EEL 3701 — Digital Logic & Computer Systems
Final Exam — Fall Semester 2007 Name:

COVER SHEET:

Prob.

Points:

Total:

(10)
(10)
(10)
(14)
(14)
(15)
(15)

(12)

(100)

Re-Grade Information:

EEL 3701 — Digital Logic & Computer Systems

Final Exam — Fall Semester 2007 Name:

Remember to show ALL work here and in EVERY problem on this exam.
[10%] 1. Circuit Analysis

What is the logic equation for X in the given circuit? Do not simplify or transform it into an
SOP or POS form. Leave the logic expression as it is after analysis. Also, draw the
intermediate expression at the input to each gate.

¢ Notation reminder: A(H) is the same as A.H
¢ Boolean expression answers must be in lexical order, i.e., /A before A, A before B, etc.

EQUATION: X =

AlL) —
B(H) —

CH) —
D(L) —
EL) —

X(L)

AlL) —
CH) —

B(L)

AlL) —
B(H) —

L

EEL 3701 — Digital Logic & Computer Systems

Final Exam — Fall Semester 2007 Name:

[10%] 2. Circuit Synthesis

Draw a mixed-logic circuit diagram (with the minimum number of gates) to
directly implement the below equation. All inputs and the output can be of
any activation-level desired. Be sure to specify the desired activation
levels. Do not simplify this equation. You may only use gates available on
74HC10 chips (shown). Use as many 74HC10 chips as you need, but use the
minimum number required to solve this problem.

F=A*B*D + B*/C*/E + [A*C*/D

I

W

YY)

EEL 3701 — Digital Logic & Computer Systems

Final Exam — Fall Semester 2007 Name:

[10%] 3. Implementation of an ASM chart using clocked S-R FFs

A - A S-R characteristic
X ¢11=QQ,| W l 10 table:
Sway SRQ| O+

00O0| O

00 1] 1

1 1 010]| O
011] 0

0 0 10041

101(1

Y 00 110/ »
11 1(7

Click @

(a) Given the above ASM chart, complete the following block diagram of its implementation
using the minimum number of clocked S-R flip-flops: (2%)

e Determine how many clocked S-R flip-flops that are needed.
Draw in all the inputs and outputs of the combinatorial circuit.

e Make all necessary connections to complete the block diagram (between the
combinatorial circuit and the clocked S-R flip-flops).

(Inputs) Combinatorial circuit (Outputs) (Draw flip-flops here.)

EEL 3701 — Digital Logic & Computer Systems

Final Exam — Fall Semester 2007 Name:
3. (continued) (ASM chart is repeated here for your convenience)
A | A S-R characteristic
X wl1=QQ,| W l 10 table:
Sway SR Q| O+
000] O
001]|1
] 1 010] 0
011]0
0 0 100 1
10 1] 1
Y 00 110/ 2
Click @ 1112

(b) Finish the implementation of the ASM by determining the minimum_sum-of-products
(MSOP) logic expressions for all the output signals: (8%)

(If necessary, use the bottom/back of the previous page to do your work.)

EEL 3701 — Digital Logic & Computer Systems
Final Exam — Fall Semester 2007

Name:

[14%)] 4. Assume the below has already been run, and the code that follows in a, b, c, d, e, f, g will

follow. Hand assemble the following instructions and fill in the blanks.

EA is the 16-bit

effective address. If there is no effective address, write none. (Use the G-CPU instruction set
attached to this test).

