Instructions:

- Turn off all cell phones, beepers and other noise making devices.
- Show all work on the front of the test papers. Box each answer. If you need more room, make a clearly indicated note on the front of the page, "MORE ON BACK", and use the back. The back of the page will not be graded without an indication on the front.
- You may not use any notes, HW, labs, books, or calculators.
- This exam counts for 20% of your total grade.
- Read each question carefully and follow the instructions.
- You must pledge and sign this page in order for a grade to be assigned.
- The point values for problems may be changed at prof's discretion.
- Truth tables and voltage tables must be in counting order.
- Label the inputs and outputs of each circuit with activation-levels.
- For each mixed-logic circuit design, equations must not be used as replacements for circuit elements. Label inputs of each gate with the appropriate logic equations.
- Boolean expression answers must be in lexical order,(i.e., /A before A, A before B, \& D D_{3} before D_{2}).
- For K-maps, label each grouping with the appropriate equation.
- Put your name at the top of this test page (and, if you remove the staple, all others). Be sure your exam consists of 11 distinct pages. Sign your name and add the date below.
PLEDGE: On my honor as a University of Florida student, I certify that I have neither given nor received any aid on this examination, nor I have seen anyone else do so.

Regrade comments below: Give page \# and problem \# and reason for the petition.

Page	Available	Points
2	10	
3	8	
4	8	
$5-6$	18	
7	13	
8	14	
9	11	
10	8	
11	10	
	100	
TOTAL	100	

[10\%] 1. Do the following arithmetic problems. Remember to show ALL work here and in EVERY problem on this exam.
c) What is $74_{10}-111_{10}$ in 8 -bit 2 's complement? You must use binary numbers to derive the solution (not decimal). Remember that you must show all work.

$$
\left(74_{10}-111_{10}\right)_{2} 8 \text {-bit 2's comp: }
$$

\qquad

Exam 1

(3\%) 1. d) What is $74_{10}+111_{10}$ in 8 -bit 2 's complement? You must use binary numbers to derive 3 min and determine the solution (not decimal). Remember that you must show all work.

$$
\left(74_{10}+111_{10}\right)_{28 \text {-bit 2's comp }: ~}^{\text {2 }}
$$

\qquad
[2\%] 2. Divide the following unsigned binary numbers. Only three digits to the right of the binary
4 min point are required. The answer should be of the same type (i.e., unsigned binary).
$10001001 \div 1101$
[3\%] 3. Add the following 8-bit 2's complement numbers. (Show all carries and work below.) 2 min What is the result in 8-bit 2's complement and in hexadecimal? What is the result in decimal?

01001001
+1111 1100

Exam 1

[8\%] 4. Determine the SOP or POS equations for the output Y in each of the below circuits. Please
look carefully at each of the circuits.

$\mathrm{Y}_{1}=$ \qquad

$$
\mathrm{Y}_{2}=
$$

\qquad

$Y_{3}=$ \qquad

$$
\mathrm{Y}_{4}=
$$

\qquad

$$
\mathrm{Y}_{5}=
$$

\qquad

Exam 1

[18\%] 5. Design a 1-to-2 decoder with an active-low (non-tristate) enable. All other signals should be active-high.
(\%) a) Draw a functional block diagram (showing all

1 min
(\%)
2 min
$(\%)$ c) Determine the MSOP or MPOS equation(s) of this decoder.
2 min
(\%)
d) Draw the mixed-logic circuit diagram to implement this circuit.

2 min
(\%) e) Draw a functional block diagram of a 2-
(\%) b) Draw the truth table for this decoder. suggest you use subscripted variables where appropriate.
n

4 min
. to-4 decoder WITHOUT enable. Then

1-to-2 decoder Functional Block Diagram design this decoder using ONLY 1-to-2 decoders (with active-low enables), if possible. If not possible, use a minimum of SSI gates in addition to 1-2 decoders.

Exam 1

(\%) 5. f) Draw a functional block diagram of a 4 min 2-to-4 decoder WITH active-low enable. Then design this decoder using 1-to-2 decoders (with activelow enables) and a minimum number of SSI gates. (Assume that each SSI gate costs 5Φ and each 1-to2 decoder cost $10 ¢ 4$.).

\%)	g) Design a 3-to-8 decoder WITH active-low enable, using
4 min	enables and a minimum number of SSI gates. (Assume that each SSI gate costs $5 \mathbb{C}$ and
	ach 2-to-4 decoder cost 20¢ 50¢.)

