EEL 3701 — Digital Logic & Computer Systems
Final Exam — Fall Semester 2008 Name:

COVER SHEET:

Prob.

Points:

Total:

(8)
(10)
(12)
(10)
(12)
(12)
(12)
(12)

(12)

(100)

Re-Grade Information:

EEL 3701 — Digital Logic & Computer Systems
Final Exam — Fall Semester 2008 Name:

Remember to show ALL work here and in EVERY problem on this exam.
[8%] 1. Circuit Analysis

AL This isa
tri-state
buffer.

B.H -):
CL — >0 ‘D_E{:/—» Z2.H
D.H Z1.L

NOTE: To obtain partial credit, label intermediate signals.

(a) Analyze the above circuit and derive the logic equation for Z1. (4 pts.)

Do not reduce or transform the logic expression (except for the “double inversions”). Put
the logic equation for the Z1 “as it is”.

Z1=

(b) Complete the following VOLTAGE table for Z2. Use “L” for low voltage, “H” for high
voltage, “(Z)” for high impedance. Also use “X” for don’t cares (and wild cards) to reduce
the table size. (4 pts.)

A B C D| Z2

EEL 3701 — Digital Logic & Computer Systems

Final Exam — Fall Semester 2008 Name:
[10%] 2. You have five total gates available from these two chips, -y

a single 74’00 and a single 74’02 (i.e., 5 total gates from A

any combination of 74’00 and 74'02 gates). Draw a !:4+ """ 00 | =i o2

mixed-logic _circuit_diagram for the below equation 1 N T

using only the available gates. Do not simplify this T | T

equation. Specify the desired activation levels to dr— | &5 A

accomplish the required design and add appropriate pin = e =r

numbers. (Check carefully that you see all the — - T

horizontal lines (NOT operators) in the equation.) o] o B Dol
Y=ABC+A+D e & I il = il |

Al)
B()
C(C) Y(

D()

EEL 3701 — Digital Logic & Computer Systems
Final Exam — Fall Semester 2008 Name:

[12%] 3. ASM Implementation
The ASM Flow Chart below is implemented in the EPROM based system below:

NC = No Connect

Q1,Q0=10 State 2
EPROM

B) GND —
All
Al10 D7
A9 D6 NC
A8 D5 NC

11

y State 3 A7 D4 NG
Ab D3 NC
A5 D2
Ad D1 B.H
A3 DO AH
A2 D1.H
AL DO.H

QLH A0 CS OE
QO0.H
X.H
00 vy State 0 01 y State 1
1
A B DIH — D Q |—QlH
CLK —>
. . 0
[3%] 3A. Create a Next State (logic) Table for the design to DOH —| D © |— QoH
answer questions on the next page: '
CLK —>

EEL 3701 — Digital Logic & Computer Systems
Final Exam — Fall Semester 2008 Name:

[3%] 3B. Show the EPROM Addresses and corresponding Data that must be programmed for this
design: Use ‘0’ for any don’t cares or wild card values.

Address (Hex) Data (binary) Data (Hex)

[3%] 3C. If X.H is changed to X.L, show the EPROM Address and corresponding Data that must be
programmed for this new design:

Address (Hex) Data (binary) Data (Hex)

[3%] 3D. If AH & B.H are changed to AL & B.L (and X.H), show the EPROM Address and
corresponding Data that must be programmed for this new design:

Address (Hex) Data (binary) Data (Hex)

EEL 3701 — Digital Logic & Computer Systems
Final Exam — Fall Semester 2008 Name:

[10%)] 4.

