the algorithm, and in terms to which the designer can relate. 

2. The notation must support a direct translation into a hardware realization of the 
control algorithm. 

Traditional state-diagram methods, such as the Mealy and Moore state machines. 
satisfy the second condition. In fact, translation from a traditional state diagram to a 
hardware realization is practically identical to that for the ASM chart presented in the 
preceding section. With traditional state diagrams, however, it is difficult to clearly 
represent complex control algorithms, especially if there are more than a limited number 
of input and output signals. Furthermore, traditional state diagrams are often not as 
flexible as the ASM charts, as we will soon see. Even so, traditional state diagrams are 
still in common use. Therefore, it is beneficial for the reader to gain some exposure to 
them. 

7.7.1 Mealy State Machine 

F 

© _ .......... ___ 

The Mealy state machine is essentia,ly an Algorithmic State Machine (ASM) in which 
all outputs are represented as conditional outputs. Shown in Fig. 7 .12(b) is a Mealy state 
diagram (or graph) that is equivalent to the ASM chart of Fig. 7.12(a), which is copied 
from Fig. 7 .2(a). A state is represented in a Mealy state graph by a circle. Therefore the 
four circles in Fig. 7.12(b) represent the four states: A, B, C, and D. As in the ASM 

Inputs: IN.BIT. BUF.FULL 
Outputs: COUNT.EN, REG.LO, OUT.FLAG 

T 

(a) ASM chart (b) Corresponding Mealy state graph 

Figure 7.12 Mealy state graph illustration. 



. 7.7/TRADITIONAL STATE MACHINES 243 

chart, a state transition is represented by an arrow from on': state to a next state. Further, 
specified for each transition arrow are the present values of every input signal and every 
conditional output signal, with the input values specified on the top and the output values 
on the bottom. The correspondences of these values to the actual signals are implicit 
through the ordering. Here, the ordering is IN.BIT, BUF.FULL on each top, and 
COUNT.EN, REG.LO, OUT.FLAG on each bottom. Again. note that all outputs for 
the Mealy state diagram are represented as conditional outputs. Therefore, to represent 
unconditional outputs such as COUNT.EN and REG.LO for state A, we have to specify 
those output values at both transition arrows from state A, as shown. 

: 7.7.2 Moore State Machine 

The Moore state machine is essentially an ASM in which all outputs are represented as 
unconditional outputs. Shown in Fig. 7 .13(b) is a Moore state diagram that is equivalent 
to the ASM chart of Fig. 7. 13(a). Just as for a Mealy state diagram, a state in a Moore 
state diagram is represented by a circle, and a state transition is represented by an arrow. 
However, the specification for each transition arrow has only the present values of the 
input signals used to determine the next state; there are no output signal values. Instead, 
the outputs are associated unconditionally with states, being specified inside each state 
circle under the state name. As a result, a Moore state machine cannot be used to represent 
the ASM chart of Fig. 7.2 or 7.12(a), where conditional and unconditional outputs are 
present. 

Inputs: IN.BIT, BUF.FULL 
Outputs: COUNT.EN. REG.LO. OUT.FLAG 

T 

@ OUT.FLAG 

(a) ASM chart ( b) Corresponding Moore state graph 

Fagure 7 .13 Moore state graph illustration. 



244 7/DIGITAL CIRCUIT DESIGN 

7.8 DESIGN EXAMPLES 

In this section we will consider design examples to illustrate the digital circuit design 
fundamentals that ··have been presented in this chapter. In studying these examples the 
reader is particularly urged to keep in mind the two main concepts in the design of a 
digital circuit: 

14,, 
' 

1. A digital circuit is conceptually divided into the following: 
(a) A set of circuit elements. 
(b) A controller that controls the inputs to these circuit elements. 

2. A digital circuit design is stepwise refined through the following phases: 

-

-

-- -

(a) The preliminary design phase-which results in block diagrams of the set 
of circuit elements and a flowchart of the controller. 

(b) The refinement phase-which results in a set of detailed circuit elements 
with completely defined functions and signals, and an ASM chart of the 
controller. 

(c) The realization phase-which results in a hardware realization with com
mercially available ICs of the circuit elements and the ASM chart. 

CLK JlS • • • J7SLfl_J7j 
! I I t I I I Tu , l • , I 

EN I I I L 
F I ! I i 

: I High z I -----\)J I I 
ADDROUT -1---T------~ ROW "" COL ~ 

TI I 

RAS F : L 
I I I 

T l H 
CAS F i I L ------------i-----,..-___,1I I 

i I I 
WET I I I 

F--....... -----------------

ADDRIN13 - ADDROUT6- 7, -
ADDRIN0 ADDROLTT0 

1 

RD RAS: I 

WR CAS~ (b) Read cycle 

EN WE~ -

(a) Block diagram 

CLK _n_r • • • J7.J7JLSlS 
I I I I I I i 

TI I I I I I ! 

EN F i I i I : : L -r----f I ! 
1 

I High 2 ~-----1---------"",
1

_ ADDROUT -~--1-------1\, ROW 'I\ COL 1 
I l I 

T I I I _i 

RAS F I I I L 
I : 

CAS ! ~, _......_ ______ ........ ----!rl_ 
WE;; H_ 

I I l 
I I 
I I 

( c) Write cycle 

Figure 7.14 Problem specification for the simplified dynamic RAM controller. 



7.8/DESIGN EXAMPLES 245 

7.8.1 Simplified Dynamic RAM Controller 

For this example we are to design a simplified dynamic RAM controller circuit. the block 
diagram of which is ~hown in Fig. 7.14(a). This circuit has the following specifications: 
The inputs to the circuit are a 14-bit address (ADDRIN 13-ADDRIN0 ), a read signal 
(RD), a write signal (WR), and an enable signal (EN). This circuit does not function 
until EN is true. When EN becomes true, the 14-bit ADDRIN is loaded in as a row 
address (ADDRIN 1rADDRIN7) and a column address (ADDRIN6-ADDRIN0 ). Also 
when EN becomes true, the values of RD and WR are latched. Subsequently, the row 
address is outputted (at ADDROUT) along with the row address strobe (RAS) signal (at 
RAS). Then, the column address is outputted (at ADDROUT) along with the column 
address strobe (CAS) signal (at CAS). Finally, if the operation is a write operation 
(RD = false, WR = true), then the WE output is true. Otherwise, for a read operation 
(RD = true, WR = false), the WE output remains false. 

Simplified dynamic RAM controller circuit 

Circuit elements 

- 2-to-l ADDROUT6 ADDRIN1r 
ADDRIN7 

ROWREG _.....,. MUX 
/ , : 26 Zs Zo l /7 

I I • • • r; 2•to•l ADDROUT5 
I 
I MUX 

• 
ADDRIN6 - • • 
ADDRIN0 • • • • 

: 26 Zs Zo I • 
/ • 

/7 
COLREG ... 2-to-l ADDROUTo 

~ MUX 
ROFF 

RD ·0-
WRFF 

WR :0-
' 

Controller 

Control ..... RD / signals ,, 

---- WR RAS:: 
- EN CAS ~ 

WE:: 

(a) Block diagram of the circuit elements and the controller 

Figure 7. IS Preliminary design for the dynamic RAM controller circuit. 

--

~ 

~ 

-r 

-r 

-,,.. 

. 
~ 



246 

Keep WE 
false 

Figure 7 .15 (cont.) 

(WAIT) ,-----.1...---
All signals are false: 

ADDROUT is high Z 

F 

(LDAD) 
Load in the 14-bit 

address 

(LDRW) 
Load in RD and WR 

signals 

(oRow) 

Output row address 

(ORAS) 
Output row address 
and set RAS = true 

(ocoL) 
Output column address 
and keep RAS = true 

(ocAs) 
Output column address 
and keep RAS = true: 

set CAS = true 

read 

7/DIGITAL CIRCUIT DESIGN 

write 

C OWE) __ ..___ 

Set WE 
to true 

(b) Flowchart for the controller 

The timing of this digital circuit is specified more precisely in the timing diagrams 
of Figs. 7. l 4(b) and ( c). Note that these diagrams are similar to those of Fig. 6. 31 for 
the read and write cycles of the dynamic RAM presented in Sec. 6.5.3. However, the 
timing diagrams in Fig. 7.14 are specified at the logic level (T and F), whereas the ones 
in Fig. 6. 31 are specified at the voltage level (H · and L). Note also from the timing 
diagrams in Figs. 7.14(b) and (c) that the row address is outputted at ADDROUT some 



· 7.8/DESIGN EXAMPLES 247 

time after EN becomes true. The circuit should be designed so that this time delay is as 
small as possible. 

A preliminary design of the simplified dynamic RAM controller circuit is shown 
in Fig. 7 .15. It shoulct"'be obvious that we need two 7-bit storage registers to store the 
row address (ROWREG) and the column address (COLREG), respectively. Also needed 
are two I-bit storage registers (flip-flops) to latch the values of RD and WR. All these 
registers should have a synchronous load input so that when EN becomes true. the 
controller can generate the load signals to these registers to load in the values. After the 
row and column addresses are loaded, they are time-multiplexed at the ADDROUT 
outputs. More specifically, the row address is outputted first, and then the column ad
dress, with both appearing at the same outputs (ADDROUT). As a result. seven 2-to-l 
multiplexers are needed to select either the row address or the column address to be 
outputted. It is the function of the controller to perform this selection ( via the select 
inputs of the MUXs) along with outputting the appropriate RAS and CAS outputs. 
Additionally, the controller should output WE = true for a write operation and WE = 
false for a read operation. The control algorithm for the preliminary design is specified 
in the form of a flowchart in Fig. 7 .15(b). 

The next phase of the design process is the refinement phase. The first step in it 
is the refining of the definitions of the circuit elements. At this point of the design we 
have a good idea of the functions that are required for each of the circuit elements. 
Consequently, a detailed definition of them is possible. The result is shown in Fig. 
7.16(a). Next, we see that the control signals outputted from the controller are now 

7-bit storage 
register 

LO 

Gated D 
flip-flop 

2-to-l MUX 

B 

A Z 
EN 

SEL 

If LO= T, then the values at D6-D0 are 
loaded at the next active clock transition. 
Otherwise. the register retains the current 
values. 

