University of Florida
EEL 3701—Summer 2019

Page 1/11

Instructions:

- Turn off all cell phones and other noise making devices and put away all electronics.
- Show all work on the front of the test papers. Box each answer. If you need more room, make a clearly indicated note on the front of the page, "MORE ON BACK", and use the back. The back of the page will not be graded without an indication on the front.
- You may not use any notes, HW, labs, other books, scratch paper, or calculators.
- This exam counts for 28% of your total course grade.
- Read each question carefully and follow the instructions.
- The point values for problems may be changed at prof's discretion.
- You must pledge and sign this page in order for a grade to be assigned.

- CLEARLY write your name at the top of this test page (and, if you remove the staple, all others). Be sure your exam consists of $1 \underline{11}$ distinct pages. Sign your name and add the date below. (If we struggle to read your name, you will lose points.)
- For anything undefined, if necessary, state a reasonable assumption.
- Failure to follow the below rules will result in NO partial credit
- The base (radix) of all number must be indicated with a subscript or prefix.
- Truth tables, voltage tables, and timing simulations must be in counting order.
- Label the inputs and outputs of each circuit with activation-levels.
- For each mixed-logic circuit diagram, label inputs of each gate with the appropriate logic equations.
- For K-maps, label each grouping with the appropriate equation.
- Labels inside of parts must be provided whenever it can be confusing, e.g., they MUST be specified for MUXes and Decoders, but not for NANDs and IRs.
- For each circuit design, equations must not be used as replacements for circuit elements.
- Boolean expression answers must be in lexical order, (ie., /A before A, A before $B, \& D_{3}$ before D_{2}).

PLEDGE: On my honor as a University of Florida student, I certify that I have neither given nor received any aid on this examination, nor I have seen anyone else do so.

SIGN YOUR NAME

> DATE (2 July 2019)

| Regrade comments below: Give page \# and problem \# and reason for the petition. | Pages | Available | Points |
| :---: | :---: | :---: | :---: | :---: |
| $2-3$ | 19 | | |
| 4 | 10 | | |
| 5 | 11 | | |
| 6 | 11 | | |
| 7 | 8 | | |
| $8-9$ | 17 | | |
| 10 | 11 | | |
| 11 | 13 | | |
| TOTAL | 100 | | |

[13\%] 1. Solve the following arithmetic problems. Remember to show ALL work here and in EVERY problem on this exam.
b) Determine the $\underline{\mathbf{1 0} \text {-bit signed magnitude, } 1 \text { 's complement, and 2's complement representations of }}$ the decimal number -347 ${ }_{10}$. (I strongly recommend that you check your work before moving on to the next problem.)

Signed Mag: \qquad
1's Comp: \qquad
2's Comp: \qquad
c) What is $-347_{10}+384_{10}$ in 10-bit 2 's complement? You must use binary numbers to derive and

3 min determine the solution (not decimal). Hint: $384=256+128=2^{8}+2^{7}$. You must show all work.

$$
(-\mathbf{3 4 7} 10+\mathbf{3 8 4} 10))_{2} 10 \text {-hit 2's comp: }
$$

\qquad

Tues, 2 July 2019
Exam 1P

Last Name, First Name

(3\%) 1. d) What is $-347_{10}-128_{10}$ in 10-bit 2's complement? You must use binary numbers to derive and 3 min determine the solution (not decimal). Hint: $128=2^{7}$. You must show all work
$(-34710-12810))_{2} 10$-hit 2's comp: \qquad
[6\%] 2. Directly implement the below equation with a mixed-logic circuit diagram, i.e., do
$6 \mathrm{~min} \quad$ NOT simplify the equation. Use only gates of the type shown here (or its mixedlogic equivalent). Minimize the total number of gates. You are free to choose the
 activation levels that are not already specified and that will optimize your solution. Check twice that you correctly read the equation!

$$
U S A=[W *(\overline{S+\bar{O}+C})] * \overline{[(\overline{\bar{C}+E}) * R]}
$$

W(H) \qquad
S(L) \qquad
O() \qquad
C() \qquad
\qquad
R(L)