ASM Analysis

Complete the timing diagram for this ASM. Show small propagation delays.
Assume that each of the flip-flops used are rising-edge triggered. This
system has an asynchronous reset (Reset) to the state “Turn”. What is the
next state to the after the below timing diagram below ends?
[Abbreviations: DR=Done Rotation, LF=Line Follow, Intr=Intersection,
IA=Identify Animal]

descmnae==

i 1

T ' yLookin’
. JI S ST, S i ' i i i
Intr F L !
, (L N S S S L : 11
Match ¢ || r—‘_l | : -1 pr— Identifyl
) 4 ; ; : IA
Rowte g __ = i . e L e Identi Zl
- | » | 1A
T A | s ; _
P R B, Iy Sy Tpitgaa ﬁ _________ ; Animal
7~ T T O SR SO SN S e oeeanns : 0
F ' ' : : ' Match
(OO0 SRS S S S — . S— =
_o 0 . SN S— S RSN — —— ;

' 1
------- B

EEL 3701 — Digital Logic & Computer Systems
Final Exam — Fall Semester 2008 Name:

[12%] 5. GCPU Assembly Programming

Write an assembly language program using only the G-CPU instructions (in back of this test)

e There is a non-zero byte of data (INBYTE) already stored in Location $1000.

e Also there are an unknown number of bytes already stored in memory starting in Location
$1001 (equated to TABLE). All bytes in the table have non-zero value except for the last
byte (i.e., last byte is $00).

o Complete the following program to do the following to each byte in the table:
¢ add INBYTE to the byte in the table if the byte in the table is positive.
¢ do nothing to the byte if the byte in the table is negative, but add 1 to COUNT.

e At the end of the program, COUNT should contain number of negative numbers in the
table. Perform an “infinite loop” to stop the program.

e To increase your chances of partial credit, comment your program.

COUNT EQU $0FFF
INBYTE EQU $1000
TABLE EQU $1001

ORG ; You should ORG your program at an appropriate memory location

EEL 3701 — Digital Logic & Computer Systems
Final Exam — Fall Semester 2008 Name:

[12%)] 6. Given the following program segment and ORG, EQU and DC.B pseudo-ops:

ORG 0
BACK: LDX #31000 L1 EQU $1000 ORG $1005
LDAA #541 L2 EQU $1006 DC.B $8A
TAB L3 EQU $03 DC.B $FF
E‘1]'31‘2‘it ingtll}fuction ORG_ $4000 DC-B $04
” DC.B $54 ORG $1000
(a,b,c,d,e, or 1) ORG $4008 DC.B $37
L4 DC.B $92 DC.B $56
L5 DC.B $84
DC.B $22
a) Assume the 4 instructions
in the above program segment have already been executed and the “next instruction” (i.e.,
5th. instruction) is LDAA #L3 Hand-assemble the LDAA instruction and fill in the blanks
(including EA and reglsterA) using HEX. :
Note: EA is the “effectwe address”, the actual address in memory where ithe data is loaded
from in a “load” instruction (like LDAA, LDX, etc), or where the data is ,'stored in a “store”
instruction (like STAA). If no memory is accessed, write “none” for EA. vy
ADDRESS INS‘FRUCTION HEX ADDRESS HEX VALUE
$0008 LDAA #L3 $0008
EA = (All answers in hex) $0009
A = (hex) $000A
$000B
Repeat the same problem if the “next instruction” is the instruction in “b”, “c”, “d”, “e”, or “f",
again assuming instructions 1 through 4 have been executed.
b) $0008 LDAA 7,X $0008
EA = $0009
A = $000A
$000B
c) $0008 STAA L5 _$0008___
EA = $0009
Value stored = $000A
$000B
d) $0008 LDY #L2 _$0008___
EA = _$0009__
Y= _$000A
_$000B___
e) $0008 BNE L3 $0008
EA = $0009
PC after this $000A
instruction = $000B
f) $0008 BEQ BACK $0008
EA = $0009
PC after this $000A
instruction = $000B

EEL 3701 — Digital Logic & Computer Systems

Final Exam — Fall Semester 2008 Name:

[12%] 7.

Controller (ASM) design for the G-CPU. (Use the G-CPU block diagram and ASM

charts in the back of the test.)

Using the signal nhames shown in controller G-GPU block diagram in the back of the test,
complete the ASM chart (on the next page) to implement the following 3 instructions
(LDX #data, STAA $addr, and SUM_A $addr), including the completion of State A and
State B.

Notes:

(1) SUM_A $addr is a new instruction (opcode = 33). The function of this instruction is to add
the content of memory location at $addr to the content of REGA. (You can use REGB if
necessary).

