EEL3701 -	Dr.	Gugel
Spring 2015	5	

Last Name_____

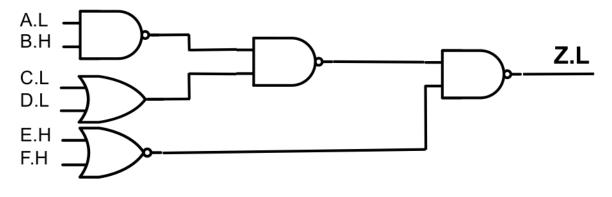
First Name _____

Final Quiz

UF ID#___

Open book/open notes, 90-minute exam to be done in non-red pen. No electronic devices permitted.

Page 2 => 14 points _____


Page 3 => 14 points _____

Page 4 => 12 points_____

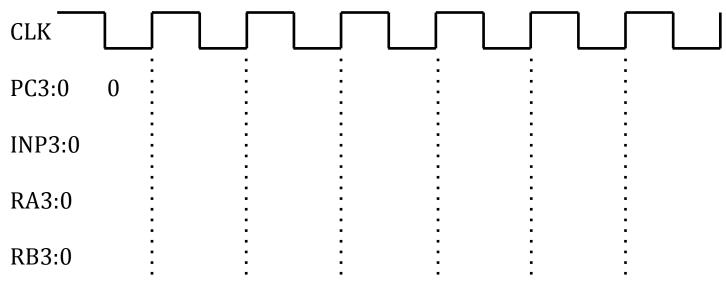
Grade Review Information: (NOTE: deadline of request for grade review is the day the exam is returned.)

Grade Review Information.	(NOTE. deadline of request for grade review is the day the exam is returned.)

1. For the circuit below, derive Z.L. **Do not simplify.** Write all intermediate terms as high true. (5 pt.)

Z.L =

2. Implement the logic equation below using 2 Input NOR Gates only. (5 pt.)


$$Y = (\overline{A}*B)+C+(\overline{D*E})$$
; A.H, B.L, C.H, D.L, E.H, Y.H

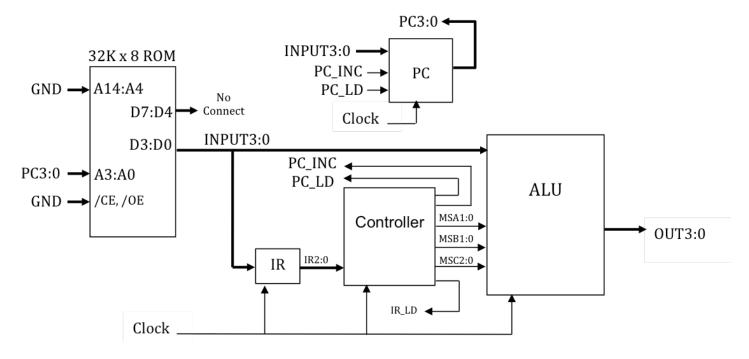
interfaced an 16K x 8 RAM that begins immediately after the ROM in the G-CPU memory map. What is the memory range and logic equation for the RAM device? (4 pt.)					
RAM Memory Range (Hex)	to				
DAM Davids Exacts					
bytes in length. The last three byte signed nu	tains an unknown amount of signed numbers that are 3 mber in the array is known to be -512 decimal . Write the the array and store the final result in Y . (10 pt.)				
					
·	 -				
·	 -				

3. A student has interfaced a **8K x 8 ROM** with the G-CPU **starting at address zero**. The student also has

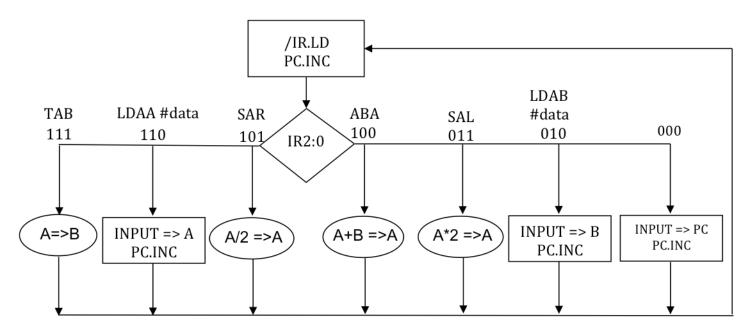
Page 2 Page Score =

5. Refer to the CPU, Controller and ROM Contents in Appendix A to complete the Voltage Timing Diagram Below. Use 'X' to indicate an unknown condition and show all answers in **HEX**. (8 pt.)

Note: RA3:0 = Register A, RB3:0 = Register B


Page 3 Page Score =

^{6.} Using only 2:1 decoders, flip-flops, 2:1 muxes, single bit full adders and any other elementary digital components, design the X Register Block in the G CPU. Label all signals in your design. Note: Several of these signals should match those shown in the G CPU Block Diagram. Best design = Most points. (6 pts.)


7. For the next set of questions, see the G CPU shown in Appendix B. Fill in the cycle table below for the second pass of the line of code shown below. (7 pt.)									
	STA	.B 2,Y							
Cycle	Addr Bus	Data Bus	<u>IR</u>	<u>PC</u>	R/-W	B Reg	Y Reg	Dev driving Addr Bus	Dev Driving <u>Data Bus</u>
1									
2									
3									
4									
								ndix B. Note: show dresses and data.	
		only one RON ssible for this			e systen	n for the	code in A	appendix B, what	is the
10. Ho (2 pt.)	w many bits	of storage a	re requ	ired if a	ı ROM i	s used to	o implemo	ent the G CPU Co	ontroller?

Page 4 Page Score =

Appendix A. Elementary CPU (Lab #9), Controller ASM and ROM Contents

Controller ASM:

32K x 8 ROM Contents:

Address 0 1 2 3 4 5 6 F2 Data (Hex) => F6 FΑ F5 FC F4 F7

Page 5 Page Score =

Appendix B. G-CPU Code for Problem #7 (space on left for hand assembly):

	ORG LDX LDY LDAA STAA	\$0 #\$0 #\$4000 #8 0,Y	
T1	LDAA TAB SUM AB	2,X	
	STAB INX INY	2,Y	;show 2nd pass of executing this code
	LDAA LDAB SUM BA	\$4000 #\$FE	
	STAA BNE	\$4000 T1	
END	BRA	END	

Page 6 Page Score =