Instructions:
- Turn off all **cell phones, beepers** and other **noise making devices**.
- Show **all work** on the **front** of the test papers. **Box** each answer. If you need more room, make a clearly indicated note on the front of the page, "MORE ON BACK", and use the back. The back of the page will **not** be graded without an indication on the front.
- You may **not** use any notes, HW, labs, other books, or calculators.
- This exam counts for 24% of your total grade.
- Read each question **carefully** and follow the instructions.
- You must pledge and sign this page in order for a grade to be assigned.
- Put your name at the top of **this** test page and be sure your exam consists of 10 distinct pages. Sign your name and add the date below.
- The point values for problems may be changed at prof’s discretion
- Notation reminder: A(H) is the same as A.H.
- For each circuit design, equations must **not** be used as replacements for circuit elements.
- For each mixed-logic circuit diagram, label inputs of each gate with the appropriate logic equations
- Boolean expression answers must be in **lexical order**, (i.e., /A before A, A before B, & D, before D).
- Label the inputs and outputs of each circuit with activation-levels.
- For K-maps, label **each** grouping with the appropriate equation.

PLEDGE: On my honor as a University of Florida student, I certify that I have neither given nor received any aid on this examination, nor I have seen anyone else do so.

SIGN YOUR NAME

DATE (9 Oct 2008)

Regrade comments below: Give page # and problem # and reason for the petition.

<table>
<thead>
<tr>
<th>Page</th>
<th>Available</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
[6%] 1. Do the following arithmetic problems. Remember to show ALL work here and in EVERY problem on this exam.

(2%) a) Determine the unsigned binary, octal, hexadecimal, and BCD representations of the number 99\textsubscript{10}.

\[
\begin{array}{c}
2 \left| 99 \\
2 \left| 49 \\
2 \left| 24 \\
2 \left| 12 \\
2 \left| 6 \\
2 \left| 3 \\
\hline
1 & 1
\end{array}
\]

Binary: \underline{1100011}
Octal: \underline{143}
Hex: \underline{63}
BCD: \underline{1001,1001}

(2%) b) Determine the 8-bit signed magnitude, 1’s complement, and 2’s complement representations of the decimal number -19\textsubscript{10}.

\[
\begin{array}{c}
2 \left| 19 \\
2 \left| 9 \\
2 \left| 4 \\
2 \left| 2 \\
2 \left| 1 \ \ \ \ \ \ \ \ \ \text{8 Bit binary} \\
\hline
1 & 1 & 1 & 0 & 0 & 0 & 1 & 1
\end{array}
\]

Signed Mag: \underline{1001,0011}
1’s Comp: \underline{1110,1100}
2’s Comp: \underline{1110,1101}

(2%) c) What is 99\textsubscript{10} -100\textsubscript{10} in 8-bit 2’s complement? Remember that you must show all work.

\[
\begin{array}{c}
\hline
99 \\
\hline
-100 \\
\hline
-1 \ \ \ \ \ \ \ \ \text{binary 100}_{10} = 0110,0100 \\
\text{1’s comp(-100)} = 1001,1011 \\
\text{2’s comp(-100)} = 1001,1100
\end{array}
\]

(99\textsubscript{10} -100\textsubscript{10})\textsubscript{2}: \underline{1111,1111}
2. You are given the following new MSI device:

Inputs: E.L, A.H, B.H, C.H
Outputs: Y1.L, Y0.L

We would like to implement the following logic table:

<table>
<thead>
<tr>
<th>E</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>Y1</th>
<th>Y0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

(a) What are the logic equations for Y1 and Y0? Y1 should be in MSOP and Y0 MPOS.

\[
Y_1 \text{ (MSOP)} = \overline{E \cdot A} \\
Y_0 \text{ (MPOS)} = \overline{E \cdot C}
\]

(b) Draw the mixed-logic circuit diagram required to implement the logic equations for Y0 (you don’t have to implement Y1). Use minimum number of gates. (6%)

Use only NAND gates (and their alternative views).
[12%] 3. Using any technique you desire, simplify the following equation. Give the result as a minimum product of sums (MPOS). **Show all work!**

\[Z = (A + B + C) \cdot (A + \overline{C}) + A \cdot B \cdot (\overline{C} + C \cdot \overline{D}) \]

\[= (A \cdot \overline{B} \cdot \overline{C}) + (A \cdot C) + \overline{A} \cdot B \cdot \overline{C} + \overline{A} \cdot B \cdot C \cdot \overline{D} \]

\[\begin{array}{c|c|c|c|c}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\end{array} \]

D is "don't care"

\[\begin{array}{c|c|c|c}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\end{array} \]

D is "don't care"

\[B \ D "don't care" \]

\[Z_{MPOS} = (\overline{A} + \overline{B}) \cdot (B + C) \]
[12%] 4. Use the given 4-input multiplexers to solve each of the below problems. Choose a single activation level (either active high or active low) for each of the inputs and outputs for each problem. Use the minimum number of additional components. Show all work and draw any required mixed logic circuit diagrams (i.e., equations must not be used as replacements for circuit diagrams).

(4%) a) \(Z_0 = A*B + A*C*/D \)

(4%) b) \(Z_1 = A*B + A*C*/D \) (Notice the enable available on this MUX.)

(4%) c) Use the given 4-input multiplexer to implement \(Z_2 \), which is defined by the voltage table.

Last Name, First Name
5. Determine the equation directly implemented with this mixed-logic circuit. Do not minimize the equation. It is not necessary to put the equation in lexical order. For partial credit, label the intermediate equations at the input to each gate.

\[
F = (\overline{A \cdot B} + \overline{C \cdot D \cdot E}) \cdot (\overline{A \cdot C} + B) + \overline{A \cdot B}
\]
6 Analyze the following circuit and produce a logic expression for Z_2.

