Page $1 / 11$

Exam 1P

10-Jun-19 -- 5:41 PM

Instructions:

May the Schwartz

 be witt pout UF FLORIDA- Turn off all cell phones and other noise making devices and put away all electronics.
- Show all work on the front of the test papers. Box each answer. If you need more room, make a clearly indicated note on the front of the page, "MORE ON BACK", and use the back. The back of the page will not be graded without an indication on the front.
- You may not use any notes, HW, labs, other books, scratch paper, or calculators.
- This exam counts for $\underline{28 \%}$ of your total course grade.
- Read each question carefully and follow the instructions.

PropaGator 1: World Champion,

- The point values for problems may be changed at prof's discretion. Engineering
- You must pledge and sign this page in order for a grade to be assigned.
- CLEARLY write your name at the top of this test page (and, if you remove the staple, all others). Be sure your exam consists of $\underline{11}$ distinct pages. Sign your name and add the date below. (If we struggle to read your name, you will lose points.)
- For anything undefined, if necessary, state a reasonable assumption.
- Failure to follow the below rules will result in NO partial credit
- The base (radix) of all number should be indicated with a subscript or prefix.
- Truth tables, voltage tables, and timing simulations must be in counting order.
- Label the inputs and outputs of each circuit with activation-levels.

- For each mixed-logic circuit diagram, label inputs of each gate with the appropriate logic equations.
- For K-maps, label each grouping with the appropriate equation.
- Labels inside of parts must be provided whenever it can be confusing, egg., they MUST be specified for MUXes and Decoders, but not for SANDs and IRs.
- For each circuit design, equations must not be used as replacements for circuit elements.
- Boolean expression answers must be in lexical order, (ie., /A before A, A before $B, \& D_{3}$ before D_{2}).

PLEDGE: On my honor as a University of Florida student, I certify that I have neither given nor received any aid on this examination, nor I have seen anyone else do so.

SIGN YOUR NAME
DATE (27 Feb 2019)

| Regrade comments below: Give page \# and problem \# and reason for the petition. | Pages | Available | Points |
| :---: | :---: | :---: | :---: | :---: |
| | $2-3$ | 19 | |
| | 4 | 10 | |
| | 5 | 11 | |
| | 6 | 11 | |
| | 7 | 10 | |
| | $8-9$ | 17 | |
| | 10 | 15 | |

[13\%] 1. Solve the following arithmetic problems. Remember to show ALL work here and in EVERY problem on this exam.
a) Determine the unsigned hexadecimal, octal, binary, and BCD representations of the number 415_{10}. (I strongly recommend that you check your work before moving on to the next problem.)

Binary: \qquad
Octal: \qquad
Hex: \qquad
BCD: \qquad
c) What is $-415_{10}-128_{10}$ in $\mathbf{1 0}$-bit 2 's complement? You must use binary numbers to derive and

3 min
b) Determine the $\underline{\mathbf{1 0} \text {-bit signed magnitude, } 1 \text { 's complement, and 2's complement representations of }}$ the decimal number -41510. (I strongly recommend that you check your work before moving on to the next problem.)

Signed Mag: \qquad
1's Comp: \qquad
2's Comp: \qquad determine the solution (not decimal). Hint: $128=2^{7}$. You must show all work.
\qquad

Last Name, First Name
(3\%) 1. d) What is $-415_{10}-64_{10}$ in $\mathbf{1 0}$-bit 2 's complement? You must use binary numbers to derive and 3 min determine the solution (not decimal). Hint: $64=2^{6}$. You must show all work

$$
\left(-45_{10}-\mathbf{6 4}_{10}\right)_{2} \text { 10-bit } 2 \text { 's comp: }
$$

[6\%] 2. Directly implement the below equation with a mixed-logic circuit diagram, i.e., do $6 \mathrm{~min} \quad$ NOT simplify the equation. Use only gates of the type shown here (or its mixedlogic equivalent). Minimize the total number of gates. You are free to choose the
 activation levels that are not already specified and that will optimize your solution. Check twice that you are correctly reading the equation!

$$
U F=\overline{\{\overline{(\overline{B+\bar{A}})} * S * \bar{E}]+B * \bar{A}\} * \bar{L}}
$$

$B()$ \qquad
A(H) \qquad
S() \qquad
E() \qquad
L() \qquad

> Last Name, First Name
[4\%] 3. Simplify the following logic equation using only Boolean identities, laws or theorems. (Note that 6 min this equation is NOT the same as in the previous problem. Show all steps. Give the solution in MSOP or MPOS form in lexical order.

$$
U F=\overline{\{[\overline{(B+\bar{A})} * S * \bar{E}]+\overline{(B * \bar{A})}\} * \bar{L}}
$$

[6\%] 4. Analyze the below circuits carefully. What are the equations for the outputs of the two similar circuits of parts a and b ? Give the solution in MSOP or MPOS form in lexical order.
a)

(\%) b)

[11\%] 5. Use the given multiplexers to design mixed-logic circuit diagrams that solve each of the below problems. Be careful to read the equation correctly. Choose activation levels for each signal (that has not already been assigned) to minimize the number of additional parts required. Use only SSI gates and add the minimum number necessary. Show all work. (The four below problems are independent, but the equations are identical.)
a) $\boldsymbol{U} \boldsymbol{F}_{\mathbf{0}}=(\boldsymbol{G}+\overline{\boldsymbol{Y}}) * \overline{\boldsymbol{M}}+\boldsymbol{Y} *(\boldsymbol{N} * \boldsymbol{A}) * \overline{\boldsymbol{M}}$

(3\%) 3 min
c) $\boldsymbol{U} \boldsymbol{F}_{2}=(\boldsymbol{G}+\overline{\boldsymbol{Y}}) * \overline{\boldsymbol{M}}+\boldsymbol{Y} *(\boldsymbol{N} * \boldsymbol{A}) * \overline{\boldsymbol{M}}$
(Note TRI-state enable.)