If LD T. then the value at D is 
loaded at the next active clock transition. 
Otherwise. the t1ip-tlop retains the 
current value. 

EN SEL 

F X 
T F 
T T 

z 
high Z 
A 
B 

(a) Detailed specifications for the circuit elements 

Figure 7.16 Refined design of the dynamic RAM controller circuit. 



248 ?/DIGITAL CIRCUIT DESIGN 

Simplified dynamic RAM controller circuit 

Circuit elements 

ADDRIN 1r ROWREG 

ADDRIN7 7
1 ---+-----1----,'-------1 D6-Do Z6-Zo .,___...., 

(7 of these) 
ROWREG.LD- LO 

> 
2-to-l MUX 

7/ 
B I 

ADDRIN6-
COLREG 

I A z /7 - EN 

ADDRIN0 7
1 I _.....,. ____ .,.__,,,,-----1 D6-Do Z6-Zo ..,.__.,. 

MUX.SEL 

COLREG.LD- LD MUX.EN 
~ 

ROFF 
RD --+----.-------~ o Q -

ROFF.LO- LO 
> 
WRFF 

WR 
---1-----+-----------t D Q -

WRFF.LD- LD 
t> 

Controller 

'~ ' '~ '. '. '. 

_....RD 

ROWREG.LD -
COLREG.LD 

RDFF.LD---
WRFF.LD .,_ __ _ 

.,__--11· -i WR MUX.E!'\ -----
MUX.SEL .._ ____ ___, 

7, 
I 

ADDROUT6-

ADDROUT0 

--+------------,;a---tEN RASn~-------------+~~,,.... 
CASn~-------------+~-,,.... 

WED~------------+-~-• 

(b) Block diagram of the circuit elements and controller 

Figure 7.16 (cont.) 

defined. They correspond to the control inputs of the circuit elements as shown in Fig. 
7. 16(b). 

Based on the refined set of circuit elements shown in Fig. 7.16(b), the flowchart 
of Fig. 7.15(b) can be converted to the ASM chart shown in Fig. 7. l 7(a). Different from 
a flowchart, an ASM chart precisely specifies the timing, with each state corresponding 
to a clock period. Additionally~ unconditional and conditional control outputs are speci-



7.8/DESIGN EXAMPLES 

(WAIT) ------

F 

(LOAD) ------ROWREG.LD 
COLREG.LD 

(LDRW) --------RDFF.LD 
WRFF.LD 

(oRow) -------
MUX.EN 

MUX.SEL 

C ORAS) ,....__M_U_X_.-EN-

MUX.SEL 
RAS 

(ocoL) ,--.------
MUX.EN 

RAS 

( OCAS) ,...__M_U_X_.E_N __ 

RAS 

FF 
TF 
TI 

CAS 

(a) ASM chart 

249 

CLK 

. .\DDROUT 

T : I I i 
EN F I I I I I I 

1 1 HighZ : 1---1 1 )i-1 i--T--r--1--;< ROW ~ COL . I 
T I I I I ' ~ 

I I I I 

F~1--------- I 
CAST I h F~-~-----~-~---- I 

I 
WET I 

F -,---1"------,.---,-------~--!-

RAS 

(b) Read cycle 

CLK 

T I I 
EN F : : I I I I 

I I HighZ I 
1
---' : I 

ADDROUT -.--+-----1--< ROW x
1 

COL >-, 
I I I I I . 

RAST! I : : I L 
F I I I 

T H 
CAS F -:---~-----------.--~ i,.. 

WE! r-L 
I 

(c) Write cycle 

Figure 7.17 An ASM chan for the controller of the dynamic RAM controller circuit. 

fled for each state to accomplish the required functions for that state. For example, in 
the state LOAD, the row address and column address are synchronously loaded into 
ROWREG and COLREG, respectively, by applying true load signals ROWREG .LD and 
COLREG.LD during that clock cycle. Note that the state OWE in the original flowchart 
is changed in the ASM chart to a conditional output that is associated with the state 
OCAS. This is necessary because we want to output WE = T in the same clock cycle 
as the CAS output. Also note that in the state OCAS, if RD, WR = FF or TT, there is 
a default to a read operation (WE ·= F). This is a designer's choice. We could have just 
as well decided to make the default a write operation. The precise timing of the ASM 
chart in Fig. 7.17(a) is shown in the corresponding timing diagrams of Figs. 7.17(b) and 
(c). Note that for a controller realized from this ASM chart, the row address is not 
outputted until three clock cycles after EN becomes true. 



250 7/DIGITAL CIRCUIT DESIGN 

(WAIT)-----

CLK 

F 

(LOIN) 
ROW REG.LO 
COLREG.LD 

ROFF.LO 
WRFF.LD 

0Row) 
MUX.EN 
MUX.SEL 

T I I i I I EN 
F I I I I I 

I I High 2 I I + ADDROUT -,---t-----K ROW x I I I I I I 

RAS 
T I I I I I I ~ F I I I I I 

T 
I I 

h CAS I I 
F 

I 

WE T I 

F 

(oRAS) MUX.EN (b) Read cycle 

MUX.SEL 
RAS 

(ocoL) 
MUX.EN 

CLK 
I 

RAS 

(ocAs) MUX.EN 
RAS 
CAS 

EN T I I i I I I 
F I I I I I I 

I I High 2 I 
RiW 

I + I ADDROUT -1--r----( )t( >i-: I I 
RAS 

T I I I 
t ~ F 

FF 
TF CAS 

T H-F 
TT 

WE T M F 
I 

(c) Write cycle 

(a) ASM chart 

Figure 7.18 First refinement of the ASM chart for the dynamic RAM controller circuit. 

Figures 7. 18 and 7. 19 illustrate stepwise refinements of the controller ASM chart. 
Note in the ASM chart of Fig. 7.18(a) that the states LOAD and LDRW, from Fig. 
7. l 7(a), are combined into a single state LOIN. The result is that both the row and 
column addresses are loaded during the same state as the RD and WR signals. From the 
circuit elements shown in Fig. 7.16(b) we see that this is physically possible and does 
not introduce any timing problem. Clearly, this joint loading is desirable since it reduces 
the delay before the row address can be outputted, as shown in Figs. 7. l 8(b) and ( c). 

The ASM chart can be further optimized by eliminating the state LOIN by asso· 
ciating conditional outputs with the state WTLO as shown in Fig. 7 .19( a). Again, this 
elimination does not introduce any timing problem. In addition, it reduces the row address 
output delay by one more clock pulse, as shown in Figs. 7. l 9(b) and ( c). 

One more refinement for the digital circuit can be made. We observe that the four 
load signals ROWREG.LD, ·coLREG.LO, ROFF.LO, and WR.FF.LO are applied in the 



?JJIDESIGN EXAMPLES 251 

(wrLD)----

CUC 

F 
I I I 

ROWREG.LD 
COLREG.LD 

RDFF.LD 
WRFF.LD 

~Row) MUX.EN 
MUX.SEL 

+*+ 
I : : 

CAST : 
F·-+--+-----+----

1 

WET I 
F -+--..----+--......---!---,--,-

ADDROUT 

(oRAS) MUX.EN (b) Read cycle 

MUX.SEL 
RAS 

(ocoL) 
MUX.EN 

CLK 

RAS 

(ocAs) MUX.EN 
RAS 
CAS 

FF 
TF 

TI 

I I I ~ 
EN~ I I : : I I 

I HighZ~
1 

ADDROUT ---r- ROW COL 
I I I I 

T I I : I I ~ RAS I 
I • I 

F I I I 

CJ\S! ! I : h 
WET: : M 

F I I 1 
I I 

(c) Write cycle 

(a) ASM chart 

Figure 7 .19 Final refinement of the ASM chart for the dynamic controller circuit. 

same state and under the same condition. Therefore, they can be replaced by a single 
load signal, LOAD. So, ROWREG.LD = COLREG.LD = ROFF.LO = WRFF.LD 
= LOAD. The final ASM chart for the controller is shown in Fig. 7 .20. 

All the ASM charts in Figs. 7.17(a), 7.18(a), 7.19(a), and 7.20 will function.as 
specified in the original problem statement. However, the ASM charts of Figs. 7.19(a) 
and 7 .20 provide the best performances. 

Having gone from the flowchart of Fig. 7.15(b) to the final ASM chart of Fig. 
7.20, we can now appreciate the general method for designing the controller of a digital 
circuit. First, the algorithm for the controller is specified in the form of a flowchart. 
Then, the flowchart is converted into an ASM chart in which the timing problems are 
resolved. Finally, the ASM chart is refined and optimized by combining and removing 
states and by using conditional outputs wherever possible. 



252 

' 

(wnn) -------

F 

T 

LOAD 

(oRow) 
~IUX.EN 
\IUX.SEL 

(ORAS) 
'.\IUX.EN 
~IUX.SEL 

RAS 

(ocoL) 
~tuX.EN 

RAS 

(OCAS) 
~IUX.EN 

RAS 
CAS 

FF 
TF 

TT 

Figure 7 .20 Final ASM chart for the dy
namic RAM controller. 

7/DIGITAL CIRCUIT DESIGN 

The final phase of the design process is the realization phase. For this circuit, this 
phase consists of using commercially available ICs to realize the circuit elements in Fig. 
7.16(b) and the controller represented by the ASM chart in Fig. 7.20. As has been 
mentioned, the realization phase is straightforward. At this point of the design process. 
the hard work is over. The realization of the simplified dynamic RAM controller circuit 
is summarized in Figs. 7.21 and 7.22. 