ORG $0032
DataO DC.B $66
ORG $0028
Datal DC.B $A3
ORG $002A
Data2 DC.B $74
ORG $0038
Data3 DC.B $EC
ORG $003A
Data4 DC.B $EC
ORG $0040
Datab DC.B $AB
ADDRESS INSTRUCTION
a) $0008 STAB 48,X

EA =

Value stored =

b) $0008 LDAA 40
EA =
A =
c) $0008 LDX #Data8
EA =
X =
d) $0008 TBA
EA =
A =
e) $0008 LDAB Data8
EA =
B =
) $0008 BN $EF
EA =
PC after this
instruction =
g) $0008 BNE $EF

EA =

PC after this

instruction =

ORG
DC.B
ORG
DC.B
ORG
DC.B

Data6
Data7
Data8

ORG
LDX
LDAA
LDAB
SUM_AB

HEX ADDRESS

$0048
$3E
$0058
$9E
$2A42
$99, SAC

$0000
#$000A
#3

#37

HEX VALUE

0008 __
0009
“000A
"000B__

0008
0009 __
"000A _
_000B__

0008
0009
“000A _
“000B__

0008
0009 __
“000A
_000B__

0008
0009 __
“000A
“000B__

0008
0009
"000A _
"000B__
~0008__
0009
“000A
“000B__

EEL 3701 — Digital Logic & Computer Systems
Final Exam — Fall Semester 2007 Name:

[14%] 5. EEPROM and SRAM
Given as many 256x8 EEPROM chips and 256x8 static RAM chips as needed, design a
1024x8 memory module (with a CS) that has 512x8 of RAM at the lowest addresses and
512x8 of EEPROM at the highest addresses. The 512x8 of RAM must start at address 0 and
the first address of the 512x8 of EEPROM must immediately follow the last RAM address.
Add the minimum number of additional components required. Make sure the EEPROM is
NEVER enabled during a write cycle and the RAM is enabled for both read and write cycles.
The EEPROM and SRAM devices have active low CS and the SRAM devices have a R/'W
control signal.

(2%) a) What is the address range for each of the memory components (in binary and in hex)?

SRAM

EEPROM

(12%) b) Design the required memory device below. Make sure you show the memory module’s
inputs and outputs and all the individual memory component devices. Use labels instead
of wires in the design.

EEL 3701 — Digital Logic & Computer Systems
Final Exam — Fall Semester 2007 Name:

[15%] 6. HAND Assembly The following program finds all occurrences of $37 in a table with an $FF
end of table marker and replaces them with $AA. It uses the G-CPU instruction set attached
to this test. Hand assemble the program in the space given.

Address Data

(Hex) (Hex) Program

ORG $100
Table DC.B $10,$37,$CC,$37,$15
EOT DC.B $FF
NEW EQU SAA
OLD EQU $C8

ORG $200
STRT LDX #Table
LOOP LDAB EOT

COMB

LDAA 0,X

SUM_BA

BEQ QUIT

LDAA 0,X

LDAB #OLD

SUM_BA

BNE NOSW

LDAA #NEW

STAA 0,X
NOSW INX

BNE LOOP

QUIT BEQ QUIT

EEL 3701 — Digital Logic & Computer Systems
Final Exam — Fall Semester 2007 Name:

[15%] 7. GCPU Assembly Programming (Use the G-CPU instruction set attached to this test)
Write an entire G-CPU program to copy all the positive values in a table called TAB1
(beginning at address $3000) to another table called TAB2 (beginning at address $7000).
TABL has 200 1-byte values already in memory. There is a 16-KB ROM for your program,
starting at address 0 and a 32-KB SRAM, starting at $4000 for data. Be sure to initialize all
necessary values, variables, etc., i.e., assume no initializations are done for you. Be sure to
properly terminate the program (so it does not execute past the end of your program). Use
labels instead of numbers in assembly instructions wherever possible.

Labels Instructions Comments

EEL 3701 — Digital Logic & Computer Systems
Final Exam — Fall Semester 2007 Name:

[12%] 8. GCPU Instruction Design (See the G-CPU Next State Table attached to this test)

We want to implement a new instruction for the GCPU. The new instruction will be denoted
as SBAM addr. It added the content of register B to register A (like SUM_BA). But, it also
stores the result into memory at location “addr”. The new opcode for this instruction will be
designated as $32 and the next state available in the Controller’s ASM is $34. Show the
additional states required to implement this new instruction in the Controller’s ASM below
and show all controller output signals that must be true in each new state for this new
instruction:

Assume: R/-W is True for Read and False for Write.

