Instructions:

- Turn off all cell phones, beepers and other noise making devices.
- Show all work on the front of the test papers. Box each answer. If you need more room, make a clearly indicated note on the front of the page, "MORE ON BACK", and use the back. The back of the page will not be graded without an indication on the front.
- This exam counts for 20% of your total grade.
- Read each question carefully and follow the instructions.
- You may not use any notes, HW, labs, other books, or calculators.
- The point values for problems may be changed at prof's discretion.

Good afternoon! Welcome!

- You must pledge and sign this page in order for a grade to be assigned.
- Put your name at the top of this test page (and, if you remove the staple, all others). Be sure your exam consists of $1 \mathbf{1}$ distinct pages. Sign your name and add the date below.
- For each circuit design, equations must not be used as replacements for circuit elements.
- For each mixed-logic circuit diagram, label inputs of each gate with the appropriate logic equations
- Truth tables and voltage tables must be in counting order.
- Label the inputs and outputs of each circuit with activation-levels.

Good luck \& Go Gators!!!

- Boolean expression answers must be in lexical order,(i.e., /A before A, A before $B, \& D_{3}$ before D_{2}).
- For K-maps, label each grouping with the appropriate equation.

PLEDGE: On my honor as a University of Florida student, I certify that I have neither given nor received any aid on this examination, nor I have seen anyone else do so.

Regrade comments below: Give page \# and problem \# and reason for the petition.

Page	Available	Points
$2-3$	19	
4	14	
5	9	
6	9	
7	10	
$8-10$	26	
11	13	
TOTAL	100	

[15\%] 1. Solve the following arithmetic problems. Remember to show ALL work here and in EVERY problem on this exam.
(4%) a) Determine the unsigned hexadecimal, octal, binary, and BCD representations of the

3 min
(3%) b) Determine the $\underline{8-b i t}$ signed magnitude, 1's complement, and 2 's complement 2 min
(3%) c) Determine the 9-bit signed magnitude, 1's complement, and 2 's complement 2 min

Binary: \qquad
Octal:
Hex: \qquad

BCD: \qquad representations of the decimal number -137_{10}.

Signed Mag: \qquad
1's Comp: \qquad
2's Comp: \qquad

Signed Mag: \qquad
1's Comp: \qquad
2's Comp: \qquad

Noticeable
(3%) 1. d) What is $137_{10}-64_{10}$ in 9-bit 2 's complement? You must use binary numbers to derive and determine the solution (not decimal). Remember that you must show all work.

$$
\left(137_{10}-64_{10}\right)_{29 \text {-bit } 2 \text { 's comp }:}
$$

$(2 \%) \quad$ e) What is $137_{10}+137_{10}$ in $\underline{9}$-bit 2 's complement? You must use binary numbers to derive and determine the solution (not decimal). Remember that you must show all work.

$$
\left(137_{10}+137_{10}\right)_{2} 9 \text {-hit } 2 \text { 's comp: }
$$

\qquad
[4\%] 2. Find the MSOP or MPOS equivalent of the below Boolean expression. Show ALL work. 5 min

$$
\text { Subs }=\overline{[\overline{(\overline{O * \bar{N}} * T)} * V] * \overline{(O+\bar{N})}}
$$

\qquad
[14\%] 3. Answer the following questions.
a) Sketch the bdf file so that it looks like what you would create in Quartus for the equation $\mathrm{Y}=/(/ \mathrm{A}+\mathrm{B})$ with $\mathrm{A}(\mathrm{H}), \mathrm{B}(\mathrm{L}), \mathrm{Y}(\mathrm{H})$ using the minimum number of gates.
(4\%) c) Draw the required switch circuits and
b) Draw a complete timing diagram, exactly as Quartus would; include 10ns propagation delays, as Quartus would. Label the inputs and output and the time axis.
 LED circuit to complete the circuit design for this problem. (These should be circuit diagrams, not layout diagrams.) Draw the switches in their true positions.
d) Draw a layout of the entire above circuit including each of the switch and LED circuits for part \mathbf{c} and the logic from part a. A layout shows each of the parts as

14-pin Chip they appear on the breadboard. Include the needed switches, resistors (SIP and/or DIP), and LEDs. I don't know what chip you used, so assume whatever pin numbers you want, along with the normal power and ground pins. Label the pin numbers in part a. Label the wires for each of the inputs and outputs (A, B, and Y) with their activation levels. I suggest that you use labels to replace long wires. The dark part of the switches in the figure are the parts that you move to change the switch's closure state. Draw the switches in their true positions.

Exam 1

Last Name, First Name

[9\%] 4. Directly implement the below equation with a mixed-logic circuit diagram. (Do NOT simplify the equation.) Use only gates of the 74 HC 02 (or their mixed-logic equivalents). Use the minimum number of gates required. Use the appropriate mixed-logic symbols. You are free to choose the activation levels. Label the pin numbers for your circuit design.
Mow $=[\overline{\overline{(\bar{T} * E)} * A}+\overline{(M+\bar{W})}] *(O * \bar{N})$
T() \qquad
$\mathrm{E}(\mathrm{)}$ \qquad

A() \qquad

M() \qquad Mow()

W() __

O() \qquad
$N()$ \qquad
[9\%] 5. Use only open-collector gates (of any SSI-type gate) to directly implement the below equation. (Do NOT simply the equations.) Show your work!
$\underset{\substack{\left(5 V_{0}\right) \\ 3 \text { min }}}{\text { a) }} Y=\overline{(\bar{A} * B)}+(C+\bar{D})$
(2\%) b) $Y=\overline{\overline{(\bar{A} * B)}+(C+\bar{D})}$ 2 min

Exam 1

Last Name, First Name

[10\%] 6. Use the below equation for this problem.

$$
Y=(\bar{A}+\bar{B}+D) *(\bar{A}+B+\bar{C}) *(\bar{A}+B+\bar{D}) *(A+\bar{B}+C+D) *(A+B+\bar{C}) *(A+\bar{C}+D)
$$

(7\%) a) Simply the above equation and put the result in MPOS and MSOP form. Are the 7 min solutions equivalent? Explain why or why not.

