EEL 3701 - Introduction to Digital Design
Final Exam - Fall Semester 2005

COVER SHEET:

Prob. Points:

1	(10)
2	(14)
3	(14)
4	(18)
5	(15)
6	(12)
7	(17)
	(100)

\qquad
Remember to show ALL work here and in EVERY problem on this exam.

1. Draw a mixed-logic circuit diagram (with the minimum number of gates) to directly implement the below equation. All inputs and the output can be of any activation-level desired. Be sure to specify the desired activation levels. Do not simplify this equation. You may only use gates available on 74 HC 10 chips (shown). Use as many 74 HC 10 chips as you need, but use the minimum number required to solve this problem.
$\overline{A \bar{E}}(\overline{\bar{B}}+C) D=Y$

\qquad
2. Answer the following for the given next-state truth (logic) table. Y and Z are outputs and X

(14 pts.) is the only input.

X	Q_{2}	Q_{1}	Q_{0}	Y	Z	Q_{2}^{+}	Q_{1}^{+}	Q_{0}^{+}
0	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	0	0	1	1	1
0	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	0	0	0	0	0
0	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	0	0	0	0	1
0	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	1	1	0	1	0
0	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	X	X	X	X	X
0	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	X	X	X	X	X
0	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	1	0	0	1	1
0	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	1	1	1	1	0
1	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	0	0	1	1	1
1	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	0	0	1	1	1
1	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	0	0	1	1	1
1	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	1	0	1	1	1
1	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	X	X	1	1	1
1	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	X	X	1	1	1
1	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	1	0	1	1	1
1	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	1	0	1	1	1

a) What kind of output is Y; and what type is Z ? Be specific.

Y: (1 pt.)

Z: (1 pt.)
\qquad

2. (continue)

Design a circuit to implement the truth table from the previous page.

- Use only a ROM and D-FF's. Use no other SSI, MSI or LSI elements.
- The signals X and Y are active-high and Z is active-low.
- Use as little of the EEPROM as possible. List the ROM contents in order stating at address 0
(b) Complete the following circuit by drawing in the appropriate number of D-FF's and show connections to all EEPROM signals. (4 pts.)

EEPROM	
	Vcc
A7	GND
A5	
A4	D7
A3	D6
A2	D4
A1	D3
A0	D2
CE	D1

(c) List the ROM contents in order stating at address 0 , with both address and data specified in HEX. Program Zeros for "Don't Cares" (8 pts.)
\qquad
3. Hand Assembly \& Program Analysis (Use the G-CPU information in the appendix)

(14 pts.) Hand Assemble the following G-CPU program and show the contents of EPROM memory
Assume that you are given an 8Kx8 EPROM that has been erased completely. i.e. all memory contents are now \$FF. (Address \& Data) that has been modified after the EPROM is programmed:

	ORG	$\$ 0080$
T1	dc.b	$\$ 45$
T2	dc.b	$\$ 88$
T3	dc.b	$\% 10101101$
	ORG	$\$ 0$
	LDAA	$\$ 81$
	LDAB	T1
	OR_BA	
	LDX	$\# \$ 0180$
TOP	STAA	$\$ 12, X$
	BN	TOP

(a) EPROM Memory Programmed due to the above Data \& G-CPU Code:
$\underline{\text { Addr (Hex) Data (Hex) Addr (Hex) Data (Hex) Addr (Hex) Data (Hex) }}$
\qquad
(b) In the above program what is the effective address associated with the "STX T1" instruction?
\qquad Hex
(c) What is the effective address associated with the "LDX \#\$0180" instruction?
\qquad Hex
(d) What is the effective address associated with the "STX $\$ 12, X$ " instruction?
\qquad Hex
(e) What is the value of the A register the first time "STX $\$ 12, \mathrm{X}$ " is executed? Will the branch occur?

