May the Schwartz be with you!

Instructions:

- Turn off all cell phones and other noise making devices and put away all electronics.
- Show all work on the front of the test papers. Box each answer. If you need more room, make a clearly indicated note on the front of the page, "MORE ON BACK", and use the back. The back of the page will not be graded without an indication on the front.
- This exam counts for 20% of your total grade.
- Read each question carefully and follow the instructions.
- You may not use any notes, HW, labs, other books, or calculators.
- The point values for problems may be changed at prof’s discretion.
- Put your name at the top of this test page (and, if you remove the staple, all others). Be sure your exam consists of 12 distinct pages. Sign your name and add the date below.
- Failure to follow the below rules will result in NO partial credit
 - The base (radix) of all number should be indicated with a subscript or prefix.
 - Truth tables, voltage tables, and timing simulations must be in counting order.
 - Label the inputs and outputs of each circuit with activation-levels.
 - For each mixed-logic circuit diagram, label inputs of each gate with the appropriate logic equations.
 - For K-maps, label each grouping with the appropriate equation.
 - Labels inside of parts must be provided whenever it can be confusing, e.g., they MUST be specified for MUXes and Decoders, but not for NANDs and ORs.
 - For each circuit design, equations must not be used as replacements for circuit elements.
 - Boolean expression answers must be in lexical order, (i.e., /A before A, A before B, & D before D₂).

PLEDGE: On my honor as a University of Florida student, I certify that I have neither given nor received any aid on this examination, nor I have seen anyone else do so.

Regrade comments below: Give page # and problem # and reason for the petition.

<table>
<thead>
<tr>
<th>Pages</th>
<th>Available</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-3</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>11-12</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

SIGN YOUR NAME
1. Solve the following arithmetic problems. **Remember to show ALL work here and in EVERY problem on this exam.**

(a) Determine the unsigned hexadecimal, octal, binary, and BCD representations of the number \(567_{10}\).

- Binary: ________________
- Octal: ________________
- Hex: ________________
- BCD: ________________

(b) Determine the 12-bit signed magnitude, 1’s complement, and 2’s complement representations of the decimal number \(-567_{10}\). (I **strongly** recommend that you **check your work before** moving on to the next problem.)

- Signed Mag: ________________
- 1’s Comp: ________________
- 2’s Comp: ________________

(c) What is \(-8_{10}\) in 4-bit 2’s complement? (Hint: \(2^3 = 8\).) You must **show all work.**

\((-8)_{2}\) 4-bit 2’s comp: ________________
(2%) 1. c) What is \(-2048_{10} - 567_{10}\) in 12-bit 2’s complement? (Hint: \(2^{11} = 2048\).) You must use binary numbers to derive and determine the solution (not decimal). You must show all work.

\((-2048_{10} - 567_{10})_{2}\) 12-bit 2’s comp: ____________________________

(2%) 1. d) What is \(1024_{10} - 567_{10}\) in 12-bit 2’s complement? (Hint: \(2^{10} = 1024\).) You must use binary numbers to derive and determine the solution (not decimal). You must show all work.

\((1024_{10} - 567_{10})_{2}\) 12-bit 2’s comp: ____________________________

(2%) 1. e) Perform the requested operations in binary. Show 4 digits after the binary point and 1 digit after the hex point. What is the answer in both binary and hex?

\[1101.11 \div 100\]

Quotient = ____________________________
2. **Simplify** the following logic equation using *only Boolean identities, laws or theorems*. Show all steps. Give the solution in MSOP form.

\[
G_a = \overline{(T + \overline{O} + R)} \cdot \overline{(T + S\overline{O}R)}
\]

\[
G_a = \underline{__________________________}
\]
3. Answer the following questions.

(3%) a) Sketch the bdf file so that it looks like what you would create in Quartus for the equation \(Y = (A + B) \) with \(A(H) \), \(B(L) \), \(Y(H) \) using the minimum number of gates.