As shown in Fig. 7.21, the circuit element ROWREG is realized with two 74'163 
counters utilized as storage registers, with enable inputs of ET = EP = false to prevent 
counting. The circuit element COLREG is realized in the same manner. The 2-to- I 
multiplexers with three-state outputs are directly available commercially as ICs (74'257). 
The ROFF and WRFF are D flip-flops with a synchronous load input. This type of flip
flop is not directly available as a commercial IC; nevertheless, a gated D flip-flop can 
be easily designed and, in fact, was designed as an example in Sec. 5.3.4 and shown in 



7.8/DESIGN EXAMPLES 

RD.H 

<ADDRIN1r 
ADDRIN 11 ).H 
(ADDRIN10-

ADDRIN7).H 

LOAD.L 

WR.H 

(.ADDRIN6-
ADDRIN4 ).H 
(ADDRINr 
ADDRIN0).H 

LOAD.L 

3 

4 

3 

4 

ROWREG/RDFF 

3 

4 

F.L 

COLREG/WRFF 

3 

4 

ROWREGi.1-t 
COLREGi.H 
MUX.EN.L 

74'163 

03 23 i------+-- RDFF.H 
D2-Do 22-Zo 

3 LD 
CLR 
EP 
ET 7 

_......,"-.,,r (ROWREG6-:-ROWREG0).H 

74'163 

. D3-Do ZrZo 
LD 
CLR 
EP 
ET 

74')63 
D3 23 WRFF.H 
D2-Do 22-Zo ... 
LD 

.... 

CLR 
EP 
ET (COLREG6-COLREG0 ). H 

74'163 

DrDo ZrZo 
LD 
CLR 
EP 
ET 

74'257 

B 
A y (ADDROUTi) .H There are 7 

of these MUXs: 
EN SEL i.e., i = 0 to 6 

MUX.SEL.H 

Figure 7 .21 Realization of the circuit elements. 

253 

Fig. 5.10. This is, however, not necessary since in the 74' 163 storage registers used for 
ROWREG and COLREG there are two unused cells that are perfectly suitable for real
izing the ROFF and WRFF. 

Any of the ASM realization methods presented in thi~ chapter can be used to realize 
the ASM chart of Fig. 7 .20. As an illustration, the ROM method will be used. The result 
is summarized in Fig. 7 .22. The block diagram of the controller and the state assignments 
are shown in Fig. 7 .22(a). The next-state and output table, derived from the ASM chart 
of Fig. 7 .20, is shown in Fig. 7 .22(b). Finally, the corresponding contents of the ROM 
are given in Fig. 7.22(c). Of course, the ROM addresses correspond to C2 , C 1, C0 , RD, 



254 

Controller 

RD.H 

WR.H 

EN.H 

Present--state 
code 

C2 C1 Co 
0 0 0 
0 0 0 
0 0 l 
0 I 0 
0 I I 

I 0 0 
1 0 0 
I 0 0 
1 0 I 
I I X 

128 X 9 ROM 

Zs: 
- As 27: - A4 Zi 

A3 Zs: 

24: 
23: 

A2 

~ A1 Z2 Q 

Ao Z1 ~ Q 
C1 

Zo ~ 
Co 

State as.signments 

C1 C1 Co 
WTLD 0 0 0 
OROW 0 0 1 
ORAS 0 1 0 
OCOL 0 1 l 
OCAS I 0 0 

(a) Block diagram and state assignments 

Input values 
for the 
present 
state 

RD WR EN 

X X 0 
X X l 
X X X 
X X X 
X X X 

0 0 X 
0 I X 
I X X 
X X X 
X X X 

Output values for the 
present state 

MUX. MUX. 
LOAD EN SEL RAS CAS 

0 
l 
0 
0 
0 
0 
0 
0 
0 
0 

Active 
low 

0 
0 

I 
I 
1 

l 
1 
1 
0 
0 

0 
0 
1 
l 
0 
0 
0 
0 
0 
0 

t 
Active 
high 

0 
0 
0 
l 
l 

l 
l 
I 
0 
0 

0 
0 
0 
0 
0 
1 
I 
1 
0 
0 

Active 
low 

WE 

0 
0 
0 
0 
0 
0 
I 
0 
0 
0 

Where O = false, I = true. and X = don't care 

(b) Next-state and output table 

Figure 7 .22 Realization of the controller. 

... -
--

--
-
--

LOAD.L 
MUX.EN.L 

MUX.SEL.H 

RAS.L 

CAS.L 

WE.L 

Next state 
D flip-flop 

input values 

Ci Cj Co D2 D1 Do 

0 0 0 0 0 0 

0 0 1 0 0 1 

0 I 0 0 1 0 

0 I I 0 1 1 

I 0 0 I 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 



7.8/0ESIGN EXAMPLES 

ROM address ROM address 
in decimal in hexadecimal 

0 0 0 I I 
I 0 1 0 1 
:! 0 : 1 1 
3 0 3 0 ] 

4 0 4 1 I 
5 0 5 0 ) 

6 0 6 J. I 
7 0 7 0 1 

8-15 08-0F I 0 
16-23 10-17 1 0 
24-31 18-lF l 0 
32-33 20-21 1 0 
34-35 22-23 1 0 
36-39 24-:?7 l 0 
40-63 28-3F 1 l 

(c) ROM contents 

Figure 7 .22 (cont.) 

255 

C . b ontents in inary 
( where O = low, 1 = high) 

Zs ••• Zo 

0 1 1 ) 0 0 0 
0 1 ] 1 0 0 1 
0 1 l 1 0 0 0 
0 I 1 1 0 0 1 
0 I 1 I 0 0 0 
0 1 1 I 0 0 I 
0 1 1 1 0 0 0 
0 l 1 l 0 0 1 
1 l l 1 0 1 0 
1 0 l l 0 1 l 

0 0 ] I 1 0 0 
0 0 0 1 0 0 0 
0 0 0 0 0 0 0 
0 0 0 1 0 0 0 
0 I 1 1 0 0 0 

WR. EN and the ROM contents to LOAD. MUX.EN, MUX.SEL, RAS, CAS, WE, 
D1• D1• D0• The correspondences between the rows of the next-state and output table 
and the rows of the ROM table are apparent from an inspection. For example, the first 
two rows of the next-state and output table correspond in an alternate fashion to the 
ROM address rows 0 through 7. Row 3 of the next-state and output table corresponds 
to ROM address rows 8 through 15, and so on. Note that for the active-low outputs 
(LOAD. MUX.EN. RAS, CAS. and WE). the ROM content values are inverted. In 
other words. the value true is 0 (low) and the value false is I (high). 

7 .8.2 Modified Counter 

For this example. we are to design the digital circuit shown in block diagram form in 
Fig. 7.23(a). Overall. the circuit is a modified 4-bit counter with outputs 23-Zo. There 
is also a FLAG output. Under normal operation, the circuit counts with the frequency 
of the input clock signal, and produces a binary output Z3-Z0 corresponding to . . . , 0, 
1, 2 ..... 14. 15. 0, I, .... An input IN.BIT can, however. interrupt the normal 
counting sequence and cause the count to jump to a number corresponding to another 
input: D3-D0 • Specifically, when IN .BIT, which is a serial string of Os and 1 s, contains 
the pattern IO 11 , the circuit does the following at the next active transition (leading edge 
in this case) of the clock signal: 

1. Parallel lo~ds the input D3-D0 into the counter component of the circuit so that 
the subsequent count sequence begins from there 

2. Sets the output signal FLAG to true for the next clock period, after which the 
signal returns to false 



256 7/0IGITAL CIRCUIT DESIGN 

.,___.,_ FLAG.H 

4 
...._ ....... (Z3-Z0 ).H 

(a) 

CLK.H 

0 0 0 0 0 0 0 0 

INBIT.H 

FLAG.H----~--~--~ 

0 
(b) 

Figure 7.23 Block diagram and timing diagram specifications for the counter example. 

For a better understanding of the desired operation, consider Fig. 7.23(b), which 
is a timing diagram of a sample input string for IN .BIT and of the resulting FLAG output 
of the circuit. Note that at the times designated by CD a 1011 pattern is detected. Thus 
the circuit loads D3-D0 into the counter c,;omponent, which means that D3-D0 -,i- 23-Zo. 
Also. the circuit causes the output FLAG to go from false to true. Further note that at 
time @ this circuit action occurs even though there is no separate preceding IO 11 IN .BIT 
sequence. which means that activating IOI I sequences can overlap. 

With a little thought, we see that we need a 4-bit binary counter with a parallel 
load capability for producing the 23-20 output and for loading the D3-D0 input. Also, 
we can use a flip-flop for generating the FLAG output. Finally. we need a sequence 
detector for examining the serial input IN. BIT and for generating a feedback signal 
FOUND.SEQ when it detects an input 101 I sequence. As is shown in Fig. 7 .24(a), our 
identification of these three main components completes the selection of the circuit ele
ments for the preliminary design of the circuit. 

As is indicated by the flowchart of Fig. 7 .24(b), the controller action is quite 
simple. Under normal operation, when the sequence detector has not detected the se
quence IOI I, the detector output is false (FOUND.SEQ = F). In this case the counter 
counts normally and the FLAG flip-flop has a false output. But when the sequence 
detector detects the sequence IOI 1. its output becomes true (FOUND.SEQ = T). Then, 
at the next active clock transition. the counter loads in D3-D0 . Also at this transition, 
the FLAG flip-flop is set to true. 



7.8/DESIGN EXAMPLES 

Modified counter 

Circuit elements 

IN.BIT.H 

Controller Sequence ~p 
detector 

Q 
- X z -
. t> .... FOUND.SEQ ,I' -,, . 

Control 
signals 4--bit counter 

4,, 
DrDo 

4,, 
/ ~ 

,,. > 

CLOCK.H - ~ 

(a) Block diagram design 

Increment counter; ...,.._F_c 
Flag '4-0 

T 

(b) Flowchart for the controller 

Figure 7 .24 Preliminary design for the modified counter. 

t> -
4/ 

Q3-Qo ✓ 

Load counter; 
Flag- I 

257 

FLA G.H 
--

4., 
,. -

(23-

In the refinement phase of the design we define the circuit elements in more detail. 
The result is shown in Fig. 7 .25(a). As is typical, the counter has enable (EN) and load 
(LD) inputs, in addition to the clock input. For a normal count, the control inputs are 
EN = true and LD = false. And for the loading of data from DrD0, these inputs are 
just the opposite: EN = false and LD = true. Also, the FLAG flip-flop has a SET input 
in addition to the clock input. To set this flip-flop we make SET = true before the next 
active clock transitioQ. And to clear it we make SET = false before the next active clock 
transition. For the sequence detector we will specify that it makes FOUND.SEQ = true 
when it detects the sequence 1011. Note in Fig. 7.25(a) that we do not assign voltage 



258 7/DIGITAL CIRCUIT DESIGN. 

