Instructions:

- Turn off all cell phones, beepers and other noise making devices.
- Show all work on the front of the test papers. Box each answer. If you need more room, make a clearly indicated note on the front of the page, "MORE ON BACK", and use the back. The back of the page will not be graded without an indication on the front.
- You may not use any notes, HW, labs, other books, or calculators.
- This exam counts for 24% of your total grade.
- Read each question carefully and follow the instructions.
- You must pledge and sign this page in order for a grade to be assigned.
- Put your name at the top of this test page and be sure your exam consists of $\underline{12}$ distinct pages. Sign your name and add the date below.
- The point values for problems may be changed at prof's discretion

Good luck \& Go Gators!!!

- Notation reminder: $A(H)$ is the same as A.H..
- For each circuit design, equations must not be used as replacements for circuit elements.
- For each mixed-logic circuit diagram, label inputs/outputs of each gate with the appropriate logic equations.
- Boolean expression answers must be in lexical order,(i.e., /A before A, A before B, \& D_{3} before D_{2}).
- Label the inputs and outputs of each circuit with activation-levels.
- For K-maps, label each grouping with the appropriate equation.

PLEDGE: On my honor as a University of Florida student, I certify that I have neither given nor received any aid on this examination, nor I have seen anyone else do so.

SIGN YOUR NAME
DATE (3 Oct 2007)

[6\%] 1. Do the following arithmetic problems. Remember to show ALL work here and in EVERY problem on this exam.
(2\%) a) Determine the unsigned binary, octal, hexadecimal, and BCD representations of the number 170_{10}.

Binary: \qquad
Octal: \qquad
Hex:
BCD: \qquad
(2\%) b) Determine the 8-bit signed magnitude, 1's complement, and 2's complement representations of the decimal number -85_{10}.
\qquad
(2\%) c) What is $170_{10}-85_{10}$ in 8-bit 2's complement? Remember that you must show all work.

$$
\left(170_{10}-85_{10}\right)_{2}:
$$

\qquad
[10\%] 2. Answer the following questions given the below truth table with inputs A, B and C and output f.
(2\%) a) Write the corresponding minterm (i.e., canonical sum of products CSOP) -or- maxterm (i.e., canonical product of sums CPOS) equation for f (one or the other, but not both).
\qquad
\qquad
\qquad

A	B	C	f
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

\qquad

Which did you write above? (circle one): Minterms (CSOP) Maxterm (CPOS)
b) Completely fill in the K-map (to the right) with 1's and 0's (no blanks).
c) With the K-map to the right, find the minimum sum of products (MSOP) solution. (Label each grouping with the appropriate expression and then write the total equation. Use proper lexical ordering; i.e., $/ A$
 before A, A before $B, \& D_{3}$ before D_{2}.)

$$
f_{\mathrm{MSOP}}=
$$

\qquad
d) Completely fill in the K-map (to the right) with 1's and 0 's (no blanks) and find the minimum product of sums (MPOS) solution. Note: The order of the signals in the K-map has been changes! (BC is on top)

$$
f_{\mathrm{MPOS}}=
$$

\qquad
e) Are $f_{\text {MSOP }}$ and $f_{\text {MPOS }}$ equivalent expressions? Why?

Circle One: Yes (equivalent) No (not equivalent)
\qquad
\qquad
\qquad
f) Which solutions is less costly (in gates) and why? Circle One: MSOP MPOS NEITHER
\qquad
\qquad
\qquad
[10\%] 3. Using any technique you desire, simplify the following equation. Give the result as a minimum sum of products (MSOP). Show all work!

$$
\mathbf{Z}=/ \mathbf{A}(\mathbf{B}+\mathbf{C})+/ \mathbf{A} / \mathbf{C}+/ \mathbf{A} / \mathbf{B}(/ \mathbf{D}+/ \mathbf{C} \mathbf{D})
$$

$\mathrm{Z}_{\mathrm{MSOP}}=$
4. Logic vs. voltage using adders.

