Instructions:

- Turn off all cell phones, beepers and other noise making devices.
- Show all work on the front of the test papers. Box each answer. If you need more room, make a clearly indicated note on the front of the page, "MORE ON BACK", and use the back. The back of the page will not be graded without an indication on the front.
- You may not use any notes, HW, labs, other books, or calculators.
- This exam counts for 24% of your total grade.
- Read each question carefully and follow the instructions.
- You must pledge and sign this page in order for a grade to be assigned.
- Put your name at the top of this test page and be sure your exam consists of $\underline{11}$ distinct pages. Sign your name and add the date below.
- The point values for problems may be changed at prof's discretion

Good luck \& Go Gators!!!

- Notation reminder: $A(H)$ is the same as A.H..
- For each circuit design, equations must not be used as replacements for circuit elements.
- For each mixed-logic circuit diagram, label inputs/outputs of each gate with the appropriate logic equations.
- Boolean expression answers must be in lexical order,(i.e., /A before A, A before B, \& D_{3} before D_{2}).
- Label the inputs and outputs of each circuit with activation-levels.
- For K-maps, label each grouping with the appropriate equation.

PLEDGE: On my honor as a University of Florida student, I certify that I have neither given nor received any aid on this examination, nor I have seen anyone else do so.

SIGN YOUR NAME
DATE (4 Oct 2006)

Regrade comments below: Give page \# and problem \# and reason for the petition.

Page	Available	Points
2	6	
3	10	
4	10	
5	10	
6	17	
7	12	
8	15	
10	10	
11	10	
TOTAL	100	

[6\%] 1. Do the following arithmetic problems. Remember to show ALL work here and in EVERY problem on this exam.
(2\%) a) Determine the unsigned binary, octal, hexadecimal, and BCD representations of the number 49_{10}.

Binary: \qquad
Octal: \qquad
Hex:
BCD: \qquad
(2\%) b) Determine the 8-bit signed magnitude, 1's complement, and 2's complement representations of the decimal number -73_{10}.

Signed Mag: \qquad
1's Comp: \qquad
2's Comp: \qquad
(2\%) c) What is $49_{10}-73_{10}$ in 8-bit 2 's complement? Remember that you must show all work.
$\left(49_{10}-73_{10}\right)_{2}$: \qquad
[10\%] 2. Answer the following questions given the below truth table with inputs W, X and Y and output Z .
(2\%) a) Write the corresponding minterm (i.e., canonical sum of products CSOP) or- maxterm (i.e., canonical product of sums CPOS) equation for Z (one or the other, but not both).
\qquad
\qquad
\qquad

W	X	Y	Z
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

\qquad

Which did you write above? (circle one): Minterms (CSOP)
Maxterm (CPOS)
[10\%] 3. Using any technique you desire, simplify the following equation. Give the result as a minimum sum of products (MSOP).

$$
Y=(\bar{A}+B+C+D) \bullet(A+B+\bar{C}+\bar{D}) \bullet(A+D) \bullet(\bar{B}+\bar{D}) \bullet(B+\bar{C}+D)
$$

$$
\mathrm{Y}_{\mathrm{MSOP}}=
$$

\qquad

Wednesday, 4 October 2006
Exam 1
[10\%] 4. Using a 4-input multiplexer (i.e., 4-to-1 multiplexer) and any other gates, draw a mixed-logic circuit diagram to realize the following function. (Do not attempt to simplify.) Minimize the number of gates required. You may choose any activation-levels that will simplify your design.

The 4-to-1 multiplexer has all active-high inputs and an active-high output.

$$
Y=\bar{A} \bar{B} C+\bar{A} B \bar{C} D+\bar{B} \bar{C}
$$

Note: you must connect A to S1 of the 4-input mux and B to S0.
[7\%] 5. Determine the equation directly implemented with this mixed-logic circuit. Do not minimize the equation. It is not necessary to put the equation in lexical order. For partial credit, label the intermediate signals from each gate.

$$
\mathrm{X}=
$$

[10\%] 6. Directly implement the below equation with a mixed-logic circuit diagram. Use only gates available on 74 '00 chips. (Use the appropriate mixed-logic symbols). Label all gates and pin numbers as you should be doing in lab. Pick whatever activation levels you want for the inputs, but make the output Y active-high.

$$
\mathrm{Y}=(\mathrm{A} * \mathrm{~K} * / \mathrm{B}+\mathrm{E}) * /(/ \mathrm{R} * \mathrm{~T})
$$

A()
)_
K () _

B() _
E() \qquad
R() \qquad
T() _
[12\%] 7. Given the two 3-to-8 decoders shown (each containing an active-low and an active-high enable), create a 4-to-16 decoder, also with an active-high and an active-low enable. Use only the gates available on $\mathbf{7 4 \prime 0 0}$ chips. (A $74 ’ 00$ is shown.) Add the minimum number of additional 74 '00 gates required to solve this problem. Note that both E1 and E2 have to be true before the 3:8 Decoder is "on".

[15\%] 8. Answer the following questions about the circuit shown on the next page (p. 9).
a) What is the logic equation of Z in terms of A, B and C? Simplify to an MSOP or an MPOS. Show all work. Note that Z is active low $\mathrm{Z}(\mathrm{L})$. Also, the inputs are active-high A and B and active-low C.