(2\%)
d) $\boldsymbol{U} \boldsymbol{F}_{3}=(\boldsymbol{G}+\overline{\boldsymbol{Y}}) * \overline{\boldsymbol{M}}+\boldsymbol{Y} *(\boldsymbol{N} * \boldsymbol{A}) * \overline{\boldsymbol{M}}$

4 min
b) $\boldsymbol{U} \boldsymbol{F}_{\mathbf{1}}=(\boldsymbol{G}+\overline{\boldsymbol{Y}}) * \overline{\boldsymbol{M}}+\boldsymbol{Y} *(\boldsymbol{N} * \boldsymbol{A}) * \overline{\boldsymbol{M}}$
(Note the NON tri-state enable.)

(Note the NON tristate enable.)

[11\%] 6. Use the below equation for this problem.

$$
Y=(\bar{A}+B+\bar{C}+\bar{D}) *(A+\bar{B}+C+\bar{D}) *(A+B+\bar{D}) *(B+\bar{C}+D) *(B+C+D)
$$

(7\%) 6 min
a) Simply the above equation and put the result in MPOS form, in lexical order. Label ALL circles.

AB
 CD

\qquad

$$
\mathbf{Y}_{\text {MPOS }}=
$$

(3\%)
3 min
b) If the terms $\mathrm{ABCD}=0111$ and $\mathrm{ABCD}=1000$, i.e., the textbook's $\mathrm{d}(7)$ and $\mathrm{d}(8)$, are DON'T CAREs (X), determine the new MSOP equations, in lexical order. Label ALL circles.

AB
 CD

\qquad

$$
\mathbf{Y}_{\mathrm{MSOP}}=
$$

$(1 \%) \quad$ c) Are the above equations (in parts a and b) equivalent? Why or why not?
[10\%] 7. Use the below circuit for this problem.
(3\%)
3 min
a) Draw the mixed-logic circuit diagram to directly implement (i.e., do NOT simplify) the below equation using parts from any one single chip, with A active-high. Use the minimum number of gates from this single chip. (This should be a circuit diagram, not a layout diagram.)

$$
X=\overline{\overline{\bar{A}+B} * \bar{C}}
$$

b) Draw the required switch circuits and LED circuits to complete the circuit design for this problem. (These should be circuit diagrams, not layout diagrams.) Draw the switches in their true positions.
(2\%) c) Draw a voltage timing simulation diagram of the output of the A switch circuit when the switch 2 min is moved from open to close. Be sure to label both axes with appropriate scales including units.

Last Name, First Name

$[17 \%]$
3 min
(2%)
4 min

Inputs

Outputs
b) Complete the next-state truth table (in counting order).
(7\%)
4

Last Name, First Name
$\overline{(4 \%)}$ 8. c) Find the required simplified (MSOP or MPOS) equations for \mathbf{T}, \mathbf{K}, and \mathbf{Y}. For the other equations, 5 min you do not need MSOP or MPOS equations, but you must provide correct SOP or POS for each.
d) Design the complete circuit, using the T-FF, D-FF(s), and JK-FF(s), as described previously. All inputs and outputs of the circuit should be clearly indicated coming into or out of the below dashed box. Your design must include the circuitry necessary to asynchronous go to state " 2 " when Restart (active-high) goes true.
Inputs
[6\%] 9. Design a 4-to-16 decoder with a single enable using only, if possible, the two below parts. If this is 5 min not possible, add a minimum number of only SSI gates in your design.

[9\%] 10. Determine each of the below equations in lexical order. For parts a through d, assume that the dashed line is not there.
a) $V=f_{0}(R, O)$
$V=$
b) $X=f_{2}(V, S)$
$\mathrm{X}=$

c) $\mathrm{Y}_{0}=\mathrm{f}_{3}(\mathrm{~B})$ and $\mathrm{Y}_{1}=\mathrm{f}_{4}(\mathrm{~B})$
$Y_{0}=$
$\mathrm{Y}_{1}=$
d) $Y=f_{5}\left(Y_{0}, Y_{1}, S, T\right)$
$Y=$
e) If $\mathrm{X}(\mathrm{H})$ and $\mathrm{Y}(\mathrm{H})$ are connected (as shown with the dashed lines) and the combined signal is called $W(H)$, what is the equation for $W=f_{6}\left(V, Y_{0}, Y_{1}, S, T\right)$.

$$
\mathrm{W}=
$$

[8\%] 11. In this problem you will design two different 6-input multiplexers.
(1\%) a) Draw a functional block diagram of a 6-input

2 min
(4\%) c) Design a 6-input multiplexer with
b) Design a 6-input multiplexer with a non-tri-state enable. Use two 2-input MUXes and one 4-input MUX. Assume that each of these MUXes have all the non-tri-state enables (with any activation level) that you need, but do not use more than you need. Use no additional parts. If you can not solve it this way, use additional necessary parts for a significant point reduction. a tri-state enable. Use the minimum number of 2 -input MUXes and 4-input MUXes. Assume that each of these MUXes have all the tri-state enables (with any activation level) that you need, but do not use more than you need. Use no additional parts. If you can not solve it this way, use additional necessary parts for a significant point reduction.