Modified counter 

Circuit elements 

IN.BIT.H 

Controller Sequence .... FOUND.SEQ 
detector 

Flip-flop 
X z -

FLAG.SET FLAG.SET-
Q 

> 
FLAGJI 

-COUNT.EN -

COUNT.LO 
. 

4-bit counter 
4., 

DrDo 7 

4,, COUNT.EN- EN 
/ COUNT.LO- LD 

-t> 

CLOCK.H - ~ 

(a) Block diagram design 

@---

T 

( bl ASM chart for tht!' controller 

Figure 7 .25 Refined design for the modified counter. 

-L 

Q3-Qo 
4,, 
/ 

C'OUNT.LD 
FLAG.SET 

4,. 
, 

representations for the signals FOUND.SEQ, FLAG.SET, COUNT.EN, and 
COUNT.LO because at this point in the design we do not know whether active-high or 
active-low signals are required. 

Now having the refined circuit elements of Fig. 7 .25(a), we can convert the pre
liminary controller flowchart of Fig. 7.24(b) into the ASM chart shown in Fig. 7.25(b). · 
Note the use of conditional outputs. In this case the conditional outputs are not used 
simply for perfonnance (as in the case of the dynamic RAM controller example), but 
also are necessary to achieve the required timing. The reader is urged to verify the timing 
of this ASM chart by comp?rlng it with the timing diagram shown in Fig. 7.23(b). 



7.8/DESIGN EXAMPLES 

(DrDo).H 
4 

COUNT.EN.L 

COUNT.LD.L 

CLK.H 

4-bit counter 

74'163 

Q3-Qo 

(a) 

Flip--flop 

F.L 

PR 

RC 

259 

4 4 
(ZrZo).H 

(not 
used) 

FLAG.SET.H ---a----1 Q t---t- FLAG.ff 

Q 

CLK.H 

F.L 

(b) 

Sequence detector 

74'20 

io-------"' FOUND.SEQ.L 

QA QB Qc QD 

IN.BIT.H 
X 

RTIN 
F.H St LTIN F.H 
T.H 74'194 
F.L 

A B C D 

CLK.H 
F.H F.H F.H F.H 

(c) 

Figure 7.26 Circuit components for the modified counter.•. 

The final phase of the design process is the realization phase. The realization of 
the circuit elements is summarized in Fig. 7 .26. From a ITL data book we can find that 
the 74' 161 and the 74' 163 are both 4-bit counters with parallel load capability. They 
differ only in that the 7 4' I 61 has an asynchronous clear and the 7 4 ~ I 63 a synchronous 



260 7/DIGITAL CIRCUIT DESIGN 

clear. Since we 90 not need the clear function for this design, either counter is satisfac
tory. We will arbitrarily select the 74' 163, which requires the signals shown in Fig. 
7.26(a). Note that once the actual integrated circuit is selected, the voltage representation.., 
of the signals and tenninals are fixed. For the 74'163, for example, both COUNT.EN" 
and COUNT.LO are active-low. As is shown in Fig. 7.26(b), the 74'109 is suitable for-
the flip-flop circuit element. · 

The only remaining element of our circuit is the sequence detector. Unfortunately. 
there is no 74 'XX sequence detector in any TTL data book. But we can realize the. 
sequence detector circuit element in a rather obvious manner by using a 7 4' 194 shift 
register, as shown in Fig. 7.26(c). We should have had this fact in mind when we 
decided to use a sequence detector circuit element in our earlier design steps, for there 
is no sense in designing with circuit elements that we do nor have or cannot realize with 
the available integrated circuits. 

From the techniques presented in this chapter, the realization of the controllei 
should be straightforward. In fact, this particular realization is quite simple since the 
ASM chart for this controller [Fig. 7.25(b)] has only one state-state A. For this special 
case. no state flip-flop is required and the ASM outputs are dependent only on the input 
FOUND.SEQ, as follows: 

COUNT.EN = FOUND.SEQ 
COUNT.LO= FOUND.SEQ 
FLAG.SET = FOUND.SEQ 

The resultant realization of the one-state controller is shown in Fig. 7 .27. 

7.8.3 Alternative Design for the Modified Counter 

For the modified counter specification of Fig. 7 .23 suppose that we did not -happen to 
think of using a shift register to realize the sequence detector. In fact, suppose that our 
train of thought went in another direction. and we decided to use as our major circuit 
elements only a 4-bit counter and a flip-flop, as shown in Fig. 7 .28. 

For the modified counter circuit of Fig. 7 .28 to operate as specified in Fig. 7 .23, 
the controller must provide control signals FLAG.SET, COUNT.EN, and COUNT.LO 

Controller 
' .. 

74•04 

FOUND.SEQ.L - FOUND.SEQ.H - FLAG.SET.H 

FOUND.SEQ.L -,J COUNT.EN.L 

FOUND.SEQ. L -..; COUNT.LD.L 

Figure 7 .27 Controller for the modified counter. 



7.8/DESIGN EXAMPLES 261 

Controlled circuit elements 

* 
Flip-flop 

Controller 

IN.BIT - SET Q 
.H-

FLAG.H 

FLAG.SET - > 
~ 

COUNT.EN 
4-bit counter 

).H~ 
COUNT.LO~ ~ D3-Do Q3-Qo 

4,. 4,, ( 
✓ / -

- EN 

- LD 

- t> 
CLK.H t> 

Figure 7 .28 Preliminary design for the alternative modified counter. 

that are correct for each moment in time. In other words, for every moment in time, the 
functions of the controller are as follows: 

1. To determine the current situation of the input sequence. based on the present 
value of IN.BIT along with a memory of the past values of IN.BIT leading up 
to the present. (Note that we no longer can use the signal FOUND.SEQ since 
we no longer are using the sequence detector circuit element.) 

2. For that situation, provide the appropriate input control signals COUNT.EN 
and COUNT.LO for the counter and FLAG.SET for the flip-flop. 

Obviously, the controller for this circuit will be more complex than that of the 
original design. First, we need to determine all the distinct situations for the input 
sequence. Fortunately, there are only a finite number of the~: 

(SO) No part of the valid sequence has been detected. Example of such a sequence: 

... XXXXX00 (where X is either a O or a 1) 

i 
last value of IN .BIT received 

(SI) A sequence of l has already been detected. This implies that this could be 
the beginning of a valid sequence. Example: 

... XXXABCl 

i 
in which ABC ¥= 101 and BC ¥= 10 



262 7/DIGITAL CIRCUIT DESIGti -

(S2) A sequence of 10 has already been detected. This implies that a valid sequence 
is possible within two more clock cycles. Example: 

... XXXXXlO 
t 

(S3) A sequence of 101 has already been detected. This implies that if the current 
· value of IN .BIT is 1, then we will have found the valid sequence. Example: 

... XXXIOl 

i 
(S4) The sequence of 1011 has already been detected. 

These are the only distinct situations, or states, for this problem environment. No other 
situation is relevant to the design of the controller. 

With the states of the controller identified, the controller design becomes less 
formidable. The steps for developing the corresponding ASM chart are shown in Fig. 
7 .29. In Fig. 7 .29(a) the states ~or the ASM chart are identified and a state box is used 
to represent each of the states. Then as shown in Fig. 7 .29(b), the state transition for• 
each state is determined and specified. For example, state S2 represents the situation that· 
a sequence of IO has already been detected. If, while the circuit is in state S2, the current: 
input IN .BIT is a 1, then the resulting partial sequence becomes 101, which is represented 
by state S3. Consequently, the state transition from state S2 is to state S3. If, however, ; 
when the circuit is in state S2, the current input IN .BIT is a 0, then the resulting sequence 
becomes 100, which is no longer a part of the valid sequence 1011 . Consequently, the 
state transition is to state SO, the reset state, where no part of the valid sequence has"·: .. 
been detected. The state transitions for each of the states can be determined in this 
manner. , . 

Next, the control outputs for each state of the ASM chart have to be determined .. 
and specified, which is quite straightforward for this controller. The result is shown iil 
Fig. 7 .29(c). In state S4, where the valid sequence has been detected, the counter needs 
to be loaded (COUNT.LO) and the flip-flop needs to be set (FLAG.SET) at the next 
active clock transition. For the remainder of the states, where the valid sequence has not . 
been detected, all that is needed is to increment the counter (COUNT.EN). 

Finally, the ASM chart is reviewed to determine whether the timing is correct and 
whether it can be optimized. This is normally accomplished through the use of conditional 
outputs. In this case, however, the ASM chart shown in Fig. 7 .29(c) is the final one. 

The final phase of the design process is the realization phase. The realization of 
the circuit elements of this circuit (counter and flip-flop) is the same as that shown in·> 
Figs. 7.26(a) and (b). The realization of the ASM chart has already been accomplished 
in Sec. 7.6 and Fig. 7.11. 

7 .8.4 Hardware Multiplier 

In this example we are to design a hardware- multiplier circuit that can multiply two . 
4-bit unsigned binary numbers to produce an 8-bit product. The block diagram is 
shown in Fig. 7 .30. The inputs to this circuit are a 4-bit multiplicand 



® 
COUNT.EN 

0 0 

@ @ ® 
COUNT.EN 

® @ 
COUNT.EN 

0 0 

@ @ @ 
COUNT.EN 

0 
0 

®1 @ @) FLAG.SET 
COUNT.LO 

0 0 

· (a) Identification of states (b) Specification of state transitions · (c) Specification of control outputs 

Figure 7.29 Development of the ASM chart for the controller. 

4-bit multiplier 

4,. MCANDIN3-MCANDIN0 ,, 

PROD,-PRODo 
8., ,, 

4., MPLIERIN3-MPLIERIN0 ✓ 

READY 

LDNUM 

Figure 7 .30 Block diagram of the multiplier. 

