\qquad

Remember to show ALL work here and in EVERY problem on this exam.
[10\%] 1. Circuit Analysis
What is the logic equation for X in the given circuit? Do not simplify or transform it into an SOP or POS form. Leave the logic expression as it is after analysis. Also, draw the intermediate expression at the input to each gate.

- Notation reminder: $A(H)$ is the same as A.H
- Boolean expression answers must be in lexical order, ie., /A before A, A before B, etc.
equation: $\mathbf{X}=\overline{(\overline{A \cdot \bar{B}})+(\overline{A \cdot \bar{B}+\bar{C}) \cdot \bar{D}+\bar{E}}}$

\qquad
[10\%] 2. Circuit Synthesis
Draw a mixed-logic circuit diagram (with the minimum number of gates) to directly implement the below equation. All inputs and the output can be of any activation-level desired. Be sure to specify the desired activation levels. Do not simplify this equation. You may only use gates available on 74 HC 27 chips (shown). Use as many 74 HC 27 chips as you need, but use the minimum number required to solve this problem.
$\mathrm{F}=\mathrm{A}^{*} \mathrm{~B}^{*} \mathrm{C}+\mathrm{C}^{*} / \mathrm{D}^{*} / \mathrm{E}+\mathrm{A}^{*} / \mathrm{B}^{*} \mathrm{D}$

\qquad
[12\%] 3. Implementation of an ASM chart using J-K flip-flops

J-K characteristic table:

J	K	Q	$\mathrm{Q}+$
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

(a) Given the above ASM chart, complete the following block diagram of its implementation using the minimum number of J-K flip-flops: (2\%)

- Determine how many J-K flip-flops that are needed. 1
- Draw in all the inputs and outputs of the combinatorial circuit.
- Make all necessary connections to complete the block diagram (between the combinatorial circuit and the flip-flops).

\qquad

3. (continued) (ASM chart is repeated here for your convenience/)

J-K characteristic table:

(b) Finish the implementation of the ASM by determining the minimum sum-of-products (MSOP) logic expressions for the following signals: (10\%)

$$
\begin{aligned}
& \mathrm{J}=Q+\bar{X} \rightarrow \bar{X} \\
& \mathrm{~K}=\bar{l} \\
& \mathrm{~A}=\bar{Q} \\
& \mathrm{~B}=\bar{Q} \\
& \mathrm{C}=\bar{Q} \cdot X=\overline{Q+\bar{X}} \\
& \mathrm{D}=\bar{Q}+X \\
& \mathrm{E}=\bar{Q} \cdot X \\
& \mathrm{~F}=\bar{Q} \cdot X \\
& \mathrm{G}=\bar{Q}
\end{aligned}
$$

(If necessary, use the bottom/back of the previous page to do your work.)

\qquad
[12\%] 4. Given the following program segment, EQU statements, and contents of memory locations:

Memory Locations

a) Assume the 4 instructions in the above program segment have already been executed and the "next instruction" (i.e., 5th. instruction) is LDAA 50. Hand-assemble the LDAA instruction and fill in the blanks (including EA and register A) using HEX.

Note: EA is the "effective address", the actual address in memory where the data is loaded from in a "load" instruction (like LDAA, LDX, etc), or where the data is stored in a "store" instruction (like STAA). If no memory is accessed, write "none" for EA. '

HEX ADDRESS
\$0008
\$0009
$-\$ 000 \mathrm{~A}$
\$000B

Repeat the same problem if the "next instruction" is the instruction in "b", "c", "d", " e ", or " f ", again assuming instructions 1 through 4 have been executed.
b) $\$ 0008 \quad \$ 7 \mathrm{LDX}$ Data 7 $\angle D X \$ 73 A B-\frac{\$ 0008}{\$ 0009}$ $X=\frac{\$ 73 A B}{E 2 A A}$ (little endrin) $\frac{\$ 0009-}{\$ 000 A}-$
c) $\$ 0008$
$E A=\$ 0032$

d) $\$ 0008$

LDYH\$73AB\$0008
$\mathrm{EA}=\$ 0009$
$Y=\$ 73 A B$
e) $\$ 0008 \quad \mathrm{BN} \$ \mathrm{EF}$
$\mathrm{EA}=\boldsymbol{2 0 2 \mathrm { R }} \mathrm{C}$.
PC after this
after this
instruction $F O$ OEF (D2 ind ion) $\frac{\$ 000 A}{\$ 000 B-}$
$\$ 0008$
f) $\$ 0008 \quad B E Q \$ E F$.
$\mathrm{EA}=$ none
PC after this
instruction = $\$ 000 \mathrm{~A}$
(D2 es not
equal to ${ }^{6}$

\qquad
[10\%] 5. EEPROM and SRAM
You are given as many of the following EEPROM and SRAM devices that you need for the problem below:

A13:0
You are to implement a $16 \mathrm{Kx8}$ memory module, containing $8 \mathrm{Kx8}$ SRAM, starting in location 0 , followed immediately by $8 \mathrm{Kx8}$ EEPROM.