A 4-bit adder will add two 4-bit numbers: $\mathrm{A}_{3} \mathrm{~A}_{2} \mathrm{~A}_{1} \mathrm{~A}_{0}$ and $\mathrm{B}_{3} \mathrm{~B}_{2} \mathrm{~B}_{1} \mathrm{~B}_{0}$; and produce a 4-bit sum $\mathrm{S}_{3} \mathrm{~S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0}$ and a carry-out C_{4}. For example:

If $\quad \mathrm{A}_{3} \mathrm{~A}_{2} \mathrm{~A}_{1} \mathrm{~A}_{0}=1001$
$\mathrm{B}_{3} \mathrm{~B}_{2} \mathrm{~B}_{1} \mathrm{~B}_{0}=1100$
Then $\mathrm{S}_{3} \mathrm{~S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0}=0101$, with $\mathrm{C}_{4}=1$
The above example is to help you review how the adder works. It is not a part of the test.
The following 4-bit adder has signals $A_{3}, B_{3}, A_{2}, B_{2}, S_{1}$, and S_{0} and C_{4} assigned to active low. All other signals are assigned active high.

(a) We applied the above VOLTAGE values to add two binary numbers. What two binary numbers are we trying to add?
$A_{3}=A_{2}(0$ or 1$) \quad A_{[}(0$ or 1$) \quad A_{1}=_\quad(0$ or 1$) \quad A_{0}=Z_{\sim}(0$ or 1$)$
$\mathrm{B}_{3}=_\quad(0$ or 1$)$
$B_{2}=$ \qquad (0 or 1)
$\mathrm{B}_{1}=$ \qquad (0 or 1)
$\mathrm{B}_{0}=$ \qquad (0 or 1)
(b) What VOLTAGE values (i.e., high H or low L) do you expect for $S_{3} S_{2} S_{1} S_{0}$ and C_{4} ?
$\mathrm{S}_{3}=\ldots \quad(\mathrm{H}$ or L$) \quad \mathrm{S}_{2}=\ldots \quad(\mathrm{H}$ or L$) \quad \mathrm{S}_{1}=_\quad(\mathrm{H}$ or L$) \quad \mathrm{S}_{0}=\ldots \quad(\mathrm{H}$ or L$)$
$\mathrm{C}_{4}=$ \qquad (H or L)
[7\%] 5. Determine the equation directly implemented with this mixed-logic circuit. Do not minimize the equation. It is not necessary to put the equation in lexical order. For partial credit, label the intermediate signals from each gate.

$$
X=
$$

[10\%] 6. Directly implement the below equation with a mixed-logic circuit diagram. Use only gates available on $74^{\prime} 02$ chips. (Use the appropriate mixed-logic symbols). Label all gates and pin numbers as you should be doing in lab. Pick whatever activation levels you want for the inputs, but make the output W active-low.

$$
\mathrm{W}=(\mathrm{G} * / \mathrm{A} * \mathrm{~T})+(/ \mathrm{O} * \mathrm{R} * / \mathrm{S})
$$

G()_
A() _

T() _
O() \qquad
R()
S()__
[12\%] 7. Create an equivalent 8 -input multiplexer using 4-input multiplexers (see truth table), and using the minimum number of components. You can use additional gates if necessary. However, each gate counts as a component. A 4-input MUX also counts as one component.

\mathbf{E}	$\mathbf{S}_{\mathbf{1}}$	$\mathbf{S}_{\mathbf{0}}$	$\mathbf{A}_{\mathbf{3}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{0}}$	\mathbf{B}
0	$*$	$*$	X	X	X	X	$\mathrm{Hi}-\mathrm{Z}$
1	0	0	X	X	X	0	0
1	0	0	X	X	X	1	1
1	0	1	X	X	0	X	0
1	0	1	X	X	1	X	1
\ldots							

[12\%] 8. Implementation of Logic with Decoders
Given the following 2 logic equations and activation levels for the signals, implement them with the following decoder and any number of 3-input OR gates (ONLY).

- For maximum credit, use the minimum number of gates.
- Just draw the gates. You don't have to label them (e.g., like 7411)
- Note the * is the AND operator and /A is "NOT A".
- Signals A, B, C, and $Z 1$ are active high, $\underline{Z 2}$ is active low.
$Z 1=/ A^{*} / B^{*} / C+A^{*} / B^{*} C+/ A^{*} B$
$Z 2=(I A+B+C) *(A+B)$

For partial credit, show work here:
[8\%] 9. Given the following simple circuit consisting of two NAND gates, derive the next state voltage table (use L and H) for the device. In other words, given each combination of voltage values for A, B, and X , what are the values for X and Y after the circuit becomes stable?