263 



264 7/DIGITAL CIRCUIT DESIGN 

l O l O (Multiplicand) 

X 1 0 1 1 (Multiplier) 

0 0 0 0 ~J:_--:._q_-=._1--=_-=.QJ Multiplier(O) = I: multiplicand is shifted O times and added to the partial product 

0 0 0 o==Q=j==Q} 0 Multiplier(l) = 1: multiplicand is shifted l time and added to the partial product 

0 0 [Q=Q-=-~~=O] 0 0 Multiplier(2) = O: 0 is added to the partial product 
r:-------~ 

0 L1 Q. 1 ~ 0 0 0 Multiplier(3} = l; multiplicand is shifted 3 times and added to the partial product 

0 1 1 0 l l 1 0 (Product) 

Figure 7 .31 mustration of hand multiplication of unsigned binary numbers. 

(MCANDIN3-MCANDIN0 ), a 4-bit multiplier (MPLIERINrMPLIERIN0 ), and a con
trol input (LDNUM). The outputs from this circuit are an 8-bit product (PROD7-PROD0 ) 

and a status output (READY). It is further specified that when the circuit is ready for a 
multiplication operation, the READY output is true. Then, when the input LDNUM 
becomes true, the two 4-bit values at MCANDIN and MPLIERIN are loaded into the 
multiplier circuit and the multiplication process begins. During the multiplication process 
the READY output is false. and subsequent inputs at MCANDIN and MPLIERIN are 
ignored. When the multiplication process is completed. the READY output becomes true 
to indicate that the 8-bit product is available at the PROD outputs and also that the circuit 
is ready for another multiplication operation. 

Recall that in the hand multiplication of two unsigned binary numbers. such as that 
illustrated in Fig. 7. 31, each bit of the multiplier is examined. If the current multiplier 
bit is 1, then the shifted multiplicand is added to the partial product. The purpose of the 
left-shifting of the multiplicand is to account for the weight of the multiplier bit. The 
algorithm used for the multiplier circuit of Fig. 7.30 will follow this basic multiplication 
algorithm. 

A preliminary design of the multiplier circuit is shown in the two parts of Fig. 
7.32. Specifically, the circuit elements are shown in Fig. 7 .32(a), and the algorithm for 
the control of the multiplication is given in the form of a flowchart in Fig. 7 .32(b). As 
can be seen from the flowchart, with references to the circuit diagram, in the WAIT state 
the circuit outputs READY = true to indicate that the circuit is ready for another 
multiplication operation. And, the circuit remains in the WAIT state as long 
as the LDNUM input is false. But when LDNUM becomes true, the values at the inputs 
MCANDIN and MPLIERIN are loaded into two 4-bit registers MCAND and MPLIER, 
respectively. Also, the circuit is initialized to begin the multiplication by clearing the 
8-bit PROD register and a 2-bit counter. This PROD register holds the partial product 
during the multiplication and then the final product at the end. For reasons that will be 
seen, it is divided into two parts: PRODHI (PROD7-PROD4) and PRODLO 
(PROD3-PROD0). The 2-bit counter is used to ensure in each multiplication that the 
shift-add process is performed for exactly four times (COUNT = 00, 01, 10, 11). The 
algorithm for the multiplication process is based on the basic algorithm for hand multi
plication as illustrated in the example shown in Fig. 7. 31. However, the left-shifting of 
the multiplicand of the hand multiplication is replaced by the functionally equivalent 
right-shifting of the partial product. Then, only a 4-bit adder is required instead of an 
8-bit adder. The reader is urged to work through a simple multiplication example based 
on the algorithm in Fig. 7. 3 2(b) to verify the correctness of this algorithm. 



I\) 
a, 
U1 

Preliminary design 

Circuit elements 

MPUERIN3-MPLIERINo 

MCAND MPLIER 
MCANDIN3-MCANDINo 4., 

: : 3 I 2 I l IO f ~31211101 ,, 

~ Controller 
MPLIER0 MCAND3-MCAND0 I 

Adder 
2-bit counter 

MPLIER0 
4 /-

ArAo ~ ,, 
PROD7-

PROD4 4..,. 
83-Bo Control ,, -

~ (CT= 3) signals 
/ - COUT S3 S2 S1 S0 / -

. LDNUM ' ' ' 
,. PROD 

' 1161Sf4f 3f 2 11 I 0 1 .:.~ CY 
.. 

READY 
: 
,· 

I 

I' ,, • 
~ 

I 

(a) Block diagrams of the circuit elements and the controller 

Figure 7 .32 Preliminary design of the multiplier circuit. 

I I 
: } 8, : , 

-

-
(CT= 3) 

PROD7-

PROD0 

READY . . 



266 

,,,;;, 

~ Yes 
~ _Lo_a_d~M~PL_I_E_R_ 

loadMCAND 

(CLEAR) .-0-ea_r_P~R-O_D_U_C_T_ 

clear COUNTER 

0 

~ .---A-d_d_M_CA_N_D ..... to_n __ g-_h-t-s_h_if_te_d_ 

partial product: i.e., 
PRODlll - PRODHI +-MCAND 

Any overflow is added into 
CY: i.e., 

CY..:. ADDER.COUT 

(SHPROD) -------, • Shift partial product 
to the right 

@_HMPr) .-------------. 
Shift MPLIER to the right 

to gr:< bit to be tested 
into MPLIER0 

Yes 

( INCR) --CY------0--

lncrement counter 

(b) Flowchart for the controller 

Figure 7 .32 (cont.} 

7/DIGITAL CIRCUIT DESIGN 

The next phase of the design process is the refinement phase. After some thought 
and several iterations on the design, we can specify in more detail the functions that are 
required for each circuit element., The result is shown in Fig. 7 .33. MCAND is a 4-bit 
storage register with a synchronous load input. PRODHL PRODLO, and MPLIER all 
are shift-right registers, with the incoming bit value applied at the serial input (SI). 
Furthermore, each of these shift registers has a synchronous load and/ or clear input. as 
dictated by the control algorithm. ADDER is a standard 4-bit adder. COUNT is a standard 



~ 

MCAND 

03-Do 

LD 

PRODHI 
4, 

DrDo 

SI 

LD 

CLR 

SHF 
.. 

PRODLO 

DrDo 

SI 

CLR 

SIIF 

23-Zo. 4 

ZrZo 
4 

z,-20p-
I 

4-bit storage register 
with a synchrounous 
LD input 

4-bit shift-right register 
SI = serial input 
LD = synchronous load input 
CLR = synchronous clear input 
SHF = synchronous shift-right input 

Same as PRODMI register 
except that an LD input 
is not required 

Figure 7 .33 Detailed specifications for the circuit elements. 

4 

MPUER 

DrOo 

SI 

LD 

SIIF 

ADDER 

ArAo 

83-Bo 

COUNT 

CLR 

~T 

CY 

=f f ll 

SrSnr 
COUT 

Same as PRODIII register 
excepl that a CI.R 
is not requir~·d 

S = A plus B 
COUT = 0 if no overflow 

= I if has ov1:rflow 

z I h r----,.. (CT = 3 ) 
2-bit synd1ronous counter 
(CT = true) with a 
synrhronous dear input 

Zol--1~ (('LR= true} 

I- (;utcd I> llip-llop; i.e .. " 
() I-hit storage reghkr wi!h 

a synchronous I.I) input 
and a synchronous 
CLR input 



N 
CJ) 
CD 

Refined design 

MPLIERIN 3- Circuit elements 
4 / MPLIERIN0 

I 

MCANDIN 3- MCAND I MPUER 
4 

1 
MCANDIN0 4 I 

4, - J 

I I 03-Do 
; D3-Do ZrZ1 ~ 

f-.+- ·r SI Zo -23-Zo 
MCAND.LD+- LD MPLIER.LD+- LO MPLIER.20 

Controller t> 
MPUER.SIIF ~ SllF 

l> 
MCAND.LD r 

MPLIER.LD p 

~ MPLJER.Z 
o MPLIER.SHF 

ADDER COUNT 

COUNT.CLR 4 / A -A ~ COUNT.CLR-+- CLR p 21 to - (CT= 3) COUNT.CT . ; 3 o S3-S0 . 
PRODHl.23- 4 r CT PRODHI.LD -

Zo 

- LDNUM PRODHl.20 + Bi-Bo COUT 7 
PROO.CLR . 

PROD.SHF -
COUNT.CT . 

CY.LO 3 

CY.CLR -

4 
PRODLO J} CY PRODHI 

READY - ..... D ~ P-,....-+- CLR D3-Do ZrZ1 fr DrDo 4 
~ LD Q - SI Zo SI ZrZo 

[> 

PROOIII.LD +- LD PROD.CLR- ('LR 

PROD.CLR +- CLR PROO.SJ-IF- SI-IF 
PROD.SHF • SHF 

CY.LO [> t> 
CY.CLR 

(a} Blot:k diagram of the circuit clements and the co11t roller 

Figure 7 .34 Refined design of the mulJiplicr circuit. 

(CT= 3) 

8, 
I 

PR0D7-

PROD0 

READY 

.; 

-



7.8/DESIGN EXAMPLES 

READY 

F 

(LOAD) _M_C_A ..... N--D-.L-D

MPLIER.LD 

(CLEAR) 

~HPR00 

PROD.CLR 
COUNT.CLR 

PRODHl.LD 
CY.LO 

PROD.SHF 

MPLIER.SHF 

0 

T 

( INCR) --C-Y---. C--~-R-

COUNT. CT 

(b} ASM chart for the controller 

Figure 7 .34 (cont.) 

269 

2-bit binary counter plus an AND gate for generating the (CT = 3) signal. Finally. CY 
is a D flip-flop with synchronous load and clear inputs. 

Using this detailed specification for the circuit elements, we can obtain the refined 
design of Fig. 7 .34. As shown in Fig. 7.34(a), the control signals outputted from the 
controller are now defined. They correspond to the control inputs of the circuit elements. 
Based on the refined set of circuit elements shown in Fig. 7 .34(a), the flowchart of Fig. 
7 .32(b) can be converted to the ASM chart shown in Fig. 7 .34(b). Again, unlike the 
flowchart. the ASM chart precisely specifies the timing. Since the control outputs are 
now defined. their logic values can be specified for each state to accomplish the required 
functions for that state. While paying particular attention to the timing of the circuit. the 



270 7/0IGITAL CIRCUIT DESIGN 

reader is urged 10 work through a simple multiplication example based on the ASM chan 
of Fig. 7 .34(b) to verify the correctness of this chart. 

