	EEL3701 - Dr. Gugel Spring 2017 Exam II	Last Name		F	irst
	Open book/open notes, 9	M-minutos Calculators	normitted Do no	turita an tha haak	side of any of the name
	Page 1) 18 points	Alan	Page 2)	30 points #3 Aa	YOU / VERONICA #5
	Page 3) 14 points Ca	usey /#7 Kevin	Page 4)	20 points	Kyle
	Page 5) 18 points 13 Li	reas/#14 Daniel	- '	_	at of 100
	Grade Review Information: changes to problems in the request. 4. Simply write the	test as this will be considered	dered cheating. 3.	Write only in this bloc	eturned. 2. Do not make any cked area for a re-grade
				ded. 3 Waximum.	
	Man, Vero	nrce, (Kyle)	Haron) (Li	reas, (as	sey)
	What	(Kevin) Cod	Ju Danie), Caleb	
	7	1) Journe	$\frac{1}{l}$	- 1
		nter L	No Job	LN))0b
	i	to Canvas			
L	0			_	
	See the ASM Flow Char	't in Appendix A to an	swer question 1-5	Ď.	
	1. Assuming that we will Flops, draw the complete all unused address line inputs in the least signi	e functional block diagr	am for the system	n below. Label all	x 8 EEPROM and JK Flip signals and assume that ables (Qn:Q0) and JK ed. (10 pt.)
				e NC 120'	
	L3. ²	3V 128	K×8 N	A.L2	
	Order 1	Z A16:4	D7 D6 D5 D4	CIK-DK 1	Q - Q1. H
	W·H	A3	03	15 a	Q0.H
	Z.H -	A2	D2 F	KO	
	2 Q1.H	- AI	D1	-ir->	
		AO	Do L		1
	QoiH				
	2. How many memory loo these locations? Also, id	cations will need to be lentify the designated p	part number of thi	nis design and wha s device. (8 pt.)	t is the address range of
2	Number of locations prog				(Decimal number)
4	Range of memory to be p	orogrammed	FF0-1F	FFF	_(Hex)
2	What is the part number	of this device?	28 1024	<i>†</i> -	_ 2
	Page 1 28 25	6 → 32k 2851	2=764K		Page Score = /

3. Draw the complete Next State Table (inputs, state variables, outputs, etc.) below for only the rows that correspond to when the present state is State 0. Recall: JK Flip-Flops & EEPROM implementation. (12 pt.) -1 if Q1 and Q2 out of order (least) WZQ,Qo 00 4. Show the EEPROM memory contents (Address and Data in Hex) that needs to be programmed for the locations corresponding to State 0. Program Don't Cares (X) in Data as Zeros. Note: Signal definitions LOH LL HL = 12 09 $\frac{1}{2}$ $09 \frac{1}{2}$ $09 \frac{1}{2}$ are W.H, Z.H (A.L) (B.L) (6 pt.) OSper address (Hex)

OFFF

OFF

OFFF

OFFF 5. Assuming again that we are referencing the ASM Flow Chart in Appendix A. Fill in the Voltage Timing Diagram below. Note: Signal definitions are W.H, Z.H, A.L, B.L and C.L. Assume all devices have a delay equal to =>| |<= and the flip-flops are falling edge triggered. Q1:0 = Present State (12 pt.) **CLK** H.W Z.H STATE STATE! Q1 STATE2 STATED STATE O Q02 A.L H

	6. ln p	roblem #5	s, if the log	gic and flip-	flops are al	I implement	ed in your C	PLD wh	nat will be the d utputs? (3 pt.)	elays in na	ano-
1.4**	secon	ds for the	state vari	ables Q1:0	, Uncondition	onal Outputs	anu Condi		utputs? (3 pt.)		
Ì		Variables				20		nsec			L. 1 la.
1	Uncor	nditional C	output Del	ay) - 70		ne	ac 1/	assimses	QIQO	Stable
1	Condi	tional Out	put Delay	1C	20		113	00 10	The second	tral bus	
	consist 16K x memory will be	sts of a R '	W.H (+Re s and 16h Place 16 from addr	ad/-Write) (x 8 SRAN K of ROM ess 00000	signal and list. Place 20 in the syste Hex.	OK of RAM	starting at a	ddress e under	You are given 18000 Hex in the standing that the	ne system ne first inst	ruction
	Show	the requ	ired Rom o not she	aw the dec	inge egual	iolis neiow.	(11 pt.)		use bus nome	10.010.	
	appro	K => 2	17 A10	,:D	16K=	P 214	A13:0	16K×	16 Rom		
	128	K =V Z	, .								
	8000 0000 0 FFFF	20K R	Am	128	k	M333		V	16 MP + D15:	Ó	
	7974	0	; ; ; ; ;	+ /		ron	1 d	00			
	Đ	16K	Rom	1		71		*			
	A	MP 13:0 - SRP 213:0 - SRP 3	14 A13 P/W	PAM 8 TO	B MP - D15:8 - D7:0	Allio Allio Allio Allio Allio Allio	AI PAIN CE	BU 30 00 DE AMEN 30 OF STATE O	8 mp 8 D15? D7:0	8	> YK SRAM
				OEV	Missing (14					