(a)

\qquad
[8\%] 10. Synchronous component (flip-flop) vs. combinatorial component (MUX)

Given the above circuit, complete the following voltage timing diagrams:

Show propagational delays and go as far as you can.
[4\%] (a) Shown below are two switches X1 and X2. Complete the design of the two switches to generate two input signals: active low X1.L and active high X2.H. In other words, make the connections among the switches, resistors, VCC, and GND to produce the two signals.
[2\%] (b) Coming out of the digital circuit are two output signals. Make the connections among the LED's, resistors, VCC, and GND to display the active low output Z1.L to an active low LED and the active high output Z2.H to an active high LED. An LED should be lit when the corresponding output is "true".
[2\%] (c) The TA wants to see LEDs on the input signals. Make the connections among the LED's, resistors, VCC, and GND to display the active low input X1.L to an active low LED and the active high input X2.H to an active high LED. An LED should be lit when the corresponding input is "true".

Laws and Theorems of Boolean Algebra

Operations with 0 and 1 :

1. $\mathrm{X}+0=\mathrm{X}$
1D. $X \cdot 1=X$
2. $X+1=1$
2D. $X \cdot 0=0$

Idempotent laws:
3. $\mathrm{X}+\mathrm{X}=\mathrm{X}$
3D. $X \cdot X=X$

Involution laws:
4. $\left(X^{\prime}\right)^{\prime}=X$

Laws of complementarity:
5. $X+X^{\prime}=1$
5D. $X \cdot X^{\prime}=0$

Commutative laws:
6. $\mathrm{X}+\mathrm{Y}=\mathrm{Y}+\mathrm{X}$
6D. $X Y=Y X$

Associative laws:
7. $(\mathrm{X}+\mathrm{Y})+\mathrm{Z}=\mathrm{X}+(\mathrm{Y}+\mathrm{Z})=\mathrm{X}+\mathrm{Y}+\mathrm{Z}$
7D. $(X Y) Z=X(Y Z)=X Y Z$

Distributive laws:
8. $\mathrm{X}(\mathrm{Y}+\mathrm{Z})=\mathrm{XY}+\mathrm{XZ}$
8D. $\mathrm{X}+\mathrm{YZ}=(\mathrm{X}+\mathrm{Y})(\mathrm{X}+\mathrm{Z})$

Simplification theorems:
9. $X Y+X Y^{\prime}=X$
9D. $(\mathrm{X}+\mathrm{Y})\left(\mathrm{X}+\mathrm{Y}^{\prime}\right)=\mathrm{X}$
10. $X+X Y=X$
10D. $X(X+Y)=X$
11. $\left(X+Y^{\prime}\right) Y=X Y$
11D. $X Y^{\prime}+Y=X+Y$

DeMorgan's laws:
12. $(\mathrm{X}+\mathrm{Y}+\mathrm{Z}+\ldots)^{\prime}=\mathrm{X}^{\prime} \mathrm{Y}^{\prime} \mathrm{Z}^{\prime} \quad$ 12D. $(\mathrm{XYZ...)})^{\prime}=\mathrm{X}^{\prime}+\mathrm{Y}^{\prime}+\mathrm{Z}^{\prime}$
13. $[f(A, B, \ldots, Z, 0,1,+, \cdot)]^{\prime}=f\left(A^{\prime}, B^{\prime}, \ldots, Z^{\prime}, 1,0, \cdot,+\right)$

Duality:
14. $(X+Y+Z+\ldots)^{D}=X Y Z \ldots$

14D. $(X Y Z \ldots)^{D}=X+Y+Z+\ldots$
15. $[f(A, B, \ldots, Z, 0,1,+, \cdot)]^{D}=f(A, B, \ldots, Z, 1,0, \cdot,+)$

Theorems for multiplying out and factoring:
16. $(X+Y)\left(X^{\prime}+Z\right)=X Z+X^{\prime} Y$

16D. $X Y+X^{\prime} Z=(X+Z)\left(X^{\prime}+Y\right)$
Consensus theorems:
17. $X Y+Y Z+X^{\prime} Z=X Y+X^{\prime} Z$

17D. $(\mathrm{X}+\mathrm{Y})(\mathrm{Y}+\mathrm{Z})\left(\mathrm{X}^{\prime}+\mathrm{Z}\right)=(\mathrm{X}+\mathrm{Y})\left(\mathrm{X}^{\prime}+\mathrm{Z}\right)$