The ASM chart in Fig. 7.34(b) can be refined to the ASM chart in Fig. 7.35. We 
observe from Figs. 7.34(a) and (b) that the loading of MCAND and MPLIER and the 
clearing of PROD and COUNT can be performed together in one state. Consequently, 
the two states LOAD and-CLEAR in Fig. 7.34(b) can be combined into one state. 
Furthermore., this state can be eliminated by using conditional outputs without introducing 
any timing problems, as· is shown in Fig. 7.35. The result is an increase in the per
formance of the multiplier circuit by two clock cycles. Similarly, states SHPROD and 
SHMPL can be combined into one state, SHIFT. And states ADD and INCR can be 
eliminated through the use of conditional outputs. Then, however, a new state TSBIT 
has to be added. (Why?) In all, a net gain of four clock cycles in performance is achieved 
through the refinement of the original ASM chan of Fig. 7.34(b). · 

(wnNTL) -___,I--
READY 

F 

MCAND.LD 
MPLIER.LD 
PROD.CLR 

COUNT.CLR 

C TSBIT) --------

PRODHI.LD 
CY.LD 

0 

(SHIFT) --~--~ ~·1/.(t.f? 
PROD.SHF 

MPLIER.SHF 

T 

_____ __,. 

Fi2ure 7 .. 35 .Refinement of the ASM chart for the controller. 

-



~ 
~ 

Final design 

MPLIERINr 
4, MPLIERIN0 
7 

MCANDIN3-
4

1 
MCANDIN0 

7 

Controller 

~ MPLIER.20 

(CT= 3) 

~ 1 LDNUM 

INITL -
~ 

SIIIFT r 

ADDLD -. 
NEXT 

REAovl-.. 

Circuit clements 

I I 

MCAND 

f-+-11>3-Do 23-Zo ._.... 

] 
4 

MPurn ___ 
3 

:_;..-.- l>rl>11 ZrZ1~ 
,-------1 SI 211 

INITL ~ I.I> MPI.IFR.211 INITL --.1 LI> 

I> 
SIIIFT ~ SIIF 

COUNT 
l-iDDER 

A3-Ao S3-So ~ INITL CLR 21 

'CT Zo 
NEXT 

PRODHI.23- 4 
PRODIII.Z0 1 B,-Bo <'OUT 0 

~} 8 
PRODLO __,_ -.--P-RO-+-D

7 

___ ....__ 

ZrZ1 PROD0 

20 t---..---__._, ZrZu 

I INITL • I CLR 
SIIIFT SIIF 

t> 

READY 

(a) Circuit elements and the controller 

t~igure 7 .36 Final design for the mul1iplicr circuit. 



272 

(WTINTL) 
READY 

F 

INITL 

0 

ADDLD 

SHIFT 

T 

NEXT 

(b) ASM chart for the controller 

Figure 7 .36 (cont.) 

7/DIGITAL CIRCUIT DESIG~, 

Some final refinements of the multiplier circuit can be made. We observe that the 
four initialization signals (MCAND.LD, MPLIER.LD, PROD.CLR, and COUNT.CLR) 
are applied in the same state and under the same condition. They can, therefore~ be 
replaced by a single initialization signal, INITL. Similarly, the two signals PRODHI.LD 
and CY.LO can be replaced by a single load signal, ADDLD. Also, the two signals 
PROD.SHF and MPLIER.SHF can be replaced by a single signal, SHIFT. •Finally, the 
two signals CY.CLR and COUNT.CT can be replaced by NEXT. These refinements in 
the design are shown in Fig. 7 .36. 

The final phase of the design process is the realization phase. For this circuit, we 
need to use commercially available ICs to realize the circuit elements in Fig. 7 .36(a) and 
the controller represented by the. ASM chart in Fig. 7. 36(b). The realization of the circuit 
elements is summarized in Fig. 7.37. As shown, MCAND is realized by using a 74' 163 

· configured as a storage regi~ter (EP = ET = false). PRODHI is realized by using a 



~ 

(MCANDIN3-

MCANDIN0).H 

INITLL 

F.L 

MCAND 
74•163 

PRODIII 

23-Zo. 4 

(ADDER.S3-
74'194 

ADDER.S0).H I / I 
CY.OUT.H _ _._---a 

(ADDER.A3-
ADDER.A0)JI 

(MCAND.Zr 
(MCAND.Z0 )Jf 

(PRODIII.Zr 
PRODHl.20 ).H 

F.H 

(PRODHl.2 3-

PRODHl.2 1 ).H 

AllDER 
74'283 

A3-Ao 

BrBo 

CIN 

SrSot4 (PRODIII.D3-
PRODIII.D0).H 

COUT ('Y.D.11 

MPUER 

74'194 

F.L 
INITL.L 

(MPLIERINr I 4 I 
MPLIERIN0 ).II ' D3-Do 

Z3-Z1 
MPLIERIN.20 .11 -.-.---11 SI 

I J 

('OUNT 
74'163 

") 

ZrZi. -

z, 
Zo 

TC 

(Cl=J>.11 

PRODHl.20 JI INITL.L O I d CLR Zo ...---r-- 1 F.L CLR 2ul I MPUER.S1.11 
~v SJ so 

ADDLD SHIFT SI so 
0 0 0 0 
0 I 0 

1 ADDLD.11 I , 1 I I I n · ~- · · · · · - · 
SHIFT.H --+------• 1 I . -

PRODHI.20 .11 

INITL.L 

SHIFT.fl 

-

PRODLO 

74'194 
4, 

D3-Do I 

SI 
:: CLR 

[> SI 

I 
F.11 

4., 
ZrZo I 

so 

(PRODLO.Zr 
PRODLO.20 ).11 

SHIFT SI SO 
0 0 0 

0 I 

Ji"igure 7.37 Realization of lhc circuit clements. 

h X 

CY 

ADDER.COUT.11 1 _ r, 

Where 0 = false 
I = true 
X = don't care 

NEXT.II 

ADDLD.11 

INITL SHIFT SI so 
0 0 0 0 
0 ) 0 

0 I 
X X 

OUT 
D QI , I PRODIII.S1.11 



274 7/DIGITAL CIRCUIT DES~~ 

74'194 shift register with some external gating (an OR gate) to convert the ADDLD and 
SHIFT input into S 1 and SO inputs as is required for the 74' I 94. Similarly, PRODLO 
and MPLIER are realized with 74'194 shift registers. The 4-bit ADDER is realized 
directly with a 74'283. COUNT is realized with a 74' 163 with some additional gating 
(an AND gate) to generate the (CT = 3) signal. Finally, CY is realized as a gated ·n 
flip-flop with a synchronous clear input. The design of CY is. similar to that of the gated 
D flip-flop described in Sec. 5.3.4 (Fig. 5. 10). 

The realization of the controller is straightforward with the techniques presented 
in this chapter. The block diagram of it and the resulting next-state and output table ate 
shown in Fig. 7 .38. 

in summary, the digital design process requires a combination of creativity, ex .. 
perierice, and understanding of the general design principles. Our purpose in this chapter 

present 
state ,_...._,_ 

C1 C0 MPLIER . 20 

0 0 X 
0 a X 
0 I 0 

0 I I 
I 0 X 
1 0 X 
1 1 X 

INITL .,__ ___ .......,_..._.....,. 

SHIFT t------+-+----
ADDLD a-----.......,-+--.....,. 

COUNT.CT ...... ___ ......,__.,__....,__ 
READY.,._ ___ _..,_.,. _ _,._ 

----11.-1 MPIJER.Zo 
_....,..,,..(CT=3) 

_ ___....,.. LDNUM 

State assignments: 

Ci Co 
WTIN1T O 0 

TSBIT O I 

SHIFT I 0 

(a) Block diagram and state assignment 

inputs outputs . A 

(CT= 3) LDNUM. ·1NITL SHIFT ADDLD COUNT.CT 

X 
X 
X 
X 
0 

I 

X 

0 0 

1 1 
X a 
X 0 

X 0 

X 0 

X a 

Where O = faJse 
1 = true 

0 
0 
0 

0 

I 

I 

a 

X = don ·t care 

0 0 
0 a 
a 0 

I a 
0 1 

a a 
0 a 

READY 

1 
1 
0 
a 
0 
0 

0 

(b) Nexc.state and output table 

Figure 7 .38 Outline of the realization of the controller. 

next 
state 
~ 
Cj Co 
0 0 

a I 
I 0 
I 0 

a l 
0 0 
0 a 

D 
flip,-flop 
inputs _..._,_ 

D1 Do 

0 0 
0 l 

I o· 
1 0 

0 1 
a 0 

0 0 



PROBLEMS 275 

has been to present and illustrate the general principles of digital design and to consider 
various tools that are useful in the design process. These design principles and tools form 
a solid foundation on which to build experience and to exercise creativity. 

SUPPLEMENTARY READING (see Bibliography) 

[Clare 73], [Fletcher 80], [Kline 83], [Mano 79], [Mano 84], [Peatman 80], [Prosser 
87]. [Wiatrowski 80] 

PROBLEMS 

7.1. Explain the general model for a digital circuit design shown in Fig. 7.1. 

7 .2. The digital design process can be divided into three major phases: the preliminary design 
phase. the refinement phase, and the realization phase. At the conclusion of each phase, 
what are the expected end products in terms of the controller and the controlled circuit 
elements? 

7.3. Given the ASM chart of Fig. 7.39(a). complete the corresponding timing diagram of Fig. 
7.39(b). 

® @ 

0.0 

® 

(a) 

CLK 
I 

STATE I , I T I n 11 F 
I 
I I I 

12 
T l I I I 

F I I ·I 
I I 

I 
OUTl 

T I I I 
F --1 I I I I 

OUT2; I I I I 
-i ! I I 

I I I I 

Cb) 
Figure 7 .39 ASM chart and timing diagram for Problem 7 .3. 



276 7/DIGITAL CIRCUIT DESIGN 

7.4. Given the ASM chan and block diagram of Fig .. 7 .40(a), complete the corresponding timing 
diagram of Fig. 7. 40(b). 