Control Signals: PC_INC, PC_LD_Upper, PC_LD_Lower, MAR_INC, MAR_LD_Upper, MAR_LD_Lower,
X_INC, X_LD_Upper, X_LD_Lower, Y_INC, Y_LD_Upper, Y_LD_Lower, IR_LD, R/-W,
ADDR_SEL1:0, XD_LD, YD_LD

Notel: The controller output signals are also shown in the G CPU Block Diagram for reference.

Fill in the ASM for SBAM $addr (12 pts.):

State = 000000
IR LD=T
RI-W=T
A
000001
RI-W=T
Existing G CPU Instructions SBAM $addr
Opcode = $32

Voov N !

10

EEL 3701 — Digital Logic & Computer Systems

Final Exam — Fall Semester 2007 Name:
GCPU Instructions
Data Movement Instructions:
#of
Opeode | Instruction Operand Diescription States
0 TAE none Transfer A to B (inherent addressing) 2
1 TBA TI071E Transfer B to A (inherent addressing) 2
2 LDAA #data | 8 bit data Load A with immediate data (immediate addr.) 3
3 LDAB #data | & bitdata Load B with immediate data (immediate addr.) 3
4 LDAA addr | 16 bitaddress | Load A with data from memory location addr 5
{extended addressing)
5 LDAB addr | 16bit address | Load B with data from memory location addr 5
{extended addressing)
] 8TAA addr | 16bitaddress | Store data in A to memory location addr (extendad 5
addressing)
7 STAB addr | 16bitaddress | Store data in B to memory location addr (extended 5
addressing)
g LDX #data 16 bit data Load X with immediate data (immediate addr.) 4
9 LDY #data 16 hit data Load ¥ with immediate data (immediate addr.) 4
A LDX addr 16 bit addr Load X with data from memory location addr.]
{extended addressing)
B LDY addr 16 bit addr Load ¥ with data from memory location addr. &
{extended addressing)
C LDAA dd.X | 8bit Load A with data from memory location pointed to 4
displacement by X + dd {indexed addressing)
D LDAA ddY | 8hit Load A with data from memory location pointed to 4
displacement by ¥ + dd {indexed addressing)
E LDABdd.X | 8hit Load B with data from memary location pointed to 4
displacement by X + dd {indexed addressing)
F LDAB dd.Y | 8bit Load B with data from memery location pointed to 4
displacement by ¥ + dd {indexed addressing)
10 STAA ddX |Ehit Store data in A to memory location pointed to by X 4
displacement + dd {indexed addressing)
11 STAA ddY |8hit Store data in A to memory location pointed to by Y 4
displacement + dd {indexed addressing)
12 STABdd.X |&hbit Store data in B to memory location pointed to by X+ 4
displacement dd (indexed addressing)
13 STABddY |&hit Store data in B to memory location pointedto by Y+ 4
displacement dd {indexed addressing)
14 SUM BA | none Sum A, B and place in A (inherent addressing) 2
15 SUM_AB | none Sum A, B and place in B (inherent addressing) 2
16 AND_BA | none AND A, B and place in A (inherent addressing) 2
17 AND _AB | none AND A, B and place in B (inherent addressing) 2
18 OR_BA none OR A, B and place in A (inherent addressing) 2
19 OR_AB none OR A, B and place in B {inherent addressing) 2
1A COMA none Complement contents in A (inherent addressing) 2
1B COMB none Complement contents in B (inherent addressing) 2
1C SHFA L | none Shift A left by one bit {inherent addressing) 2
1D SHFA_R | none Shift A right by one bit {inherent addressing) 2
1E SHFB L | none Shift B left by one hit (inherert addressing) 2
1F SHFBE_R | none Shift B rizht by one bit (inherent addressing) 2
30 INX none Inerement X {inherent addressing) 2
31 INY none Increment ¥ (inherent addressing) 2
20 BEQ addrL Branch if A = 0, i.e., Z Flag = 1 (absolute 3
addressing)
21 BNE addrl. | Branchif A # 0,i.e., Z Flag = 0 (absolute 3
addressing)
22 BN addrL. Branch if A is negative,i.e., N Flag = 1 3
{absclute addressing))
23 BP addrL Branch if A is positive (or zero). i.e., N Flag =0 3
(absolute addressing)
Spevial Notes