Tues, 2 July 2019
Exam 1P

> Last Name, First Name
[4\%] 3. Simplify the following logic equation using only Boolean identities, laws or theorems. (Note that this equation is NOT the same as in the previous problem. Show all steps. Give the solution in MSOP or MPOS form in lexical order. Check twice that you correctly read the equation!

$$
U S A=\overline{[W *(\overline{S+\bar{O}+C})] *[(\overline{\bar{C}+E}) * R]}
$$

[6\%] 4. Analyze the below circuits carefully. What are the equations for the outputs of the two similar circuits of parts a and b? Give the solution in MSOP or MPOS form in lexical order.
$(\%)$
3 min
(\%) b)
3 min

Tues, 2 July 2019
Exam 1P

Last Name, First Name

[11\%] 5. Use the given multiplexers to design mixed-logic circuit diagrams that solve each of the below
b) $\boldsymbol{F}_{\mathbf{1}}=(\overline{\boldsymbol{U}}+\boldsymbol{T}) * \boldsymbol{B} * \overline{(\boldsymbol{A} * \overline{\boldsymbol{L}})} \quad$ (Note the $\mathbf{N O N}$ tri-state enable.)

c) $\boldsymbol{F}_{\mathbf{2}}=(\overline{\boldsymbol{U}}+\boldsymbol{T}) * \boldsymbol{B} * \overline{(\boldsymbol{A} * \overline{\boldsymbol{L}})}$ (Note the $\mathbf{N O N}$ tri-state enable.)

d) $\boldsymbol{F}_{\mathbf{3}}=(\overline{\boldsymbol{U}}+\boldsymbol{T}) * \boldsymbol{B} * \overline{(\boldsymbol{A} * \overline{\boldsymbol{L}})} \quad$ (Note the $\underline{\mathbf{N O N}}$ tristate enable.)

4 min problems. Be careful to read the equation correctly. Choose activation levels for each signal (that has not already been assigned) to minimize the number of additional parts required. Use only SSI gates and add the minimum number necessary. Show all work. (The four below problems are independent of each other, but the equations are identical.)
a) $\boldsymbol{F}_{\mathbf{0}}=(\overline{\boldsymbol{U}}+\boldsymbol{T}) * \boldsymbol{B} * \overline{(\boldsymbol{A} * \overline{\boldsymbol{L}})}$

[11\%] 6. Use the below equation for this problem.

$$
Y=\bar{A} * \bar{B} * C * D+A * \bar{B} * D+A * B * \bar{C}+A * B * C * D+A * \bar{C} * D+B * C * \bar{D}
$$

(7\%) 7 min
a) Simplify the above equation and put the result in MSOP form and lexical order. Label ALL circles.

AB
 CD

\qquad

$$
\mathbf{Y}_{\mathbf{M S O P}}=
$$

b) If the terms $\mathrm{ABCD}=0110$ and $\mathrm{ABCD}=1010$, i.e., the textbook's $\mathrm{d}(6)$ and $\mathrm{d}(10)$, are $\mathbf{D O N} \mathbf{T}$ CAREs (X), determine the new MPOS equations, in lexical order. Label ALL circles.

AB
 CD

\qquad

$$
\mathbf{Y}_{\text {MPOS }}=
$$

$(1 \%) \quad$ c) Are the above equations (in parts a and b) equivalent? Why or why not?
\qquad
\qquad
\qquad

Exam 1P

Last Name, First Name
[8\%] 7. In this problem, you will design a mixed-logic circuit diagram and some input and output circuits.
a) Draw the mixed-logic circuit diagram to directly implement these two equations with the minimum number of real gates. (Real SSI gates were defined in class as all inputs having the same activation levels.) These should be circuit diagrams, not layout diagrams. The B input and X output must be

$$
\begin{aligned}
& X=A+\bar{B} \\
& Y=\overline{\bar{A}} * B
\end{aligned}
$$

active-high, and Y must be active-low, i.e., $B(H), X(H)$, and $Y(L)$. Choose the optimal (best) activation-level for A.
b) Draw the required switch circuits and LED circuits to complete the circuit design for this problem. (These should be circuit diagrams, not layout diagrams.) Draw the switches in their true positions. Both a switch and an LED circuit symbol are shown here. (The switch shown is in its open position.) Do not draw unnecessary
 components.
[17\%] 8. Design a system that "counts" as shown, using the minimum number of flipflops necessary. The system must asynchronously go to state " 0 " when Restart (active-low) goes true. Use a T-FF for the most significant bit of your design, a JK-FF for the least significant bit, and D-FF(s) for any other bits that you think are necessary. Note that the third state has 6 outputs, corresponding to the octal number $378=011111_{2}$; therefore this state machine has six outputs: $\mathrm{Y}_{5}, \mathrm{Y}_{4}, \ldots, \mathrm{Y}_{0}$. These outputs must be active-low.
 Note: All the given FFs have asynchronous clear and set inputs as shown.
(2%) a) Draw a functional block diagram (showing all the inputs, all the outputs, and the functional blocks). Put your design in the dashed box with the inputs and outputs going into or out of the box, on the left or right, respectively. This is not a circuit diagram.
Inputs

5 min

(7\%)

b) Complete the next-state truth table (in counting order).

Outputs

8. c) Find the required simplified (MSOP or MPOS) equations for this circuit.
d) Design the complete circuit, using the T-FF, D-FF(s), and JK-FF(s), as described previously. All inputs and outputs of the circuit should be clearly indicated coming into or out of the below dashed box. Your design must include the circuitry necessary to asynchronously go to state " 0 " when Restart (active-low) goes true.

Tues, 2 July 2019
Exam 1P

Last Name, First Name
[11\%] 9. Determine the appropriate equations in lexical order for each of the below circuits. Both of these circuits have MUXes with tri-state enables. All equations must be in lexical order.

2-input MUX with
a) For Figure 1, if $\mathrm{S}(\mathrm{L})$ is true, determine the equation for $X=f_{a}(A, T, R)$, i.e., as a function of A, T, and R.

Fig 1: Circuit for parts a) - e).
(0.5\%)

1 min
(0.5\%)

2 min
g) Determine the equation for $G=f_{g}(X, O)$. and R. $\mathrm{S}(\mathrm{L})$ is false. equations for the top and bottom X's.
d) For Figure 1, if $S(L)$ is false, determine the equation for $X=f_{d}(A, T, R)$, i.e., as a function of A, T,
e) For Figure 1, determine the equation for $\mathrm{G}=\mathrm{f}_{\mathrm{e}}(\mathrm{A}, \mathrm{T}, \mathrm{O}, \mathrm{R})$, i.e., as a function of $\mathrm{A}, \mathrm{T}, \mathrm{O}$, and R , if
f) Determine the equation for $X=f_{f}(\epsilon, A, T, \otimes, R, B, E, S, \mp)$, for the circuit to the right. Hint: First find

Fig 2: Circuit for parts \mathbf{f}) $\mathbf{- g}$).

Tues, 2 July 2019
Exam 1P

Last Name, First Name
10. Design a 4-input MUX with an active-low NON-tristate enable, $E(L)$. Use the minimum number of 2-input MUXes and no other parts in your design. You may assume that the 2-input MUXes have one or more enables, of any activation-levels that you need. Label the MUX inputs as $\mathbf{X}_{\mathbf{i}}(\mathbf{H})$ and the MUX select lines as $\mathbf{S}_{\mathbf{j}}(\mathbf{H})$, and the output as $\mathbf{Y}(\mathbf{H})$.
[6\%] 11. Design a 2-to-4 decoder with an active-low enable, $\mathrm{E}(\mathrm{L})$. Use the minimum number of 1-to-2 decoders and no other parts in your design. You may assume that the 1-to-2 decoders have one or more enables, of any activation- levels that you need. Label the decoder inputs as $\mathbf{X}_{\mathbf{i}}(\mathbf{H})$ and the decoder outputs as $\mathbf{Y}_{\mathbf{j}}(\mathbf{L})$.