CLK 

I 
STATE I SO 

I 

Controller 

X 

FLAG 

(a) 

ZI 
22 

FF.LO 
FF.CLR 

Controlled circuit elements 

FF 

T.H 
Q FLAG.ff 

Note: The FF is one of the 
circuit elements. It is . 
a D flip-flop with 
synchronous load and 
synchronous clear inputs. 

T _j.,.: ---i-----i 
X F ------+--------' Zl T I 

F --J 

T ', Z'.! 
F --J 

I 
FF.LOT I 

F--; 

FF.CLR !~ 
(b} 

Figure 7.40 ASM chart. block diagram. and timing diagram for Problem 7.4. 

7.5. Given the timing diagram of Fig. 7.41. reconstruct the ASM chart that corresponds to it. 

CLK 

SO I 

I 
Sl I S::? SO I 

I 
S2 I SO 

I 
SI S2 

(Input) IN I \ 
I 

I I 
(Output) OUTl 

(Output} OUT2 
I 

I I I 

Figure 7 .41 Timing diagram for Problem 7 .5. 

7.6. Given the timing diagram of Fig. 7.42, reconstruct the ASM chart that c.orresponds to it. 



PROBLEMS 277 

CU( 
I l 

I SO I S2 I $0 I SJ SJ I S2 SO I 
I I I I I I 

(Input) X I I 

' 
I I I 

I I 
I I I 

(Output) Zl I I I I I I 
I I 

(Output) 22 

I 

Figure 7.42 Timing diagram for Problem 7 .6. 

7.7. For the ASM chart specified in Fig. 7.40(a), 
(a) Make a block diagram design (similar to the one shown in Fig. 7 .3) of the corresponding 

state generator, specifying the inputs, outputs, and the state flip-flops (D type). 
(b) Construct the next-state table for the state generator. given the following state code 

assignment: 

Cl CO 
so 1 0 
SI O 0 
S2 0 1 

(c) Realize the controller by the traditional method. Use D flip-flops, and draw a detailed 
circuit diagram of the controller. 

7 .8. For the ASM chart of Fig. 7.43, 

F T 

F T 

21 

Figure 7.43 ASM chart for Problem 7.8. 

(a) Make a block diagram of the corresponding controller. specifying the controller inputs 
and outputs. 

(b) Make a block diagram design (similar to the one shown in Fig. 7 .3) of the corresponding 
state generator. specifying the inputs. outputs. and the state flip-flops (D type). 



278 7/DIGITAL CIRCUIT DESIGfi 

(c) Detennine the next-state table for the state generator, given the following state codt 
assignment: 

C2 Cl co 
so 0 0 0 
SI 0 0 I 
si 0 I 0 
S3 0 l I 
S4 0 0 

(d) Realize the controller by the traditional method. Use D flip-flops, and draw a detailea 
circuit diagram of the controller. 

7.9. Given the ASM chart of Fig. 7.4, 
(a) Specify the ASM outputs as a function of the state code and the ASM inputs. In other 

words, complete the following truth table: 

IN. BUF. COUNT. REG. OUT. 
Cl co BIT FULL EN LD FLAG 

0 0 0 0 
0 0 0 1 
0 0 l 0 

(b) Using gates, realize the ASM outputs directly as a function of the state code and the 
ASM inputs. Compare your realization with the one shown in Fig. 7.6, which has a • 
circuit for decoding the state code. 

7.10. Given the ASM chart of Fig. 7.40(a) and the code assignment of Problem 7.7(b), 
(a) Specify, in the fonn of a truth table, the ASM outputs (21, 22, FF.LO, and FF.CLR) 

as a function of the state code (Cl, CO) and the ASM inputs (X. FLAG). 
(b) Using gates, realize the ASM outputs directly as a function of the state code and the 

ASM inputs. Compare this realization with your solution to Problem 7. 7. 

7.11. For the ASM chart of Fig. 7.40(a) and the code assignment of Problem 7.7(b), realize the 
corresponding controller by using a PAL 16R4. Compare it with your solution to Problem . 
7.7. 

7.12. For the ASM chart of Fig. 7.43 and the code assignment of Problem .7.8, realize the 
corresponding controller by using a PAL16R4. Compare it with your solution to Problem 
7.8. 

7.13. For the ASM chart of Fig. 7.40(a) and the code assignment of Problem 7.7(b), realize the 
corresponding controller by using the ROM method and D flip-flops. That is, 
(a) Make a block diagram design of the controller, specifying the state flip-flops and all 

the appropriate connections to the inputs and outputs of the ROM. In other words, 
make a block diagram design similar to the one shown in Fig. 7. 8, but without the 
actual ROM contents. 

(b) Specify the ROM contents in hexadecimal. 

7.14. Repeat Problem 7.13 for the ASM chan of Fig. 7.43 and the code assignment of Problem 
7.8(c}. 



PROBLEMS 279 

7. 15. Figure 7 .44 shows a block diagram design of a controller based on the ROM method and 
with D flip-flops. The ROM contents are also given. Derive the corresponding ASM chart. 

Contents of the ROM 
8 X 5 ROM Location Contents 

Z4 Y1 0 llH Cl 
A2 23 Y2 ] llH 

22 Y3 2 16H 
Al 3 OFH 

21 4 OOH 
X AO 5 OOH 

6 04H co 7 04H 20 

Figure 7.44 Controller bJock diagram and ROM contents for Problem 7.15. 

7.16. For the ASM chart of Fig. 7.39(a), 
(a) Draw a block diagram of the corresponding controller, specifying the controller inputs 

and outputs. 
(b) Make a block diagram design (similar to the one of Fig. 7 .10) for the corresponding 

state generator, specifying the inputs, outputs. and the state flip-flops (J-K type). 
(c) Detennine the next-state table for the state generator, given the following state code 

assignment: 

Cl CO 
SA O 0 
SB O I 
SC 0 
SD 

(d) Realize the controller by the traditional method. Use J-K flip-flops, and draw a detailed 
circuit diagram of the controller. 

7 .17. For the ASM chart of Fig. 7 .39(a) and the state code assignment of Problem 7. 16( c). realize 
the corresponding controller by using the ROM method and J-K flip-flops: that is, 
(a) Make a block diagram design of the controller, specifying the state flip-flops and all 

the appropriate connections to the ROM inputs and outputs. 
(b) Specify the ROM contents in hexadecimal. · 

7.18. Conven the Mealy state graph of Fig. 7.45 into an equivalent ASM chart. The inputs are 
XI and X2. and the outputs are 21 and 22. 

7 .19. Conven the Moore state graph of Fig. 7.46 into an equivalent ASM chart. The inputs are 
XI and X2. and the outputs are ZL 22, and Z3. 

7.20. Assume that the design of the dynamic RAM controller circuit described in Sec. 7.8. l is 
to be modified. In addition to the already specified functions. if the RD and WR signals 
are both true. then the function of the circuit is to be described by the timing diagram of 
Fig. 7.47. Specifically, 



Figure 7.45 Mealy state graph for Problem 7.18. 

Figure 7 .46 Moore state graph for Problem 7. 19. 

CLK 

EN 

ADOROUT 

RAS 

CAS 

WE 

I t L 
I : I 

-i----""""k ROW ADDRESS )t-

L 

Figure 7.-47 Timing diagram for Problem 7.20. 

XO 
or 

XO 



PROBLEMS 281 

(a) Modify the ASM chan of Fig. 7.20 to include this function. 
(b) Realize this modified ASM chan by using the ROM method and D flip-flops. 

7 .21. An 8-bit parallel"'.to-serial converter circuit. the block diagram of which is shown in Fig. 
7 .48, is to be designed and realized. This circuit remains in an idle state as long as the 
START input is false. But when this ST ART input becomes true. the 8-bit data BYTE is 
loaded into the shift register and the right-shifting of the data begins. After the 8 bits are 
shifted out, the circuit n:tums to the idle state. 
(a) The major circuit elements for the parallel-to-serial convener circuit are given in Fig. 

7.48. Make any reasonable assumptions for the circuit elements that are required and 
derive the ASM chart for the controller. (Hint: A two-state ASM chart can be derived 
i or this circuit.) .c. 

(b) Realize the circuit elements with commercially available chips. 
(c) Realize the ASM chart by using any of the methods presented in this chapter. 

7 .2.2. A lock to a certain safe can be opened with a correct combination or with a key. If the 
combination feature is used. then the lock must be supplied with the correct combinatio~ 
within three attempts. Otherwise an alarm will sound. Specifications for the lock circuit are 
as follows: 
1. After the first unsuccessful attempt, output message I (MSG I). 
2. After the second unsuccessful attempt, 

(a) output message 2 (MSG2), and 
(b) wait for 10 seconds before being ready to be tried again (READY). 

3. After the third successive unsuccessful attempt. sound an aJann. 
4. When the safe is opened, reset to allow three more tries. 
5. When the key is used. stop the alann and reset to allow three more tries. 

Your pan in this problem is to design the module of Fig. 7 .49. Make a detailed design of 
this module, using a counter for the major circuit element. Realize the controller with the 
ROM method and p ftip--ftops. 

7 .23. Shown in Fig. 7 .SO(a) are the circuit elements for a digital circuit that functions as follows: 

If OP = 00, then REGB +- REGA: followed by REGA +- IN + I. 
If OP = 01, then REGB +- 0; REGA+- REGA + I. 
If OP = IO. REGA +- IN; REGB +- IN; followed by REGB +- REGB + 1. 
If OP = 11, then the contents of REGA are doubled; REGB .,_ REGB + I. 

Notation: An mow(+-) designates to load the data at the next active clock transition. For 
example. REGA +- IN + l designates to add 1 to the value of IN and load the sum into 
REGA at the next active clock transition. In the function statements. more than one operation 
can be performed within a single state unless otherwise stated. as designated by ••followed 
by... , 

The ftowchan for the controller- is given in Fig. 7 .50(b). Derive the corresponding 
ASM chart for it: Optimiz.e it by using the least number of states. In other words. if more 
than one operation can be performed within a single state. then do so. Ai$O. make use of 
conditional outputs. 