The $16 \mathrm{~K} X 8$ memory module should have an " $\mathrm{R} /-\mathrm{W}$ " input and a " -CE " input.

For ease of grading, draw the.
$8 \mathrm{Kx8}$ SRAM circuit here (i.e., show the devices \& connections):

Draw the 8 Kx 8 EEPROM circuit here (ie., show the devices \& connections):

$\begin{array}{cc}A 13 & A 12 \\ 1 & 0\end{array}$

Name:
[15\%] 6. Program Execution (Use the G-CPU information in the back of the test.)

Given the following program in EPROM memory, fill out the following cycle table that illustrates its execution:

$$
\left.\begin{array}{ll}
\frac{\text { Addr }}{0} & \frac{\text { Data }}{01} \\
1 & 07 \\
2 & 01 \\
3 & 07
\end{array}\right] \text { TBA }
$$

Using the the G-CPU Controller ASM \& Block Diagram (at the end of this test), complete the cycle table below. Use as many rows as you need.

\qquad
[15\%] 7. GCPU Assembly Programming (Use the G-CPU instruction set in back of this test.)
Write an assembly language program using only the G-CPU instructions

- There are $\$ 25$ bytes already stored in memory starting in Location $\$ 1000$
- Your program should go through the $\$ 25$ bytes and count the number of "non-zero" bytes (i.e., bytes that are not equal to $\$ 00$).
- At the end of the program, Memory Location \$OFFF should contain the count of non-zero bytes.
- To increase your chances of partial credit, comment your program.

$\angle D A A H \$ 25$
STAA $\$$ OFFE; init loop cound $\angle D X \# \$ 1000$; inet inilex $\left.\begin{array}{l}\text { LDAA } \# \neq 00 \\ \text { STAA. } \\ \text { SOFFF }\end{array}\right\}$ int lide te AGAN: $\angle D A A ~ O, X$; load mest lyste BE NEXT

$$
\left.\begin{array}{rl}
\text { NEXT: } & \text { INX } \\
& \angle D A A \nsubseteq O F F E \\
& \angle D A B \text { \#FFF } \\
& \text { SMMBA } \\
& \text { STAA } \$ \text { OFFE }
\end{array}\right\} \text { doownent }
$$

\qquad
[16\%] 8. Controller (ASM) design for the G-CPU. (Use the G-CPU block diagram and ASM charts in the back of the test.)

Using the signal names shown in controller G-GPU block diagram in the back of the test, complete the ASM chart (on the next page) to implement the following 3 instructions
(AND_BA, LDAA \$addr, and BEQ \$addrL), including the completion of State A and State B.

Notes:
(1) In each state and conditional output, specify only the signals that should be true.
(2) However, you should use the notation: MSA=01, MSB=10, MSC=000.
(3) The default actions for each state should be specified to "hold" REGA and REGB and OUT = REGA.
(4) For your convenience, the required values for MSA, MSB, and MSC are given below:

Table 1: Input source MUXs for Registers A and B.
Table 2: ALU function selection MUX. (MUX C)

MSA1/ MSB1	MSA0/ MSB0	Bus Selected as Input to REGA/REGB
0	0	INPUT Bus
0	1	REGA Bus
1	0	REGB Bus
1	1	OUTPUT Bus

MSC2:0	Action
000	REGA Bus to OUTPUT Bus
001	REGB Bus to OUTPUT Bus
010	complement of REGA Bus to OUTPUT Bus
011	bit wise AND REGA/REGB Bus to OUTPUT Bus
100	bit wise OR REGA/REGB Bus to OUTPUT Bus
101	sum of REGA Bus \& REGB Bus to OUTPUT Bus
110	shift REGA Bus left one bit to OUTPUT Bus
111	shift REGA Bus right one bit to OUTPUT Bus without sign extension

Put the solution on the next page.

Final Exam - Fall Semester 2006
Name: \qquad
8 (continued): Put solution here:

