Page 1/10

Instructions:

Exam 1P

> Last Name, First Name

Go Gators!

- Turn off all cell phones and other noise making devices and put away all electronics.
- Show all work on the front of the test papers. Box each answer. If you need more room, make a clearly indicated note on the front of the page, "MORE ON BACK", and use the back. The back of the page will not be graded without an indication on the front.
- You may not use any notes, HW, labs, other books, scratch paper, or calculators.
- This exam counts for $\underline{27 \%}$ of your total course grade.
- Read each question carefully and follow the instructions.
- The point values for problems may be changed at prof's discretion.
- You must pledge and sign this page in order for a grade to be assigned.
- CLEARLY write your name at the top of this test page (and, if you remove the staple, all others). Be sure your exam consists of 10 distinct pages. Sign your name and add the date below. (If we struggle to read your name, you will lose points.)
- For circuit diagrams, use labels to identify physical connections instead of drawing lines (wires). Failure to do so will cost you one point per problem.
- For anything undefined, if necessary, state a reasonable assumption.
- Failure to follow the below rules will result in NO partial credit.
- The base (radix) of all number must be indicated with a subscript or prefix.

- Truth tables, voltage tables, and timing simulations must be in counting order.
- Label the inputs and outputs of each circuit with activation-levels.
- For each mixed-logic circuit diagram, label inputs of each gate with the appropriate logic equations.
- For K-maps, label each grouping with the appropriate equation.
- Labels inside of parts must be provided whenever it can be confusing, e.g., they MUST be specified for MU, but not for NANDs and ORs.
- For each circuit design, equations must not be used as replacements for circuit elements.

- Boolean expression answers must be in lexical order, (i.e., /A before A, A before B, \& D_{3} before D_{2}).

PLEDGE: On my honor as a University of Florida student, I certify that I have neither given nor received any aid on this examination, nor I have seen anyone else do so.

SIGN YOUR NAME

| Regrade comments below: Give page \# and problem \# and reason for the petition. |
| :--- | :--- |
| . |
| . |
| . |
| . |
| . |
| . |
| . |
| . |

Problems	Available	Points
1	13	
2	10	
$3-4$	11	
5	12	
6	13	
7	14	
8	16	
9	11	
TOTAL	100	

[13\%] 1. Solve the following arithmetic problems. Remember to show ALL work here and in EVERY problem on this exam.
(4\%)
5 min
c) What is $256_{10}-311_{10}$ in $\mathbf{1 0 - b i t} 2$'s complement? You must use binary numbers to derive and 3 min
a) Determine the unsigned hexadecimal, octal, binary, and BCD representations of the number $\mathbf{3 1 1} 1_{10}$. (I strongly recommend that you check your work before moving on to the next problem.)

Binary: \qquad
Octal: \qquad
Hex: \qquad
BCD: \qquad
b) Determine the $\underline{\mathbf{1 0}-\mathrm{bit}}$ signed magnitude, 1's complement, and 2's complement representations of the decimal number $\mathbf{- 3 1 1} 1_{10}$. (I strongly recommend that you check your work before moving on to the next problem.)

Signed Mag: \qquad
1's Comp: \qquad
2's Comp: \qquad determine the solution (not decimal). Hint: $256=2^{8}$. You must show all work.

$$
\left(\mathbf{2 5 6}_{10}-\mathbf{3 1 1}_{10}\right)_{2} 10 \text {-hit } 2 \text { 's comp: }
$$

\qquad

Last Name, First Name

(3\%) 1. d) What is $-256_{10}-311_{10}$ in 10-bit 2's complement? You must use binary numbers to derive and determine the solution (not decimal). Hint: $256=2^{8}$. You must show all work
$(-25610-311 \mathbf{1 0})_{2}{ }_{10-\text { bit } 2 \text { 's comp: }}$ \qquad
[10\%] 2. Directly implement the below equation with a mixed-logic circuit diagram, i.e., do NOT simplify the 7 min equation. Use only NOR gates (or their mixed-logic equivalent). Minimize the total number of gates. You are free to choose the activation levels ; but the chosen activation-levels should optimize your solution. Check twice that you correctly read the equation!

$$
U F=\overline{[(\overline{N+\bar{U}})+M] *(\overline{O * \bar{N}+E})}
$$

N() \qquad
$\mathrm{U}(\mathrm{)}$ \qquad

M() \qquad
$O()$ \qquad
\qquad
[5\%] 3. Simplify the following logic equation using only Boolean identities, laws, or theorems. Show all work. Give the solution in MSOP or MPOS form in lexical order. Check twice that you correctly read the equation!

$$
U F=\overline{\overline{(\bar{I}+S}) * \overline{[\overline{B+B}+\bar{E}})+\bar{S}+T]}
$$

[6\%] 4. Analyze the below circuits carefully. What are the equations for the outputs of the two similar circuits of parts a and b? Give the solution in MSOP or MPOS form in lexical order.

(\%) b) 3 min

[12\%] 5. Use the given multiplexers to design mixed-logic circuit diagrams that solve each of the below problems. Be careful to read the equation correctly. Choose activation levels for each signal (that has not already been assigned) to minimize the number of additional parts required. Use only SSI gates and add the minimum number necessary. Show all work. (The three below problems are independent of each other, but the equations are identical [other than the subscripts on \boldsymbol{X}].)
a) $\boldsymbol{X}_{\mathbf{0}}=\overline{\boldsymbol{W}} \boldsymbol{C}+\boldsymbol{Y} * \overline{(\boldsymbol{B} * \overline{\boldsymbol{A}})} \boldsymbol{C} \quad$ (Note the $\mathbf{N O N}$ tri-state enable.)

b) $\boldsymbol{X}_{\mathbf{1}}=\overline{\boldsymbol{W}} \boldsymbol{C}+\boldsymbol{Y} * \overline{(\boldsymbol{B} * \overline{\boldsymbol{A}})} \boldsymbol{C} \quad$ (Note the tri-state enable.)

c) $\boldsymbol{X}_{\mathbf{2}}=\overline{\boldsymbol{W}} \boldsymbol{C}+\boldsymbol{Y} * \overline{(\boldsymbol{B} * \overline{\boldsymbol{A}})} \boldsymbol{C} \quad$ (Note the NON tri-state enable.)

[13\%] 6. Use the below equation for this problem.

$$
Y=(\bar{A}+B+\bar{C}+D)(A+\bar{C}+\bar{D}) *(\bar{A}+C+D) *(A+\bar{C}+D) *(\bar{B}+C+D) *(A+C+D)
$$

(8\%) 8 min
a) Use a K-Map to simplify the above equation. Give the result in MPOS form and lexical order. Label ALL circles.

(4\%)
3 min
b) If the terms $\mathrm{ABCD}=0001$ and $\mathrm{ABCD}=1011$, i.e., the textbook's $\mathrm{d}(1)$ and $\mathrm{d}(11)$, are $\mathbf{D O N} \mathbf{T}$ CAREs (X), determine the new MSOP equation, in lexical order. Label ALL circles.

$$
\mathbf{Y}_{\mathbf{M S O P}}=
$$

$(1 \%) \quad$ c) Are the above equations (in parts a and b) equivalent? Why or why not?
1 min
[14\%] 7. In this problem, you will design a mixed-logic circuit diagram and some input and output circuits.
b) Draw the required switch circuits and LED circuits to complete the circuit design for this problem. (These should be circuit diagrams, not layout diagrams.) Draw the switches in their true positions. Both a switch and an LED circuit symbol are shown here. (The switch shown is in its open position.) Do not draw unnecessary
 components.
8. Design a system that counts with two bits as shown, using the minimum number of flip-flops necessary. The system must asynchronously go to state " 10 " when Restart (active-low) goes true. The input \mathbf{S} is active-low. Use a \mathbf{T} FF for the least significant bit of your design, a JK-FF for the most significant bit, and D-FF(s) for any other bits that you think are necessary. The two count outputs should be active-high, $\mathbf{Q}_{\mathbf{1}}(\mathbf{H})$ and $\mathbf{Q}_{\mathbf{0}}(\mathbf{H})$. An active-low output, $\mathbf{Y}(\mathbf{L})$, should only be true when the count is 01 . Note: All the given FFs have asynchronous clear and set inputs as shown.

a) Draw a functional block diagram (showing all the inputs, all the outputs, and the functional blocks). Put your design in the dashed box with the inputs and outputs going into or out of the box, on the left or right, respectively. This is not a circuit diagram.

$\underline{\text { Inputs }}$

(7\%)
b) Complete the next-state truth table (in counting order).

Outputs

8. c) Find the required simplified (MSOP or MPOS) equations for ONLY the following signals: the T-FF input and the \mathbf{Y} output. If necessary (i.e., not done already done in the functional block diagram), also determine the equations necessary to asynchronously go to state $\mathbf{1 0}$ when Restart (active-low) goes true.
d) Design the complete circuit, using the T-FF, D-FF(s), and JK-FF(s), as described previously. All inputs and outputs of the circuit should be clearly indicated coming into or out of the below dashed box. Your design must include the circuitry necessary to asynchronously go to state $\mathbf{1 0}$ when Restart (active-low) goes true. Equations not calculated should be shown as an empty box with the necessary inputs and outputs.

Outputs
[11\%] 9. In this problem you will design a 6-input MUX with no enable.
c) Use a single 4-input MUX and as many 2-input MUXes as needed (but the minimum number), all with single non-tri-state enables, to design a 6 -input MUX with no enable. For each of these MUXes, use select lines labeled S_{I} and inputs labeled X_{J} (with the normally used subscripts). All S_{I} and X_{J} are active-high, as are these MUX outputs. Use the minimum number of additional SSI component. Choose the activation levels of the enables to minimize your additional SSI components.