282 

Parallel•to-serial converter 

8., BYTE 
Controlled circuit elements 

, 
8-bit shift register I 

Controller 
8 / 

D 27-Zl ~ , -

SH.LO - LD zo 
SH.SHF RT.SH 

> 
START 

Counter 

CT.EN - CT.EN 

I'+" {CT= 7) CT.CLR . CLR {CT= 7) 

C> 

Figure 7.48 Parallel-to-serial converter circuit for Problem 7.21. 

CORRECT.H 
KEY.H 

ENTERED.H 

CONTMODL 

Controller Circuit elements 

, 
~ 

✓ 

I 

I 

Signal specifications 

SOUT 

OPEN.H 
ALARM.H 
MSGl.H 
MSG.2 
READY.H 

CORRECT {from another comparator module): T = correct combination; 
F = incorrect combination 

KEY: T = a key is used to open the safe; F = no key is used 
ENTERED: T = another combination is entered; 

F = another attempt has not been made 
OPEN: an output signal for another module to open the safe 
ALARM: an output signal for another module to sound the alarm 
MSG l : an output signal for another module to output message l 
MSG2: an output signal for another module to output message 2 
READY: an output signal for another module to allow another attempt 

Figure 7.49 Module for Problem 7.22. 



PROBLEMS 

Circuit elements 
4 

IN.H.,....-+----------t------. 

Controller MUX ( 4 of them) 
4 

00 
01 4 

z 
10 
11 B A 

ALU 

X z 
B A 

CB CA 

4 

283 

4 

(DATA3-
DATAO).H 

REGA.LD 
..... ~op REGA.CLR 

REGB.LD 
REGB.CLR 

MUXB 
MUXA 

·CB MUXB MUXA F F Z=X 

00 

REGB +-old 

CA 
READY 

values of REGA; 
Then 
REGA +-IN+ 1 

(a) 

OJ 

REGB.,.O; 
REGA +- REGA + 1 

(b) 

F T Z=X+l 
T F Z=X+X 
T T Not used 

READY.H 

10 11 

REGA-IN REGA +-2*REGA 
REGB-IN REGB +- REGB + 2 
Then 
REGB - REGB + 1 

Note: The• symbol designates 
multiplication; i.e .• :?*REGA 
means two times REGA 

Figure 7 .50 Circuit elements and flowchart for Problem 7 .23. 

7 .24. Figure 7 .51 (a) shows circuit elements for a digital circuit that is to be designed. They are 
organized in a common bus structure. 
(a) It is important not to have more than one set of Z outputs connected to the common 

bus at any one time. Why? 
(b) With the shown connections of circuit elements, can we perform the following opera

tions within a single state? 

REGA +-REGO 

Explain your answer. 

and REGC +-REGA 

ems
Stamp



284 

D 
LD 
OE 

D 
LD 
OE 

REGC 

D 
LD 
OE 

Common bus 
8 

8 z ___ _,.. __ __.,,. 

z 8 

z 8 

8 
D Z 
LD 
OE 

D 
LD 
OE 

8 z .,_....,.. ________ ,. 

8 

(a) 

7/DIGITAL CIRCUIT DESfGN 

Definition of all REGs: 

z 8 

When LD is true {L). the data 
at D is synchronously loaded. 
When OE is false (H), the outputs 
Z are 3--stated. When OE is true 
{L). the outputs Z are electrically 
connected to the bus. 

Figure 7 .St Circuit elements and flowchart for Problem 7 .24. 

(c) The flowchart for the controller is given in Fig. 7 .51 (b). Derive the corresponding AS.t-. 
chart for it. Optimize it by using the least number of states. In other words. if mor, 
than one operation can be performed in a single state. then do so. Also, make use o 
conditional outputs. 

7.25. (a) Given in Fig. 7.52(a) are the circuit elements for a digital circuit that is to be designed 
They are organized in a common bus structure. Assume that the access time of~ 
is 125 ns (nanoseconds), and that the clock period for the ASM is 100 ns. Then, ho, 
many states are required to perform a MEM read or MEM write operation? 

(b) The flowchart for the controller is given in Fig. 7 .52(b). Derive the corresponding AS.t-. 
chart for it. Optimize the ASM chart by using the least number of states. In other words 
if more than one operation can be performed in a single state. then do so. Also. mak 
use of conditional-outputs. 



PROBLEMS 285 

00 01 10 11 

REGB+-REGA REGD-REGB 
REGA-REGC 
REGB-REGC 
REGE-REGC 

REGA-REGB 

Note: REGA - REGB means to interchange the contents of REGA and REGB 

(b) 

Figure 7 .51 (cont.) 

7.26. A hardware stack module. the block diagram of which is shown in Fig. 7 .53. is to be 
designed and implemented. The function of this hardware stack module is defined as follows: 

Notes: 

If STKENBL = 0. do nothing. 
If STKENBL = 1. then there are four possible operations. depending on OP: 

OP = 00 DEFINE a new top of stack; i.e .• SP ~ IN. 
OP = OJ PUSH the stack; i.e .. increment SP; MEM(SP) ~ IN. 
OP = 10 POP the stack: i.e .. MEM(SP) is connected to OUT until 

STKENBL becomes 0; decrement SP. 
OP = I I READ the top of the stack: i.e .. SP is connected to OUT 

until STKENBL becomes 0. 

1. SP contains the address (8 bits) of the top of the stack. 
2. MEM(SP) is the memory content of that address. 
3. Do not wo~ about the stack being empty or full. 

(a) Using the circuit elements shown in Fig. 7 .52(a). derive the ASM chart for the controller 
for the hardware stack module. Optimize it by using the minimum number of states. 

(b) Using any commercially available chips. realize your design. 



286 

IN.TS 

IN 8 

Eight 3--state buffers 8 OUT 

8 

MA 

D z 8 

LD 
OE 

T.L 
MEM 

ADDR 

WE DOUT 
8 

cs 
DIN 

MB 

D 
LD 

T.L OE 
8 

8 

D ·Z 8 

LD 
OE 

8 

z 

INC/DEC 
8 X Ft-----.,,.:;-....,,. 

Cl 
co 

(a) 

7/DIGITAL CIRCUIT DESltiN 

Definition of circuit elements: 
All registers (MA, MB. REG, and 
SP) are defined the same as the 
registers in Fig. 7 .5 l (a). 

INC/DEC 

X F 
Cl 

co 

Cl co Function 

0 0 Outputs F are 3--stated 
0 l F=X 
1 0 F=X+l 

l F=X-1 

MEM 
ADDR 
DIN DOUT 

8 

WE 
cs 

MEM is a 256 X 8 RAM module. 

WE CS Function 
X H Outputs DOUT are 3- stated. 
L L Data applied at DIN is 

written to the RAM 
location specified by 
ADDR. Also, DOUT 
outputs are 3-stated. 

H L Contents of RAM location 
specified by ADDR are 
outputted at DOUT. 

Figure 7.52 Circuit elements and controller flowchart for Problem 7.25. 

7.27. Repeat Problem 7.26 and take care of the problem of whether the stack is empty (for the 
POP operation) or full (for the PUSH operation). 

7.28. Design and realize the hardware multiplier of Sec. 7.8.4. modified as follows: Instead of 
using two separate 4-bit registers <MPLIER and PRODLO> to store the multiplier and the 
low-nibble product. as shown in Fig. 7.36(a). use PRODLO for storing both the multiplier 
and low-nibble product. Specifical!Y. use PROD LO initially for storing the multiplier since 



PROBLEMS 

00 

MB +-REG 
MA-SP 
Then 
SP-IN 

01 10 11 

SP -SP- l REG - MEM(SP) MEM(SP) - REG 

Note: MEM(SP) means the contents of a memory location whose 
address is stored in the SP register. 

(b) 

Figure 7 .52 (cont.) 

287 

this register is not used initially to store the low-nibble product. As the multiplication process 
proceeds, have the multiplier shifted out of PR0DL0 one bit at a time. At the same time, 
have the low-nibble product shifted into PR0DLO from P.RODHI. This is a more elegant 
design that saves the use of a register. 

7.29. (a) Draw a block diagram for an enhanced hardware multiplier and specify its functions. 
You have the flexibility of incorporating any features that you desire. For example, you 

Stack 

8 
IN 'i ., 

OUT 
f 

/ ., - , OP , -

- STKENBL -

Figure 7 .53 Hardware stack module for Problem 7 .26. 



288 7/0IGITAL CIRCUIT'DESIGN 

may want your multiplier to be able to perfonn the multiplication of signed binary 
numbers, or of BCD numbers, or have additional handshaking capabilities. and_ so fon:h. 

(b) Design and realize this enhanced multiplier. 

7.30. A stack. as described in Problem 7.26, is a first-in. last-out (FILO) structure. In other 
words. when an 8-bit data is stored (pushed) onto the stack, it cannot be retrieved (popped) 
until all the data that has been subsequently stored is popped first, much like a stack of 
trays in a cafeteria. On the other hand, a queue is a first-in. first-out (FIFO) structure. In 
other words. the first 8-bit data stored is the first to be retrieved, much like the servicing 
of a line of customers in a cafeteria. With this background in mind, 
(a) Draw a block diagram for a hardware queue module and specify .its functions. You 

have the flexibility of incorporating any features that you desire. 
(b) Design and realize this hardware queue module. 

7 .31. For the transmission of asynchronous serial data, a start bit must be insened before each 
data byte and a stop bit inserted after the data byte. Also, for error-checking purposes, 
sometimes a parity bit is inserted between the data byte and the stop bit. In this problem· 
you are to redesign the parallel-to-serial converter of Fig. 7 .48 so that it will perform these 
insenions. Specifically, when the START input is false, the convener is to be in an idle 
state in which it outputs a "'high" at SOUT. But when START becomes true. the converter 
loads the 8-bit data BYTE into the shift register and shifts out the start bit first. after which 
it begins the shifting out of the data. After shifting out the 8 data bits, it shifts out the 
parity bit, followed by the stop bit. 

Notes: 
1. The value of the start bit is L. 
2. The value of the stop bit is H. 
3. The value of the parity bit has to be determined as follows: the parity bit = L if the 

number of ones in the data byte is an even number; the parity bit = H if the number 
of ones in the data byte is an odd number. 