1. Z flag and N flag are only set and cleared by the contents in register A.

2. A branch is accomplished by moving the operand address “addr™ to the lower byte of the PC.
The upper byte of the PC remains unchanged after a branch.

3. The Branch Instructions use absolute addressing where only the low byte of the address is used
asan operand. If the branch condition is met, the high byte of the PC is unchanged and the low
byte takes the value of the operand (addrL).

11

EEL 3701 — Digital Logic & Computer Systems

12

Final Exam — Fall Semester 2007 Name:
GCPU Block Diagram
Hi-directicnal Data Bus 7
2 3 2 8
y 1 I,
<]
w w w
e —- IRS:0 Controller MUXA MUXB
CLE Register MEATD |
MSHLD | ALU
. MECRO |
CLE—p M Flag ™
— LK PC_INC |—
PC_LD (VL) f—*
— Z Flag MAR_INC |— MLIXC
{Reset not shown due MAR_LD (/L) f—=
to space constraints) —] NFlag X INC —=
X LD (WL b—w
Y INC |—w RIW
Y_LD (L) i
R_LD —w
R/-W >
ADDR_SELL:O |—»
XD_LD |—» 8 8
YD LD |—=
| RMW
)) ¥
Address Bus | Program Counter (H/L) ” Mem Addr Reg (H/L) " X Reg Block |
Mux 0o
AlS0
1
ﬁ 5 : r |
16 o s | ¥ Reg Block
Note: PC. MAR, X, Y outputs are 16 bits I_l
| ADDR SELLD X RegBleck = X d1:5p1ace111e11t Reg + X Reg (H/L)
Y Reg Block - ¥ displacement Reg + Y Reg (H/L)
MSC2:0 Action
MSA1/ MSAOQ/ Bus Selected as Input 000 REGA Bus to OUTPUT Bus
MSB1 MSBO to REGA/REGB 001 REGB Bus to OUTPUT Bus
010 complement of REGA Bus to OUTPUT Bus
| .
0 l INP.L T Bus 011 bit wise AND REGA/REGB Bus to OUTPUT Bus
0 1 REGA Output Bus 100 bil wise OR_REGA/REGB Bus to OUTPUT Bus
1 0 REGE Outpu‘r Bus 101 sum of REGA Bus & REGB Bus to OUTPUT Bus
110 shift REGA Bus left one bit to OUTPUT Bus
| .
! ! OUTPUT Bus shift REGA Bus right one bit to OUTPUT Bus
111 (without sign extension)