8. Show the required decode logic equation for the ROM device. Note: The decode signal name should match the one that you specified/drew for your ROM memory above. (4 pt.)
-Rom = A16 · A15 · A14 · RW DS 16K
CRW also okan
9. Show the required decode logic equations for the RAM devices. Your decode signal names should match those that you drew for the SRAM memory in problem #7. (6 pt.)
The second of the SRAM memory in problem #7. (6 pt.) $-SRO = A16 \cdot A15 \cdot A14 \cdot D5$ $1000 \times 1000 \times 1$
- SRO = A16. A15. A14. DS 1/11 \$ 00/ XXXX/XXX/XXX/XXX/XXX/XXX/XXX/XXX/XX
AB. AIZ. DS, 4K
10. What is the address range for ROM in the memory map? $Q - 3FFF$ Hex (3 pt.)
11. What is the address range for the RAM in the memory map? 1800 - 1CFFF Hex (3 pt.)
12. When we remove and program the ROM what is the address should be programmed with the first instruction and where should the last program instruction be placed in the ROM? (2 pt.)
1 st instruction address Hex Last instruction address 3 FFF Hex
14. A student is designing a controller for a <i>clothes dryer</i> that has (4) low true drying sensors DS3:0. When a sensor senses moisture it outputs a H and when no moisture is detected a L is output. First, design a circuit to detect when <i>all sensors</i> indicate a 'dry condition'. This new signal is called DRY.L.
Show the circuit to create DRY.L (2 pt.): DS3 DS2 DS1 DS4 DS4 DS9 2
Next use DRY and another low true input Door Open (OPEN) to control the high true outpute: AIR LIEAT and

Next, use DRY and another low true input Door Open (OPEN) to control the high true outputs: AIR, HEAT and SPIN. AIR turns on an air pump to inject fresh air, HEAT turns on a heater to heat the incoming air and SPIN turns on a motor that spins the main dryer drum. Inputs are: DRY, OPEN Outputs are: AIR, HEAT and SPIN

Assuming the clock has a period = 5 minutes, the controller should have the following specifications:

- 1. Inject and heat air for 5 minutes while spinning the clothes.
- 2. Next, continue drying/spinning the clothes until all (4) dry sensors show the clothes are dry.
- 3. Once the clothes are dry, cool for 5 minutes where the clothes spun and cooled only with fresh air.
- 4. At any point during the drying cycle, if the door is opened (OPEN = T), turn off the heat and stop spinning the dryer drum immediately for safety purposes. Also, extend the dry time for as long as the door is open.

14. Given the ALU in Appendix B, Fill in the signals below to compute $(6 \times 2) + 7$ with the final answer in Reg. B. Note: Use X for unknown Register contents and X for don't care Inputs. Zero propagation delays, all answers in Hex and the solution with the least number of cycles will be awarded the most points. (10 pt.)

		6XZ=C	C+7=	3	10 11103t points. (10 pt.)
clock			2 3		
Input Bus	(7)1	X	X	X	×
MSA1:0	0	1000	X	X	X
MSB1:0	X	(3)3	×	(3)8	
MSC2:0	(p)2	Х	(7)	X	
REG A	6	7)4	7 19	X	×\
REG B	X	X		X	2 3)10:
REG C	X	<u>C</u> 5	X	4 3)9	X
Page 5	OX2>C 7-7A	CAB	A+B->C	C>B	B=3

14. Given the ALU in Appendix B, Fill in the signals below for (6*2) + 7 with the final answer in **Register B**. Note: Use **X** for unknown **Register contents** and **X** for don't care Inputs. **Zero propagation delays**, all answers in **Hex** and the solution with the **least number of cycles** will be awarded the most points. (10 pt.)

	·		1100	+011 = 0011		
clock						
Input Bus	X :	(7)	X	· X	X	
MSA1:0	× :	0	X	X	X	are as a series of the series and the series are series and the series are series and the series are series are series and the series are
MSB1:0	X:	(3)	X	3	X	:
MSC2:0		X	(7)	X	X	
REG A	6 Hex		7	X	X	
REG B	Ø -0 Hex - 6 ¥	Х	<u>C</u>	X	(3)	
REG C	6*2 -> C	(C)	X	: (3)	X	:
Page 5	G*2+C	Reg C 7 Reg 8	A+B >C Reg Res Res	C -> B Reg Reg		10

MSA1/MSB1	MSA0/MSB0	Bus Selected as Input to REGA/B
0	0	INPUT Bus (Input3:0)
0	1	REGA Bus (REGA3:0)
1	0	REGB Bus (REGB3:0)
1	1	REGC Bus (REGC3:0)

	MSC2:0	(Most	Significant	Bit is	on the	e left)
--	--------	-------	-------------	--------	--------	---------

000	=>	complement of REGA, result in REGC
001	=>	REGA AND REGB, result in REGC
010	=>	REGA OR REGB, result in REGC
011	=>	REGA to REGC
100	=>	REGB to REGC
101	=>	shift REGA right one bit, result in REGC
110	=>	shift REGA left one bit, result in REGC
111	=>	REGA ADDED To REGB, result in REGC