Exam 1

Last Name, First Name

[4\%] 6. Find the MSOP or MPOS equivalent of the below Boolean expression. Show ALL work. 4 min

$$
\begin{gathered}
\overline{\overline{\bar{Y}+\overline{B \times \bar{C}}} \times \overline{\overline{(\bar{C}+D)}} \times \overline{E+\overline{F+\bar{G}} \times \bar{F}}} \\
\mathrm{Y}=/\left\{/\left[/(\mathrm{A}+/(\mathrm{B} * / \mathrm{C}))^{\left.* /(/ \mathrm{C}+\mathrm{D})]^{*} /[\mathrm{E}+/(\mathrm{F}+/ \mathrm{G})]^{*} / \mathrm{F}\right\}}\right.\right. \\
\mathrm{Y}=
\end{gathered}
$$

[9\%] 7. Determine the MSOP and MPOS equivalent of the below Boolean expression.

$$
\begin{gathered}
\mathbf{W}=(/ \mathbf{A}+\mathbf{B}+/ \mathbf{D})^{*}(\mathbf{A}+/ \mathbf{B}+/ \mathbf{C}+\mathbf{D})^{*}(\mathbf{A}+\mathbf{B}+/ \mathbf{C})^{*}(\mathbf{A}+\mathbf{B}+\mathbf{C}+/ \mathbf{D})^{*}(\mathbf{A}+/ \mathbf{C}+/ \mathbf{D}) \\
\mathrm{W}_{\mathrm{MSOP}}= \\
\mathrm{W}_{\mathrm{MPOS}}=
\end{gathered}
$$

[15\%] 8. Use the given multiplexers to design mixed-logic circuit diagrams that solve each of the

2 min
(\%)
3 min
(\%) 3 min
b) $\mathbf{Y}_{\mathbf{1}}=/ \mathbf{A} \mathbf{B}^{*} / \mathbf{C}+/ \mathbf{A} \mathbf{B C} / \mathbf{D} \quad$ (Note the tri-state enable.) below problems. Be careful to read the equation correctly. Choose activation levels for each signal (that has not already been assigned) to minimize the number of additional parts required. Use the minimum number of additional SSI gates. Show all work. (The four below problems are independent.)
a) $\mathbf{Y}_{\mathbf{0}}=/ \mathbf{A} * \mathbf{B}^{*} / \mathbf{C}+/ \mathbf{A} \mathbf{B C} / \mathbf{D}$
b) $\mathrm{Y}_{1} / \mathrm{A} \mathrm{B}^{2}+\mathrm{ABC/D}$ (Note the tri-state enable.)

c) $\mathbf{Y}_{\mathbf{2}}=/ \mathbf{A}^{*} \mathbf{B}^{*} / \mathbf{C}+/ \mathbf{A} \mathbf{B C} / \mathbf{D} \quad$ (Note the $\underline{\mathbf{N O N}}$ tri-state enable.)

(\%)
d) $\mathbf{Y}_{\mathbf{3}}=/ \mathbf{A} * \mathbf{B}^{*} / \mathbf{C}+/ \mathbf{A B C} / \mathbf{D} \quad$ (Note the $\underline{\mathbf{N O N}}$ tri-state enable.)

3 min

Exam 1

Last Name, First Name

[8\%] 9. Directly implement the below equation with a mixed-logic circuit diagram. (Do NOT simply 5 min the equation!) Use only one type gate, i.e., use as many of the SAME chips as needed (but with a minimum number of gates). Use the appropriate mixed-logic symbols. Pick whatever activation levels you want for the inputs and output, except \mathbf{I} must be active-high and O must be active-low.

$$
G o=[\overline{(I * \bar{E})+E}+(E * \bar{B})] \overline{(O+\bar{T})}
$$

I(H) \qquad
E() \qquad

B() \qquad
O(L) \qquad
T() \qquad
[3\%] 10. Create next-state truth tables for the D-, T- and J-K Flip-Flops. These will help you in the 4 min next problem.

Exam 1

[8\%] 11. Complete the timing diagram for the given circuit, i.e., fill in the values of Q1, Q0, and Y. Note that the T-FF and D-FF both have bubbles at the CLK input. Assume all propagation delays are 10ns (one grid). All SET and CLR inputs are asynchronous.

[10\%] 12. Use the given drawing of the $\mathbf{8 - p i n} \mathbf{7 4}$ 'Gator chip to solve the below problems.
a) Draw the mixed-logic circuit diagram to implement the below two equations using parts from the 74 'Gator chip shown. Also draw the required switch circuits and LED circuits. (These should be circuit diagrams, not layout diagrams.) Draw the switches in their true positions. A must be active-high, i.e., $A(H)$.

$$
\begin{gathered}
\mathbf{X}=/ \mathbf{A}+/ \mathbf{B} \\
\mathbf{Y}=\mathbf{A} * \mathbf{B}
\end{gathered}
$$

74'Gator

$8=+5 \mathrm{~V}, 4=\mathrm{GND}$
b) Now draw a layout of the entire above circuit including each of the switch and LED circuits. A layout shows each of the parts as they appear on the breadboard. Include the needed switches, resistors (SIP and/or DIP), and LEDs. Label the wires for each of the inputs and outputs (A, B, X and Y) with their activation levels. I suggest that you use labels to replace long wires. The dark part of the switches in the figure are the parts that you move to change the switch's closure state. Draw the switches in their true positions.

74'Gator