- For this problem, the expression for Z_2 should be in minimum SOP (MSOP) form.
- Z_2 should be a function of P, Q, and R.
- For credit, show all work.

\[Z_2 = E(A_2 \cdot A_1 \cdot \overline{A_0} + A_2 \cdot \overline{A_1} \cdot \overline{A_0} + A_2 \cdot A_1 \cdot \overline{A_0}) \]
\[= R(P \cdot Q \cdot \overline{Q} + P \cdot \overline{Q} \cdot Q + P \cdot Q \cdot Q) \]
\[= R(P \cdot Q + P \cdot Q) \]
\[= RQ(P + P) = RQ \]
7. MUX, logic vs. voltage.

Show below is a block diagram of a “custom-built” 4-input MUX, with a mixture of active high and active low inputs and output.

4-input MUX

(a) Give the logic equation for Y. (2 pts.)

\[Y = E \cdot (S1 \cdot S0 \cdot D0 + S1 \cdot \overline{S0} \cdot D1 + S1 \cdot \overline{S0} \cdot D2 + S1 \cdot S0 \cdot D3) \]

(b) Give the voltage table for the MUX. For maximum credit: (8 pts.)

- Order the voltage table in the “standard” order (E,S1,S0,D0,D1,D2,D3).
- Use “wild cards” or “don’t cares” to condense the table.

<table>
<thead>
<tr>
<th>E</th>
<th>S1</th>
<th>S0</th>
<th>D0</th>
<th>D1</th>
<th>D2</th>
<th>D3</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>X</td>
<td>X</td>
<td>L</td>
</tr>
<tr>
<td>H</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>H</td>
<td>X</td>
<td>H</td>
</tr>
<tr>
<td>H</td>
<td>L</td>
<td>H</td>
<td>L</td>
<td>L</td>
<td>H</td>
<td>X</td>
<td>H</td>
</tr>
<tr>
<td>H</td>
<td>L</td>
<td>H</td>
<td>H</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>H</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>H</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>X</td>
<td>H</td>
<td>X</td>
<td>H</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>X</td>
<td>X</td>
<td>H</td>
<td>L</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>X</td>
<td>H</td>
<td>X</td>
<td>L</td>
</tr>
</tbody>
</table>

(c) Visualize the logic equation of a 64-to-1 MUX. Give me the first 2 product terms of that equation and the last 2 product terms of that equation. (2 pts.)

First two product terms:

\[E \cdot \overline{S5} \cdot \overline{S4} \cdot \overline{S3} \cdot \overline{S2} \cdot \overline{S1} \cdot S0 \cdot D0 + E \cdot S5 \cdot \overline{S4} \cdot S3 \cdot S2 \cdot \overline{S1} \cdot S0 \cdot D1 \]

Last two product terms:

\[E \cdot S5 \cdot \overline{S4} \cdot S3 \cdot S2 \cdot S1 \cdot \overline{S0} \cdot D62 + E \cdot S5 \cdot S4 \cdot S3 \cdot S2 \cdot S1 \cdot S0 \cdot D63 \]

Given the above circuit, complete the following voltage timing diagrams.

Show propagation delays and go as far as you can.

Given the above circuit, implement the circuit on the “board” below using the given components. In other words, pretend that you are actually “wiring” your board in the lab and draw in the “wires”
- Make all the necessary connections, including all VCC and GND connections.
- For ease of grading, use only the top 2 NAND gates.
- Be sure to draw each switch in the position (i.e., open or close) for which the switch produce a “True” value.

Laws and Theorems of Boolean Algebra

10
Operations with 0 and 1:
1. \(X + 0 = X \)
2. \(X + 1 = 1 \)
1D. \(X \cdot 1 = X \)
2D. \(X \cdot 0 = 0 \)

Idempotent laws:
3. \(X + X = X \)
3D. \(X \cdot X = X \)

Involution laws:
4. \((X')' = X \)

Laws of complementarity:
5. \(X + X' = 1 \)
5D. \(X \cdot X' = 0 \)

Commutative laws:
6. \(X + Y = Y + X \)
6D. \(XY = YX \)

Associative laws:
7. \((X + Y) + Z = X + (Y + Z) = X + Y + Z \)
7D. \((XY)Z = X(YZ) = XYZ \)

Distributive laws:
8. \(X(Y + Z) = XY + XZ \)
8D. \(X + YZ = (X + Y)(X + Z) \)

Simplification theorems:
9. \(XY + XY' = X \)
9D. \((X + Y)(X + Y') = X \)
10. \(X + XY = X \)
10D. \(X(X + Y) = X \)
11. \((X + Y')Y = XY \)
11D. \(XY' + Y = X + Y \)

DeMorgan's laws:
12. \((X + Y + Z + \ldots)' = X'Y'Z' \)
12D. \((XYZ\ldots)' = X' + Y' + Z' \)
13. \([f(A, B, \ldots, Z, 0, 1, +, \cdot)]' = f(A', B', \ldots, Z', 1, 0, \cdot, \cdot)\)

Duality:
14. \((X + Y + Z + \ldots)^D = XYZ\ldots \)
14D. \((XYZ\ldots)^D = X + Y + Z + \ldots \)
15. \([f(A, B, \ldots, Z, 0, 1, +, \cdot)]^D = f(A, B, \ldots, Z, 1, 0, \cdot, \cdot)\)

Theorems for multiplying out and factoring:
16. \((X + Y)(X' + Z) = XZ + X'Y \)
16D. \(XY + X'Z = (X + Z)(X' + Y) \)

Consensus theorems:
17. \(XY + YZ + X'Z = XY + X'Z \)
17D. \((X + Y)(Y + Z)(X' + Z) = (X + Y)(X' + Z) \)