(2) The ASM chatrt is specified as logic, not voltage. For example, since the R/-W signal is
active low, specifying R/-W in a state box indicate it is “true” (which means a “low”
voltage”

(3) You should specify the default actions for each state to “hold” REGA and REGB and
OUT = REGA.

(4) For your convenience, the required values for MSA, MSB, and MSC are given below. For
convenience of grading, you should use the notation: MSA=01, MSB=10, MSC=000.

(5) For all other signals, use the standard ASM notation of specifying only the signals that are
true in each state and conditional output.

Table 1: Input source MUXSs for Registers A and B. Table 2: ALU function selection MUX. (MUX C)
MSAL/ MSAO0/ Bus Selected as Input MSC2:0 Action
MSB1__| MSBO o REGA/REGB 000 REGA Bus to OUTPUT Bus
0 0 INPUT Bus 001 REGB Bus to OUTPUT Bus
0 1 REGA Bus 010 complement of REGA Bus to OUTPUT Bus
1 0 REGB Bus 011 bit wise AND REGA/REGB Bus to OUTPUT Bus
1 1 OUTPUT Bus 100 bit wise OR REGA/REGB Bus to OUTPUT Bus

101 sum of REGA Bus & REGB Bus to OUTPUT Bus

110 shift REGA Bus left one bit to OUTPUT Bus

shift REGA Bus right one bit to OUTPUT Bus
111 without sign extension

Put the solution on the next page.

EEL 3701 — Digital Logic & Computer Systems
Final Exam — Fall Semester 2008 Name:

7 (continued): Complete the ASM chart, including State A and State B.
State A

v State B

%08 $06 IR5:0 33

l LDX #data STAA $addi l SUM_A $addr

10

EEL 3701 — Digital Logic & Computer Systems

Final Exam — Fall Semester 2008

Name:

[12%] 8. Program Execution (Use the G-CPU information in the back of the test, including the

controller flowchart.)

Given the following program in EPROM memory, fill out the following cycle table that
illustrates its execution:

Addr Data (Both Addr and Data are in hex.)

0000
0001
0002
0003
0004

02
07
05
07
20

Using the the G-CPU Controller “ASM” chart (Flowchart) & Block Diagram (at the end of this
test), complete the cycle table below. Use as many rows as you need and go as

you can.

Assume R/-W is set to “read from memory”. Also assume location $2007 contains $99.

far as

l code |Seli0| (eo | MAR | Gieg | (e | (dex) | (Hew | (Hex
1 00 | 00 | 0000 | 0400 06 | 32 | 16
2 01

3

4

)

6

7

8

9

10

(From GPCU controller ASM (or flow) chart)

11

EEL 3701 — Digital Logic & Computer Systems

Final Exam — Fall Semester 2008 Name:
[12%] 9. Analysis of G-CPU simulation
Marne: _Value: L 5EID.IEIns 1.D|us 1.5|us 2.Dlus 2.E:us 3.D|us 3.5|us
- RESET 0[]
5 STATER.0] | HOD [- 4 0f 03 o0 o1 o2 oo ¥ o1 Yooy or {oa oy oc Yoo (or 2 (26 (o0 for a2,
59 ADDR[15.0] |HOOOD | 0000 Joootf 0002 JOOO3) 0004 | 0005 000G f0OC7 §3412) 0008 000G {0007 OOOA XODOOB)
SoaTAr.0 | Ho3 [03 ¥l o Yo4h 19 f e Y2y Yoad w0 yomyoy o\ 4
- R 1 |]
T R5.0] Hoo [03 i 02 R 0 I 10 {
o A7.0) HOo oo i 04
= 57.0] HOO 00 A I 3E
= X15.0] H 0000 0000
= Y[15.0] H 0000 0000
S ALUT.0| HO0 Joo ¥ 04 ¥ 3E 04
- N_FLG 0
- 7 FLG 1 / |
LDAB #$3A
~— - _
Finish the answer for Part (a) here.
(@) Analyze the above timing diagram and identify all the
instructions being simulation. As illustrated above (in the partial | Address Content
answer LDAB #$3A), draw lines between each instruction and (hex) (hex)

identify the instruction.

(b) Analyze the above timing diagram and determine the contents
of the memory locations (as in a .mif file). Fill in the table on the
right as much as needed.

12

EEL 3701 — Digital Logic & Computer Systems

Final Exam — Fall Semester 2008 Name:
University of Florida EEL 3701 Drs. Gugel and Schwartz
Department of Electrical & Computer Engineering Revision 0 13-Nov-06
Page 1/2 G-CPU Instruction Set
Data Movement Instructions:
of
Opcode | Instruction Operand Description States
0 TAB none Transfer A to B (inherent addressing) 2
1 TBA none Transfer B to A (inherent addressing) 2
2 LDAA #data | 8 bit data Load A with immediate data (immediate addr.) 3
3 LDAB #data | 8 bit data Load B with immediate data (immediate addr.) 3
4 LDAA addr | 16 bitaddress | Load A with data from memory location addr 5
(extended addressing)
5 LDAB addr | 16 bit address | Load B with data from memory location addr 5
(extended addressing)
6 STAA addr | 16 bit address | Store data in A to memory location addr (extended 5
addressing)
7 STAB addr | 16 bit address | Store data in B to memory location addr (extended 5
addressing)
8 LDX #data 16 bit data Load X with immediate data (immediate addr.) 4
9 LDY #data 16 bit data Load Y with immediate data (immediate addr.) 4
A LDX addr 16 bit addr Load X with data from memory location addr. 6
(extended addressing)
B LDY addr 16 bit addr Load Y with data from memory location addr. 6
(extended addressing)
& LDAA dd,X | 8 bit Load A with data from memory location pointed to 4
displacement by X + dd (indexed addressing)
D LDAA dd.Y | 8 bit Load A with data from memory location pointed to 4
displacement by Y + dd (indexed addressing)
E LDAB dd,X | 8 bit Load B with data from memory location pointed to 4
displacement by X + dd (indexed addressing)
F LDAB dd,Y | 8 bit Load B with data from memory location pointed to 4
displacement by Y + dd (indexed addressing)
10 STAA dd,X | 8 bit Store data in A to memory location pointed to by X 4
displacement + dd (indexed addressing)
11 STAA dd,Y | 8 bit Store data in A to memory location pointed to by Y 4
displacement + dd (indexed addressing)
12 STAB dd,X | 8 bit Store data in B to memory location pointed to by X + 4
displacement dd (indexed addressing)
13 STAB dd,Y | 8 bit Store data in B to memory location pointedtoby Y + | 4
displacement dd (indexed addressing)

13

EEL 3701 — Digital Logic & Computer Systems

Final Exam — Fall Semester 2008 Name:
University of Florida EEL 3701 Drs. Gugel and Schwartz
Department of Electrical & Computer Engineering Revision 0 13-Nov-06
Page 2/2 G-CPU Instruction Set
ALU Related Instructions:
Opcode | Instruction | Operand | Description # of States
14 SUM_BA | none Sum A, B and place in A (inherent addressing) 2
15 SUM_AB | none Sum A, B and place in B (inherent addressing) 2
16 AND BA | none AND A, B and place in A (inherent addressing) 2
17 AND_ AB | none AND A, B and place in B (inherent addressing) 2
18 OR_BA none OR A, B and place in A (inherent addressing) 2
19 OR_ADB none OR A, B and place in B (inherent addressing) 2
1A COMA none Complement contents in A (inherent addressing) 2
1B COMB none Complement contents in B (inherent addressing) 2
1C SHFA L none Shift A left by one bit (inherent addressing) 2
1D SHFA_R | none Shift A right by one bit (inherent addressing) 2
1E SHFB L none Shift B left by one bit (inherent addressing) 2
1F SHFB_R none Shift B right by one bit (inherent addressing) 2
30 INX none Increment X (inherent addressing) 2
31 INY none Increment Y (inherent addressing) 2

Branch Instructions:

Opcode | Instruction | Operand | Description # of States

20 BEQ addrL. Branch if A =0, i.e., Z Flag = 1 (absolute 3
addressing)

21 BNE addrLL Branch if A =0, i.e., Z Flag = 0 (absolute 3
addressing)

22 BN addrL Branch if A is negative, i.e.. N Flag = | 3
(absolute addressing)

23 BP addrL Branch if A is positive (or zero), i.e., N Flag =0 3
(absolute addressing)

Special Notes
1. Z flag and N flag are only set and cleared by the contents in register A.

2. A branch is accomplished by moving the operand address “addr™ to the lower byte of the PC.
The upper byte of the PC remains unchanged after a branch.

3. The Branch Instructions use absolute addressing where only the low byte of the address is used
as an operand. If the branch condition is met, the high byte of the PC is unchanged and the low
byte takes the value of the operand (addrL).

14

EEL 3701 — Digital Logic & Computer Systems

Final Exam — Fall Semester 2008 Name:
University of Florida EEL 3701 Drs. Gugel and Schwartz
Department of Electrical & Computer Engineering Revision 0 18-Moy-08

Page 1/1 G-CPU Block Diagram

Bi-directional Data Bus v,

/
2 8 8
6
v 4 v
[FLL}.}) —> RIR§:0 Controller | MUXA MUXB
egister MSALO
MSBL:0 : ALU
/ = . MSCH0
7 | 1830 - 7 Flag |
CLE —p N Fl: —
& — CLK PC INC |—» e
PC LD (UL) —>
—>»| ZFlag MAR INC |—> MUXC
(Reset not shown due MAR LD (UL) —»
to space constraints) — N Flag X INC |—»
X LD(UL) —»
Y INC |—» R/-W
Y LD(UL) —»
IR LD [—»
R/-W 3
ADDR SEL1:0 |—»
XD LD }—» 8 8
YD LD |—»
L | RS-W
Address Bus ‘ Program Counter (I/L) ” Mem Addr Reg (H/L) H X Reg Block ‘
ic Mux 0
Al5:0 1
2 e '
16 i | YRegBlock
Note: PC, MAR, X, Y outputs are 16 bits e———
| T—ADDR_SELI:D X Reg Block = X displacement Reg + X Reg (H/L)

Y Reg Block = Y displacement Reg + Y Reg (H/L)

;-;‘;e e " 'G-CPU Controller Flow Charts

000000

Instruction
IR_LD Fetch

Special Notes:

1. MSA[1.0] & MSB[1..0] are set to
protect registers A & B when these
registers are not in use.

2. R_/W is always set H (read cycle)
unless otherwise specified in the =
ASM chart. QOO0 1

3. ADDR_SEL is always sct to .
connect the PC 1o the Address Bus Instruction
(i.e. ADDR_SEL = 00) unless INC_PC Decode/Execution
otherwise specified in the ASM. o

Instructions Listed on Next Pages. ..

15

EEL 3701 — Digital Logic & Computer Systems

Final Exam — Fall Semester 2008 Name:
University of Florida EEL 3701 Drs. Gugel and Schwartz
Department of Electrical & Computer Engineering Revision 0 18-Nov-08
Page 2/6 G-CPU Controller Flow Charts
BEQ addr BNE addr LDAA #data
100000 100001 000010
v
000010
data => A
Y N Y N INC PC
101100 101101 101110 101111
addr => PCL INCPC addr => PCL INC PC
v v -
State0
LDAB addr STAA addr STAB addr LDX #data LDY #data
000101 000110 000111 001000 001001
L 4 \ L4 v y
000111 001010 001101 010000 010010
addrL. => MARL addrL. => MARL addrL => MARL data => XL data=> YL
INC PC INC PC INC PC INC PC INC PC
Y h 4 A 4 Y v
001000 001011 001110 010001 010011
addrH => MARH addrH => MARH addrH => MARH data => XH data => YH
INC PC INC PC INC PC INC PC INC PC
h Y A4
001001 001100 001111
addr[] =B A =>addr] B => addr[]
AddrSel = MAR AddrSel = MAR AddrSel = MAR
R /W=0 R /W=0
Back to
y y v y Y, Stated

16

