Dr. Eric M. Schwartz Professor in ECE

16-May-99 5:15 PM

Page 1/9 \qquad , \qquad
Last Name
, First Name

Instructions:

- Show all work on the front of the test papers. If you need more room, make a clearly indicated note on the front of the page, "MORE ON BACK", and use the back. The back of the page will not be graded without an indication on the front.
- You may not use any notes, homeworks, labs, other books, or calculators.
- You must pledge and sign this page in order for a grade to be assigned.
- This exam counts for at least 20%. of your total grade (13.3% if you fail to take one of the 3 exams).
- Put your name at the top of each test page and be sure your exam consists of $\underline{2}$ distinct pages.
- Read each question carefully and follow the instructions.
- Boolean expression answers must be in lexical order.

PLEDGE:

On my honor as a University of Florida student, I certify that I have neither given nor received any aid on this examination, nor I have seen anyone else do so.

PRINT YOUR NAME

SIGN YOUR NAME
DATE

COMMENTS, FEEDBACK, or any special instructions for the professor:

S, FEEDBACK, or any special instructions for the profe	Page	Available	Points
	1	0	0
	2	0	
	3	10	
	4	20	
	5	18	
	6	8	
	7	13	
	8	14	
	9	16	
	тотal	100	

Page $2 / 9$ \qquad
\qquad
Last Name , First Name
[65\%] 1. Below is an ASM flowchart for an electric garage door. The input R_In (Remote input) causes a closed door to open and an opened door to close. When the door is opening, the output Open causes the motor to turn clockwise. When the door is closing, the output Close cause the motor to turn counterclockwise. There are three additional inputs to your controller: Full_Open (automatically set when the door is fully opened), Closed (automatically set when the door is fully closed), and Alarm (automatically set when something is in the door path while the door is closing). An Alarm causes a closing door to open instead, and a beep to sound.

University of Florida
Department of Electrical \& Computer Engineering

EEL 3701 Fall 1996 30 October 1996
Exam \#2

Page 3/9
$\overline{\text { Last Name }}, \overline{\text { First Name }}$
(4\%) 1. a) What is the minimum number of D flip-flops needed to implement this design. Why? How many JK flip-flops would be needed (assuming D FF's are not available).

No explanation, no credit.
Number of D FFs = \qquad
Number of JK FFs = \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
b) What minimum size EPROM do you need to implement this design using only the EPROM, one D flip-flop, and as many JK flip-flops as you need. (No other chips.) Explain.

> No explanation, no credit.

Size of EPROM

(\# of Addresses x \# of data bits, e.g., 2k x 8) = \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Page 4/9 \qquad , \qquad
Last Name
, First Name
(10\%) 1. c) Draw a wiring diagram (without pin numbers) corresponding to parts a and b above. Make the outputs active low. (For partial credit only, do the design with only D flipflops instead of a single D flip-flop and JK flip-flop(s).) Use only rising edge flip-flops.
(6\%) 1. d) Fill in the below excitation table for D and JK flip-flops.

(4\%)
3 min
e) Give a state binary assignment that attempts to minimize the bit changes between states. Give state W_{-}Closed $\left(\mathrm{S}_{0}\right)$ the minimum value $\left(\mathrm{Q}_{\mathrm{i}}=0\right)$. Leave blank any columns not needed (see part a above.)

State Name	Q_{7}	Q_{6}	Q_{5}	Q_{4}	Q_{3}	Q_{2}	Q_{1}	Q_{0}
W_Closed $\left(\mathrm{S}_{0}\right)$								
Opening $\left(\mathrm{S}_{1}\right)$								
W_Open $\left(\mathrm{S}_{2}\right)$								
Closing $\left(\mathrm{S}_{3}\right)$								

University of Florida
Department of Electrical \& Computer Engineering

Dr. Eric M. Schwartz
Professor in ECE
16-May-99 5:15 PM

Page 5/9 \qquad , Last Name , First Name
(18\%) 1. f) Fill in the below state transition and output table. Use don't cares (X) as needed.
10 min

Current State Name	R_In	Full_Open	Alarm	Closed	Next State Name	Open	Close	Beep	

\qquad
\qquad
Last Name , First Name
(8\%)

1. g) Complete the below timing diagram and fill in the appropriate state names. (Use the short 8 min names, e.g., S_{0}). The first state $\mathrm{S}_{0}\left(\mathrm{~W}_{-}\right.$Closed) is given, as are the input sequences.

University of Florida
Department of Electrical \& Computer Engineering

Page 7/9 \qquad ,
Last Name , First Name
(9\%) 3 min

1. h) A new ASM replaces the oval (with Beep inside) with a rectangle (see below). Explain the differences of operation for the circuit designed from the original ASM flowchart and one designed from this new ASM flowchart. What added or reduced costs does the new system have? Explain all reasoning.

For your convenience, part of the new ASM flowchart is shown to the right.

2. How do PALs and PLAs differ.
\qquad
\qquad
\qquad
\qquad
\qquad

Page 8/9 \qquad , \qquad
Last Name , First Name
3. Design a 3-bit parallel adder using as many FA and HA as you need. Use any other basic AND/OR gates you feel are necessary. The inputs are $X_{2} X_{1} X_{0}$ and $Y_{2} Y_{1} Y_{0}$ and the output is $\mathrm{Z}_{2} \mathrm{Z}_{1} \mathrm{Z}_{0}$ and $\mathrm{C}_{\text {out. }}$. The inputs and outputs are all active-high.
[4\%] 4. Design a 4-bit register using any of the following fundamental logic elements: ANDs, ORs, MUXs, DEMUXs, DECODERs, ENCODERs, Flip-Flops, Adders. This register should accomplish synchronous parallel loads and parallel outputs.
[6\%] 5. We used SR latches to build our Master/Slave JK flip-flop in lab 5. Explain the 3 min "Master/Slave" operation of this block diagram.

EEL 3701 Fall 1996

Page 9/9 \qquad , \qquad
Last Name , First Name

GND
b) A 512×2 memory device with RAM in the lower 256 address space and EPROM in the upper 256 of memory address space.

