Originally posted at http://www.csee.umbc.edu/~plusquel/310/slides/8086_memory1.html

Memory Types

  • Two basic types:
  • ROM : Read-only memory
  • RAM : Read-Write memory

 

  • Four commonly used memories:
  • ROM
  • Flash (EEPROM)
  • Static RAM (SRAM)
  • Dynamic RAM (DRAM)

 

  • Generic pin configuration:

Memory Chips

  • The number of address pins is related to the number of memory locations .
    • Common sizes today are 1K to 256M locations.
    • Therefore, between 10 and 28 address pins are present.

 

  • The data pins are typically bi-directional in read-write memories.
    • The number of data pins is related to the size of the memory location .
    • For example, an 8-bit wide (byte-wide) memory device has 8 data pins.
    • Catalog listing of 1K X 8 indicate a byte addressable 8K memory.

 

  • Each memory device has at least one chip select ( CS ) or chip enable ( CE ) or select ( S ) pin that enables the memory device.
    • This enables read and/or write operations.
    • If more than one are present, then all must be 0 in order to perform a read or write.

Memory Chips

  • Each memory device has at least one control pin.
    • For ROMs, an output enable ( OE ) or gate ( G ) is present.
      • The OE pin enables and disables a set of tristate buffers.
    • For RAMs, a read-write ( R/W ) or write enable ( WE ) and read enable (OE ) are present.
      • For dual control pin devices, it must be hold true that both are not 0 at the same time.

 

  • ROM:
    • Non-volatile memory: Maintains its state when powered down.
    • There are several forms:
  • ROM : Factory programmed, cannot be changed. Older style.
  • PROM : Programmable Read-Only Memory.
      • Field programmable but only once. Older style.
  • EPROM : Erasable Programmable Read-Only Memory.
      • Reprogramming requires up to 20 minutes of high-intensity UV light exposure.

Memory Chips

  • ROMs (cont):
  • Flash EEPROM : Electrically Erasable Programmable ROM.
      • Also called EAROM (Electrically Alterable ROM) and NOVRAM (NOn-Volatile RAM).
      • Writing is much slower than a normal RAM.

 

      • Used to store setup information, e.g. video card, on computer systems.
      • Can be used to replace EPROM for BIOS memory.

EPROMs

  • Intel 2716 EPROM (2K X 8):

EPROMs

  • 2716 Timing diagram:
  • Sample of the data sheet for the 2716 A.C. Characteristics.
  • Symbol

    Parameter

    Limits

    Unit

    Test Condition

    Min

    Typ.

    Max

    tACC1

    Addr. to Output Delay

     

    250

    450

    ns

    PD/PGM= CS =VIL

    tOH

    Addr. to Output Hold

    0

     

     

    ns

    PD/PGM= CS =VIL

    tDF

    Chip Deselect to Output Float

    0

     

    100

    ns

    PD/PGM=VIL

    ...

    ...

    ...

    ...

    ...

    ...

    ...

  • This EPROM requires a wait state for use with the 8086 ( 460ns constraint).

SRAMs

  • TI TMS 4016 SRAM (2K X 8):
  • Virtually identical to the EPROM with respect to the pinout.
  • However, access time is faster (250ns).
    • See the timing diagrams and data sheets in text.
  • SRAMs used for caches have access times as low as 10ns .

DRAMs

  • DRAM:
    • SRAMs are limited in size (up to about 128K X 8).
    • DRAMs are available in much larger sizes, e.g., 64M X 1.

 

    • DRAMs MUST be refreshed (rewritten) every 2 to 4 ms
      • Since they store their value on an integrated capacitor that loses charge over time.

 

    • This refresh is performed by a special circuit in the DRAM which refreshes the entire memory using 256 reads.
      • Refresh also occurs on a normal read, write or during a special refresh cycle.
      • More on this later.

 

    • The large storage capacity of DRAMs make it impractical to add the required number of address pins.
      • Instead, the address pins are multiplexed .

DRAMs

  • TI TMS4464 DRAM (64K X 4):
    • The TMS4464 can store a total of 256K bits of data.

 

    • It has 64K addressable locations which means it needs 16 address inputs, but it has only 8 .
      • The row address (A 0 through A 7 ) are placed on the address pins and strobed into a set of internal latches.
      • The column addres (A 8 through A 15 ) is then strobed in using CAS.

DRAMs

  • TI TMS4464 DRAM (64K X 4) Timing Diagram:
    • CAS also performs the function of the chip select input.

DRAMs

  • Larger DRAMs are available which are organized as 1M X 1 , 4M X 1 , 16M X 1 , 64M X 1 (with 256M X 1 available soon).
  • DRAMs are typically placed on SIMM (Single In-line Memory Modules) boards.
    • 30-pin SIMMs come in 1M X 8 , 1M X 9 (parity), 4M X 8 , 4M X 9 .
    • 72-pin SIMMs come in 1 / 2 / 3 / 8 / 16M X 32 or 1M X 36 (parity).

DRAMs

  • Pentiums have a 64-bit wide data bus.
    • The 30-pin and 72-pin SIMMs are not used on these systems.
    • Rather, 64-bit DIMMs ( Dual In-line Memory Modules) are the standard.
      • These organize the memory 64-bits wide.
      • The board has DRAMs mounted on both sides and is 168 pins.

 

    • Sizes include 2M X 64 ( 16M ), 4M X 64 ( 32M ), 8M X 64 ( 64M ) and 16M X 64 ( 128M ).

 

    • The DIMM module is available in DRAM , EDO and SDRAM (and NVRAM ) with and without an EPROM.

 

      • The EPROM provides information abou the size and speed of the memory device for PNP applications.
Originally posted at http://www.csee.umbc.edu/~plusquel/310/slides/8086_memory1.html