Z = \qquad
(2\%) b) What is the logic equation of $\mathrm{D}(\mathrm{L})$ in terms of the inputs A and B (where A is active-high and B is active-low)?
\qquad
(8\%) c) Complete the following voltage table. For the priority encoder, higher numbered inputs have higher priority.

$\mathrm{A}(\mathrm{H})$	$\mathrm{B}(\mathrm{H})$	$\mathrm{C}(\mathrm{L})$	$\mathrm{D}(\mathrm{L})$	$\mathrm{Z}(\mathrm{L})$	$\mathrm{Y}_{0}(\mathrm{~L})$	$\mathrm{Y}_{1}(\mathrm{~L})$
L	L	L				
L	L	H				
L	H	L				
L	H	H				
H	L	L				
H	L	H				
H	H	L				
H	H	H				

Use this figure for Problem 9 on the previous page (p. 8).

[10\%] 9. Given the following circuit, complete the Voltage Timing Diagram for Q.L \& Q.H below.

Special Notes:

1. Rising edge triggered D Flip-Flop
2. Asynchronous Set \& Clear
3. Q.H is initially false

Voltage Timing Diagram. (Fill in Q.L \& Q.H.)

Clearly show all timing delays.

[10\%] 10. Building switches and LEDs
[5\%] (a) Shown below are two switches X1 and X2. Complete the design of the two switches to generate two input signals: active low X1.L and active high X2.H. In other words, make the connections among the switches, resistors, VCC, and GND to produce the two signals.
[5\%] (b) Coming out of the digital circuit are two output signals. Make the connections among the LED's, resistors, VCC, and GND to display the active low output Z1.L to an active low LED and the active high output Z2.H to an active high LED. An LED should be lit when the corresponding output is "true".

Laws and Theorems of Boolean Algebra

Operations with 0 and 1 :

1. $\mathrm{X}+0=\mathrm{X}$
1D. $X \cdot 1=X$
2. $X+1=1$
2D. $X \cdot 0=0$

Idempotent laws:
3. $\mathrm{X}+\mathrm{X}=\mathrm{X}$
3D. $X \cdot X=X$

Involution laws:
4. $\left(X^{\prime}\right)^{\prime}=X$

Laws of complementarity:
5. $\mathrm{X}+\mathrm{X}^{\prime}=1$
5D. $X \cdot X^{\prime}=0$

Commutative laws:
6. $\mathrm{X}+\mathrm{Y}=\mathrm{Y}+\mathrm{X}$
6D. $X Y=Y X$

Associative laws:
7. $(\mathrm{X}+\mathrm{Y})+\mathrm{Z}=\mathrm{X}+(\mathrm{Y}+\mathrm{Z})=\mathrm{X}+\mathrm{Y}+\mathrm{Z}$
7D. $(X Y) Z=X(Y Z)=X Y Z$

Distributive laws:
8. $\mathrm{X}(\mathrm{Y}+\mathrm{Z})=\mathrm{XY}+\mathrm{XZ}$
8D. $\mathrm{X}+\mathrm{YZ}=(\mathrm{X}+\mathrm{Y})(\mathrm{X}+\mathrm{Z})$

Simplification theorems:
9. $X Y+X Y^{\prime}=X$
9D. $(\mathrm{X}+\mathrm{Y})\left(\mathrm{X}+\mathrm{Y}^{\prime}\right)=\mathrm{X}$
10. $X+X Y=X$
10D. $X(X+Y)=X$
11. $\left(X+Y^{\prime}\right) Y=X Y$
11D. $X Y^{\prime}+Y=X+Y$

DeMorgan's laws:
12. $(\mathrm{X}+\mathrm{Y}+\mathrm{Z}+\ldots)^{\prime}=\mathrm{X}^{\prime} \mathrm{Y}^{\prime} \mathrm{Z}^{\prime} \quad$ 12D. $(\mathrm{XYZ...)})^{\prime}=\mathrm{X}^{\prime}+\mathrm{Y}^{\prime}+\mathrm{Z}^{\prime}$
13. $[f(A, B, \ldots, Z, 0,1,+, \cdot)]^{\prime}=f\left(A^{\prime}, B^{\prime}, \ldots, Z^{\prime}, 1,0, \cdot,+\right)$

Duality:
14. $(X+Y+Z+\ldots)^{D}=X Y Z \ldots$

14D. $(X Y Z \ldots)^{D}=X+Y+Z+\ldots$
15. $[f(A, B, \ldots, Z, 0,1,+, \cdot)]^{D}=f(A, B, \ldots, Z, 1,0, \cdot,+)$

Theorems for multiplying out and factoring:
16. $(X+Y)\left(X^{\prime}+Z\right)=X Z+X^{\prime} Y$

16D. $X Y+X^{\prime} Z=(X+Z)\left(X^{\prime}+Y\right)$
Consensus theorems:
17. $X Y+Y Z+X^{\prime} Z=X Y+X^{\prime} Z$
17D. $(\mathrm{X}+\mathrm{Y})(\mathrm{Y}+\mathrm{Z})\left(\mathrm{X}^{\prime}+\mathrm{Z}\right)=(\mathrm{X}+\mathrm{Y})\left(\mathrm{X}^{\prime}+\mathrm{Z}\right)$