AB
CD \qquad
$Y_{\text {MPOS }}=$

Equivalent?:

b) If the term $\mathrm{ABCD}=0100$, i.e., the textbook's $\mathrm{d}(4)$, is a DON'T CARE (X), determine the new MPOS and MSOP equations. Are the solutions equivalent? Explain why or why not.
AB
CD \qquad
AB
CD
\qquad
$\mathrm{Y}_{\mathrm{MPOS}}=$
$\mathrm{Y}_{\mathrm{MSOP}}=$
Equivalent?:
[19\%] 7. In this problem you will design several multiplexers (MUX's)
a) Draw a truth table (with wild cards [-] or don't cares [X], if necessary) and a functional block diagram of a 2 -input MUX with a NON-tristate enable. The inputs should be labeled X and S (for select lines), both with proper subscripts, if necessary, and the enable E. The output should be labeled Y. All signals are activehigh except E .
(3\%) b) Design a 2-input MUX with a NON-tristate enable using only SSI devices.
2 min
(1\%) c) Draw a truth table and a functional block diagram of a 2-input MUX with a tristate enable. The inputs should be labeled X and S (for select lines), both with proper subscripts, if necessary, and the tristate enable E_{Ts}. The output should be labeled Y. All signals are active-high except E_{TS}.
(2\%) d) Design a 2-input MUX with a tristate enable using only SSI devices and a single MSI
2 min device, if necessary.
(3\%) 7. e) Design a 4-input MUX with an active-low NON-tristate enable using ONLY 2 -input MUX's with NON-tristate enables.
4 min
(2\%) 7. f) Design a 4-input MUX with an active-low tristate enable using ONLY 2-input MUX's 4 min with tristate enables.
(2\%) 7. f) Design a 4-input MUX with NO enable using ONLY 2-input MUX's with tristate 4 min enables and SSI components. Assume that each MUX costs $25 \notin$ and each SSI costs 10ф. Minimize the cost of your design.
7. g) Design an 8-input MUX with an active-low tristate enable using ONLY 2-input MUX's, of either type previously specified.
[7\%] 8. Consider the below circuit with inputs CLK and $12 \mathrm{~min} \quad \operatorname{Start}(\mathrm{~L})$, and active-high outputs $\mathrm{Q}_{2} \mathrm{Q}_{1} \mathrm{Q}_{0}$. Determine the sequence of output $\mathrm{Q}_{2} \mathrm{Q}_{1} \mathrm{Q}_{0}$ for a sequence of 6 clock (CLK) pulses. (The columns to the right are for your use if you need them.) Assume that $\operatorname{Start}(\mathrm{L})$ is true to initialize the circuit (for the first row) and then $\operatorname{Start}(\mathrm{L})$ is false for the next 6 clock pulses.

$\#$	Q 2	Q 1	Q 0					
0								
1								
2								
3								
4								
5								
6								

[13\%] 9. Use the given multiplexers to design mixed-logic circuit diagrams that solve each of the below problems. Be careful to read the equation correctly. Choose activation levels for each signal (that has not already been assigned) to minimize the number of additional parts required. Use the minimum number of additional SSI gates. Show all work. (The four below problems are independent.)
(\%)
3 min
(\%) 3 min
b) $\mathbf{Y}_{\mathbf{1}}=(\mathbf{A}+\mathbf{B}+/ \mathbf{D}) *(\mathbf{A}+/ \mathbf{C}) *(\mathbf{B}+\mathbf{C}) * \mathbf{D} \quad$ (Note the $\mathbf{N O N}$ tri-state enable.)

$(\%)$
3 min

c) $\mathbf{Y}_{\mathbf{2}}=(\mathbf{A}+\mathbf{B}+/ \mathbf{D}) *(\mathbf{A}+/ \mathbf{C}) *(\mathbf{B}+\mathbf{C}) * \mathbf{D} \quad$ (Note the tri-state enable.)
(\%) 3 min
a) $\mathbf{Y}_{\mathbf{0}}=(\mathbf{A}+\mathbf{B}+/ \mathbf{D}) *(\mathbf{A}+/ \mathbf{C}) *(\mathbf{B}+\mathbf{C}) * \mathbf{D}$

d) $\mathbf{Y}_{\mathbf{3}}=(\mathbf{A}+\mathbf{B}+/ \mathbf{D}) *(\mathbf{A}+/ \mathbf{C}) *(\mathbf{B}+\mathbf{C}) * \mathbf{D} \quad$ (Note the $\underline{\mathbf{N O N}}$ tri-state enable.) 4-input MUX