EEL 3701 — Digital Logic & Computer Systems

Final Exam — Fall Semester 2007 Name:
Partial GCPU Next State Table
REG | ADDR Y Dvisge
Pres Btare Opeode Flags | Mext State Mux Select Contral IMNC SEL PC MAR Loading Regs
PC | ADDR | PC MAR X Y
MSA | MSE | MSC | IR R | MAR | SEL LIy LD LD LD | XD_LD
Q5.0 IR[5.0] N D[5..0] [1.] [[1.40] [3.0] | LD | W [XY [1..0] LU LU LU | LU | YD LDy | Present State Functlon
(OO RN HE (e (1 10}] 1 1 (00D 4] L] (Y] 0 o0 [y} generic inatruction fetch
[A XX (a0 1 0] 0000 1 1 110 [Lk () [] i Transfer A o B (TAE)
L] 0] o (0000 10 10 (00 Ll 1 10000 [L] L] [] Ui Tranzfer B o A (TBA)
LD Q00010 XX (010 4] 10 0000 i 1 1000 ik Lk L) ik 00 [N LDAA #data, state 1
(O RN HE (e [10}] I 1 100D [N [[[o0 iy} LI3A A #data, siate 2
LHHHHE] Q000 XX (1] 1 (] 10 0000 1} 1 10 Oy Lk L] Ok] i} LDAR #data, atate |
(] RN HE (00 1 [000 I 1 100D L]) [y [o0] LIDWAR #data, state 3
L] 0] o (W0 L0 (] 10 (00 Ll 1 10000 [L] L] [] Ui LDAA adds, state |
(00 00 WO WX 0 101 1 10 0000 0 I 100 4] (o] 10 4] o0 0 LD AA addr, state 4
)| WO WX 0110] 10}] 0 1 100D (4] [} 0l [N] [y} LD AA addr, siate 5
(1D RN HE (e [10}] I 1 (00D] [[[o0 iy} LDDAA addr, state &
(NN (0] HE [CCITRE! (1 10}] I 1 100D 4] L] (Y] 0 o0 (i LDAR addr, atate 1
I RN HE (e [0 (] 108] i 1 100D L]) 10 [00 (i LDAR addr, state 7
(0000 W WX (o3 1001 1 10 0000 0 I 100 4] (o] 0l 4] o0 0 LDAE addr, state 8
[[i)| WO WX (000] [N] 0 1 (00D] [} (] [N] [y} LDAR addr, siate 9
LHHHHE] Q001 10 XX [ERTCRILE] (] 10 0000 1} 1 10 Oy Lk L] Ok] i} STAA addr, stane 1
(LD RN HE (1011 1 108] I 1 100D L]) 10 [o0 iy STAA addr, state A
(I RN HE (o] L0 (] 108] i 1 100D L]) 4] [00 iy STAM addr, state B
[y WO WX (000] 10}] 0 0 (00D] [} (] [N] [y} STAN addr, state C
[N Q0111 WX (W31 101] 10}] 0 1 100D (4] [} (] [N] i STAR addr, state |
1) RN HE Gl L10 (1 10}] I 1 100D 4] L] 10 0 o0 (i STAR addr, state [
IRy RN HE [CNRE! (] 108] 1 1 100D L] L] 4] [o0 iy STAR addr, state E
[RD MR HE (00 1 10 000l 0 0 Q00D 0] L] [y 00 o0 iy STARB addr, state F
(IO 101 (Wb HE (e 11 10}] I 1 100D [N [[[o0 iy} SUM. BA state |
(NN Q1010 HE (00 (1 11] I 1 100D 4] L] (Y] 0 o0 [y} SUM. AR state |
(NN 0100 140 HE (00 11 108 0oLl i 1 100D L]) [y [00 iy AND BA state |
(0000 010111 WX (000 1 11 0oLl 0 I 100 4] (o] (] 4] o0 0 ARND AR state 1
LHHHHE] 10000 1 X0 1 LG01L0 (] 10 0000 1} 1 10 Oy Lk L] Ok] i} BF addr state 1
(IO 1 (W01] X1 110011 (i1 108] I 1 100} 4] [} [[o0 iy BF addr state |
[RTTY RN HE (00 (] 108] i 1 (00D L] 10 [y [00 iy BF addr state 32
110011 W WX (000 1 10 0000 0 I 100 4] (o] (] 4] o0 0 BP addr stae 31
OO0 1 10000 XX (0000 41} 10 0000 1] 1 10] [l 0 i) 00 (i1} Tnmenement X {THNX)
(HCHHOCH 1 100 HX (o000 1 100] 0 1 LiH L] L] [y [00 0 Inereinent Y (TMY)

13

