Instructions:

- Turn off all cell phones, beepers and other noise making devices.
- Show all work on the front of the test papers. Box each answer. If you need more room, make a clearly indicated note on the front of the page, "MORE ON BACK", and use the back. The back of the page will not be graded without an indication on the front.
- You may not use any notes, HW, labs, other books, or calculators.
- This exam counts for 24% of your total grade.
- Read each question carefully and follow the instructions.
- You must pledge and sign this page in order for a grade to be assigned.
- Put your name at the top of this test page and be sure your exam consists of $\underline{11}$ distinct pages. Sign your name and add the date below.
- The point values for problems may be changed at prof's discretion
- Notation reminder: $A(H)$ is the same as A.H..

Good luck \& Go Gators!!!

- For each circuit design, equations must not be used as replacements for circuit elements.
- For each mixed-logic circuit diagram, label inputs of each gate with the appropriate logic equations
- Boolean expression answers must be in lexical order,(i.e., /A before A, A before B, \& D_{3} before D_{2}).
- Label the inputs and outputs of each circuit with activation-levels.
- For K-maps, label each grouping with the appropriate equation.

PLEDGE: On my honor as a University of Florida student, I certify that I have neither given nor received any aid on this examination, nor I have seen anyone else do so.

SIGN YOUR NAME
DATE (6 Oct 2008)

[6\%] 1. Do the following arithmetic problems. Remember to show ALL work here and in EVERY problem on this exam.
(2%) a) Determine the unsigned binary, octal, hexadecimal, and BCD representations of the number 99_{10}.

Binary: \qquad
Octal: \qquad
Hex:
BCD: \qquad
(2\%) b) Determine the 8-bit signed magnitude, 1's complement, and 2's complement representations of the decimal number -19_{10}.
\qquad
(2\%) c) What is $99_{10}-100_{10}$ in 8-bit 2's complement? Remember that you must show all work.

$$
\left(99_{10}-100_{10}\right)_{2}:
$$

[14\%] 2. You are given the following new MSI device:

We would like to implement the following logic table:

\mathbf{E}	\mathbf{A}	\mathbf{B}	\mathbf{C}	$\mathbf{Y 1}$	$\mathbf{Y 0}$
0	X	X	X	0	0
1	0	0	0	1	1
1	0	0	1	1	0
1	0	1	0	1	1
1	0	1	1	1	0
1	1	0	0	0	1
1	1	0	1	0	0
1	1	1	0	0	1
1	1	1	1	0	0

(a) What are the logic equations for Y 1 and Y 0 ? Y 1 should be in MSOP and Y 0 MPOS.
Y1 (MSOP) =
\qquad
$\mathrm{YO}(\mathrm{MPOS})=$ \qquad (4\%)
(b) Draw the mixed-logic circuit diagram required to implement the logic equations for YO (you don't have to implement Y1). Use minimum number of gates. (6\%)
Use only NAND gates (and their alternative views).
[12\%] 3. Using any technique you desire, simplify the following equation. Give the result as a minimum product of sums (MPOS). Show all work!

$$
Z=\overline{(\overline{\mathbf{A}}+B+\bar{C}) \cdot(A+\bar{C})}+\bar{A} \cdot B \cdot(\bar{C}+C \cdot \overline{\mathbf{D}})
$$

[12\%] 4. Use the given 4-input multiplexers to solve each of the below problems. Choose a single activation level (either active high or active low) for each of the inputs and outputs for each problem. Use the minimum number of additional components. Show all work and draw any required mixed logic circuit diagrams (i.e., equations must not be used as replacements for circuit diagrams).
a) $\mathrm{Z}_{0}=\mathrm{A} * \mathrm{~B}+\mathrm{A} * \mathrm{C} / \mathrm{D}$

b) $\mathrm{Z}_{1}=\mathrm{A} * \mathrm{~B}+\mathrm{A} * \mathrm{C} * / \mathrm{D}$ (Notice the enable available on this MUX.)

(4\%) c) Use the given 4-input multiplexer to implement Z_{2}, which is defined by the voltage table.

4-input MUX

A	B	C	D	Z_{2}
L	L	L	L	L
L	L	L	H	H
L	L	H	L	H
L	L	H	H	H
L	H	L	L	H
L	H	L	H	L
L	H	H	L	H
L	H	H	H	L
H	L	L	L	H
H	L	L	H	H
H	L	H	L	H
H	L	H	H	H
H	H	L	L	H
H	H	L	H	H
H	H	H	L	H
H	H	H	H	H

[8\%] 5. Determine the equation directly implemented with this mixed-logic circuit. Do not minimize the equation. It is not necessary to put the equation in lexical order. For partial credit, label the intermediate equations at the input to each gate.

$\mathrm{F}=$
[8\%] 6 Analyze the following circuit and produce a logic expression for $\mathbf{Z 2}$.

- For this problem, the expression for $\mathbf{Z 2}$ should be in minimum SOP (MSOP) form.
- Z2 should be a function of P, Q, and R.
- For credit, show all work.

Z2 =
[12\%] 7. MUX, logic vs. voltage.
Show below is a block diagram of a "custom-built" 4-input MUX, with a mixture of active high and active low inputs and output.
(a) Give the logic equation for Y. (2 pts.)

(b) Give the voltage table for the MUX. For maximum credit: (8 pts.)

- Order the voltage table in the "standard" order (E,S1,S0,D0,D1,D2,D3).
- Use "wild cards" or "don't cares" to condense the table.
(c) Visualize the logic equation of a 64 -to- 1 MUX. Give me the first 2 product terms of that equation and the last 2 product terms of that equation. (2 pts .)

First two product terms:

Last two product terms:

EEL 3701—Fall 2008 Monday, 6 October 2008

Exam 1
Last Name, First Name
[18\%] 8. Circuit analysis and flip-flops.

Given the above circuit, complete the following voltage timing diagrams.

(Note that
CLR is an asynchronous clear input.)

Show propagation delays and go as far as you can.

[10\%] 9. Building switch and LED circuits.

Given the above circuit, implement the circuit on the "board" below using the given components. In other words, pretend that you are actually "wiring" your board in the lab and draw in the "wires"

- Make all the necessary connections, including all VCC and GND connections.
- For ease of grading, use only the top 2 NAND gates.
- Be sure to draw each switch in the position (i.e., open or close) for which the switch produce a "True" value.

Laws and Theorems of Boolean Algebra

Operations with 0 and 1 :

1. $\mathrm{X}+0=\mathrm{X}$
1D. $X \cdot 1=X$
2. $X+1=1$
2D. $X \cdot 0=0$

Idempotent laws:
3. $\mathrm{X}+\mathrm{X}=\mathrm{X}$
3D. $X \cdot X=X$

Involution laws:
4. $\left(\mathrm{X}^{\prime}\right)^{\prime}=\mathrm{X}$

Laws of complementarity:
5. $X+X^{\prime}=1$
5D. $X \cdot X^{\prime}=0$

Commutative laws:
6. $\mathrm{X}+\mathrm{Y}=\mathrm{Y}+\mathrm{X}$
6D. $\mathrm{XY}=\mathrm{YX}$

Associative laws:
7. $(\mathrm{X}+\mathrm{Y})+\mathrm{Z}=\mathrm{X}+(\mathrm{Y}+\mathrm{Z})=\mathrm{X}+\mathrm{Y}+\mathrm{Z}$
7D. $(\mathrm{XY}) \mathrm{Z}=\mathrm{X}(\mathrm{YZ})=\mathrm{XYZ}$

Distributive laws:
8. $\mathrm{X}(\mathrm{Y}+\mathrm{Z})=\mathrm{XY}+\mathrm{XZ}$
8D. $\mathrm{X}+\mathrm{YZ}=(\mathrm{X}+\mathrm{Y})(\mathrm{X}+\mathrm{Z})$

Simplification theorems:
9. $X Y+X Y^{\prime}=X$
9D. $(X+Y)\left(X+Y^{\prime}\right)=X$
10. $X+X Y=X$
10D. $X(X+Y)=X$
11. $\left(X+Y^{\prime}\right) Y=X Y$
11D. $X Y^{\prime}+Y=X+Y$

DeMorgan's laws:
12. $(\mathrm{X}+\mathrm{Y}+\mathrm{Z}+\ldots)^{\prime}=\mathrm{X}^{\prime} \mathrm{Y}^{\prime} \mathrm{Z}^{\prime} \quad$ 12D. $(\mathrm{XYZ} . . .)^{\prime}=\mathrm{X}^{\prime}+\mathrm{Y}^{\prime}+\mathrm{Z}^{\prime}$
13. $[f(A, B, \ldots, Z, 0,1,+, \cdot)]^{\prime}=f\left(A^{\prime}, B^{\prime}, \ldots, Z^{\prime}, 1,0, \cdot,+\right)$

Duality:
14. $(X+Y+Z+\ldots)^{D}=X Y Z \ldots$

14D. $(X Y Z \ldots)^{D}=X+Y+Z+\ldots$
15. $[f(A, B, \ldots, Z, 0,1,+, \cdot)]^{D}=f(A, B, \ldots, Z, 1,0, \cdot,+)$

Theorems for multiplying out and factoring:
16. $(X+Y)\left(X^{\prime}+Z\right)=X Z+X^{\prime} Y$

16D. $X Y+X^{\prime} Z=(X+Z)\left(X^{\prime}+Y\right)$
Consensus theorems:
17. $X Y+Y Z+X^{\prime} Z=X Y+X^{\prime} Z$

17D. $(\mathrm{X}+\mathrm{Y})(\mathrm{Y}+\mathrm{Z})\left(\mathrm{X}^{\prime}+\mathrm{Z}\right)=(\mathrm{X}+\mathrm{Y})\left(\mathrm{X}^{\prime}+\mathrm{Z}\right)$