A Register Contents = \qquad Hex Branch will occur (circle one)? T or F
\qquad

4. Program Execution (Use the G-CPU information in the appendix)

(18 pts.) Addr Data

0	02
1	35
2	06
3	$0 A$
4	00

Using the the G-CPU Controller ASM \& Block Diagram (Appendix A handouts), complete the cycle table below:

Cycle\#	$\frac{\mathrm{R} /-}{\underline{\mathrm{W}}}$	$\begin{aligned} & \frac{\mathrm{PC}}{(\mathrm{Hex})} \end{aligned}$	MAR	$\frac{\mathrm{A} 15: 0}{(\mathrm{Hex})}$	$\underline{\text { Data }}$	IR (Hex)	A (Hex)	AddrSel1:0
1	1	0000	XXXX	0000	02	XX	XX	00
2								
3								
4								
5								
6								
7								
8								
9								
10								

\qquad
5. Memory Maps, Memory Devices \& Decoding

You are given as many of the following EPROM and SRAM devices that you need for the problem below:

If the processor is a GCPU with a 16 bit address bus (A15:0) and 8 bit data bus (D7:0), show the required devices \& decode circuitry below to place an 8Kx8 EPROM starting at 2000 Hex and an 8Kx8 SRAM immediately following the EPROM in the system memory map.

Implement the $8 \mathrm{Kx8}$ EPROM.
Show devices \& connections (below) =>

Show EPROM Memory Decode
Circuit (below) =>

Implement the 8Kx8 SRAM. Show devices \& connections (below) =>

Show SRAM Decode Circuit (below) =>

6. GCPU Assembly Programming (Use the G-CPU instruction set in Appendix A)

(12 pts.)
Given the following constants in EPROM and SRAM Memory, write a program to fill the first 128 memory locations in SRAM with zeros.

Assumptions:

1. EPROM exists in the memory map from 0-FFF Hex.
2. SRAM exists in the memory map from 1000-1FFF Hex.
3. Your program should begin at address 0 in EPROM.
4. Write a program to zero out (clear) the first 128 locations in SRAM.

Name: \qquad
7. Controller (ASM) design for the G-CPU. (Use the G-CPU block diagram and ASM charts in the appendix.)

Using the signal names shown in controller G-GPU block diagram in the appendix, complete
(17 pts.) the ASM chart (on the next page) to implement the following 3 instructions (SUM_BA, LDAB \#data, and STAA \$addr), including the completion of State A and State B.

Notes:

(1) In each state and conditional output, specify only the signals that should be true.
(2) However, you should use the notation: MSA=01, MSB=10, MSC=000.
(3) When not specified, the default actions for each state is to "hold" REGA and REGB and OUT = REGA.

Important Hint: You should use the ASM charts provided in the appendix. Then, all you have to do is to determine what signals are supposed to be TRUE in each state.

MSA1/MSB1 MSA0/MSB0		
0	0	INPUT Bus
0	1	REGA Output Bus
1	0	REGB Output Bus
1	1	OUTPUT Bus

$$
\begin{aligned}
\text { MSC2: } & \text { (Most Significant Bit is on the left) } \\
000= & \text { REGA Bus to OUTPUT Bus } \\
001= & \text { REGB Bus to OUTPUT Bus } \\
010=> & \text { bit wise AND REGA/REGB Bus to } \\
& \text { OUTPUT Bus } \\
011=> & \text { bit wise OR REGA/REGB Bus to OUTPUT } \\
& \text { Bus } \\
100=> & \text { complement of REGA Bus to OUTPUT Bus } \\
101=> & \text { REGA Bus Plus REGB Bus Plus Cin to } \\
& \text { OUTPUT Bus \& Cout (There is an external } \\
& \text { Cin and an external Cout for the ALU) } \\
110=> & \text { shift REGA Bus left one bit to OUTPUT } \\
& \text { Bus (0 is shifted into OUTPUT Bus[0].) } \\
111=> & \text { shift REGA Bus right one bit to OUTPUT } \\
& \text { Bus (0 is shifted into OUTPUT Bus[3].) }
\end{aligned}
$$

Put the solution on the next page.

EEL 3701 - Introduction to Digital Design
Final Exam - Fall Semester 2005
Name: \qquad

8 (continued): Put solution here:

