EEL3701 - Dr. Gugel
Spring 2017
Exam #1

18 points

Page 3)

Last Name, First Name	

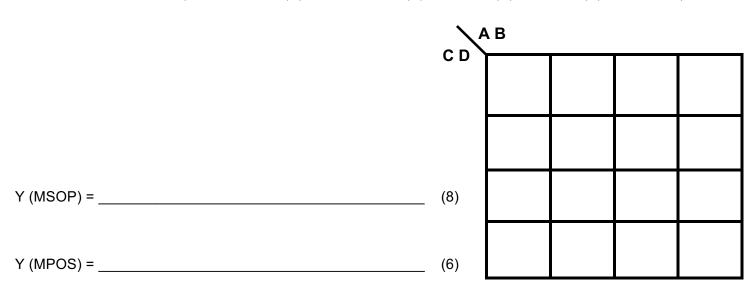
17 points

UF ID#			

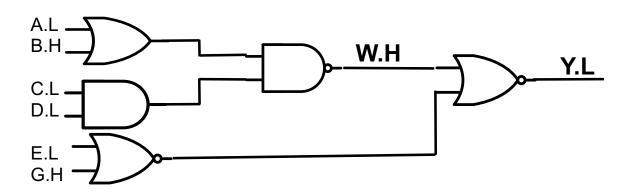
Open book and open notes, 90-minute examination. No electronic devices are permitted.

Page 4)

Page 1)	9 points	 Page 2)	23 points	


Re-grade requests must be handed in the day exams are returned in class. Write the problem number you wish reviewed. **A maximum of three review problems is allowed.** Do not write anywhere else on the exam other than below or you will receive a zero on the exam.

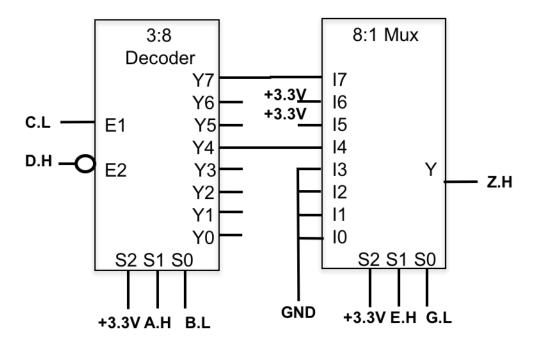
1. Directly synthesize a circuit for the following equation using only 2 Input NOR gates only. (9 pt.)


$$Y = \overline{A^*} \, (\overline{B^*C}) + E + \overline{D} \qquad \text{; A.L, B.H, C.L, D.H, E.L, Y.H} \quad \text{Do Not Simplify the Equation!}$$

2. Find the **minimum sum of products** and **minimum product of sums** for the logic equation below using a K-Map. (14 pt.)

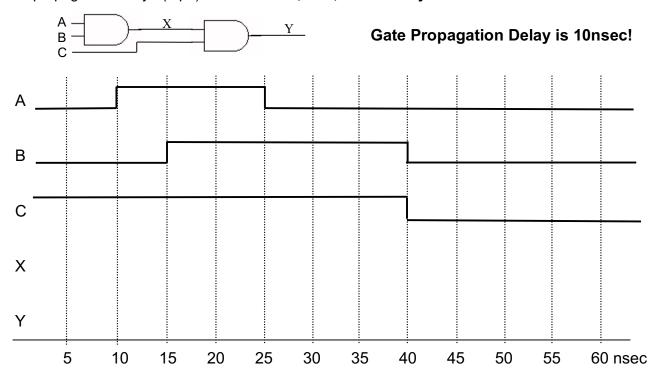
$$Y = (A+B+C+D)(/A+/B+C+D)(/A+C+D)(B+/C+D)(A+/B+/D)$$

3. Derive the logic equations for the following signals listed after the circuit below. **Show all intermediate** signals as HIGH true for partial credit purposes. **DO NOT SIMPLIFY YOUR ANSWER!**

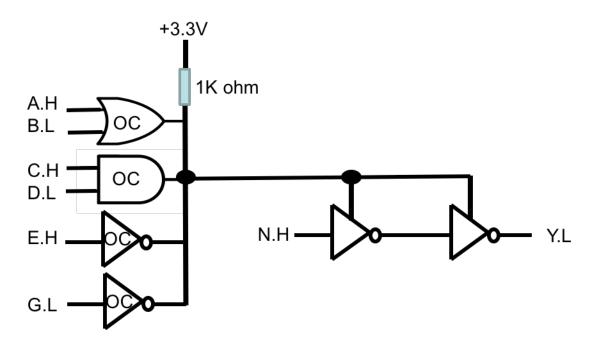

W.H = ______(5 pt.)

Y.L = ______(4 pt.)

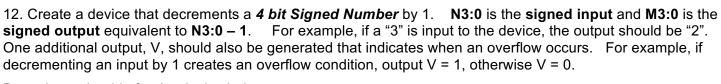
$Y = (X+Y+Z)(\overline{X}+\overline{Y}+\overline{W})(X-\overline{Y}+\overline{W})$	+Z+W)(X+Z)(X+Z+W)(X+Y+Z)
Y =	MSOP
5. A student would like to design a multiplier that bit unsigned number . i.e. P = M1:0 x N2:0 ;whe	computes the product of a 2 bit unsigned number times a sere all numbers are unsigned binary
How many bits are required for P?	(2 pt.)
Write the Canonical Sum of Products (CSOP) for N2:0 below. (8 pt.)	or the most significant bit of P based on inputs M1:0 and


6 – 8. Perform the following addition, subtraction and multiplication. (9 pt.)

9. For the circuit below, derive the logic equation for Z.H. **Do not Simplify!** (8 pt.)



Z.H = _____


10. Given the circuit below complete the voltage timing diagram for signals X and Y. Assume all devices have a **10nsec** propagation delay. (8 pt.) **Assume A=L, B=L, C=H initially.**

11. For the circuit below derive the *logic equation for* **Y** and *add the required missing Pull-up or Pull-down resistor* to make Y a function of A,B,C,D, E, G and N. (10 pt.)

Y.L =

Draw the truth table for the device below:

N3 N2 N1 N0 M3 M2 M1 M0 V (10 pt.)

Derive the MSOP Logic Equation for **M0** and **V** (5 pt.):

Page 6 Page Score =