(3%) b) Draw a complete timing diagram, exactly as Quartus would; include 10ns propagation delays, as Quartus would. Label the inputs and output and the time axis.

(4%) c) Draw the required switch circuits and LED circuit to complete the circuit design for this problem. (These should be circuit diagrams, not layout diagrams.) Draw the switches in their true positions.

(3%) d) Draw a layout of the entire above circuit including each of the switch and LED circuits for part c and the logic from part a. A layout shows each of the parts as they appear on the breadboard. Include the needed switches, resistors (SIP and/or DIP), and LEDs. I don’t know what chip you used, so assume whatever pin numbers you want (for the 14-pin chip), along with the normal power and ground pins. Label the pin numbers in part b. Label the wires for each of the inputs and outputs (A, B, and Y) with their activation levels. I suggest that you use labels to replace long wires. The dark part of the switches in the figure are the parts that you move to change the switch’s closure state. Draw the switches in their true positions.
[7%] 4. Directly implement the below equation with a mixed-logic circuit diagram. (Do NOT simplify the equation.) Use only gates of 74HC02 chips (or their mixed-logic equivalents). Use the minimum number of gates required. Use the appropriate mixed-logic symbols. You are free to choose the activation levels for all signals except that Gat (the output) must be active-low. Label the parts and pin numbers for your circuit design.

\[
Gat = \overline{\left(\overline{\left(O + \overline{R} \right)} \cdot \overline{G} \right) + \overline{R}} \cdot \left(O \cdot \overline{W} \right) + L
\]

O()
R() __
G() __

R() __
O() __
W() __
L() __
5. Use only open-collector gates (of any real SSI-type gate) to directly implement the below equation. (Do NOT simply the equation.) **Show your work!** \(M\) must be active-high and \(U\) must be active-low, but you may chose all other activation levels.

\[
\text{Beat} = (M + \overline{I} + \overline{Z}) \times (Z + \overline{O} + U)
\]

6. Determine the sequence of outputs, for \(Q_2(H), Q_1(H),\) and \(Q_0(H),\) starting at \(Q_2Q_1Q_0=000.\) Assume the asynchronous clear, CLR(L), is false and a series of clocks (CLK) occur to create the sequence of outputs. **Show ALL work.** List the next 7 values in the sequence.

Sequence =

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]
7. Use the given multiplexers to design mixed-logic circuit diagrams that solve each of the below problems. **Be careful to read the equation correctly.** Choose activation levels for each signal (that has not already been assigned) to minimize the number of additional parts required. Use the **minimum** number of additional SSI gates. Show all work. (The four below problems are independent.)

(a) \(\text{Gog}_0 = A^*/T (O + /R /S + /O S) \)

(b) \(\text{Gog}_1 = A^*/T (O + /R /S + /O S) \) (Note the **enable**.)

(c) \(\text{Gog}_2 = A^*/T (O + /R /S + /O S) \) (Note the **enable**.)

(d) \(\text{Gog}_3 = A^*/T (O + /R /S + /O S) \) (Note the mux **size** and **enable**.)
8. Solve the following Karnaugh Map Boolean Algebraic simplifications problems.

a) Simply the below equation and put the result in MSOP\ and\ form\ MPOS. \textcolor{red}{Label\ your\ circles!}

\[
Y = (\overline{A} + B + \overline{C} + D) \cdot (\overline{A} + B + D) \cdot (A + \overline{B} + \overline{C}) \cdot (A + \overline{C} + D) \cdot (\overline{B} + \overline{C} + \overline{D}) \cdot (A + B + C)
\]

\[
\begin{array}{c|c|c|c|c|c|c|c|c|c|c|c}
 & A & B & C & D & & & & & & & \\
\hline
\text{CD} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\text{CB} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\]

\[
Y_{\text{MSOP}} = \quad Y_{\text{MPOS}} =
\]

b) If the terms ABCD=1000, 1001, and 1101, i.e., the textbook’s d(8,9,13), are \textcolor{red}{DON’T CAREs (X)}, determine the new MSOP and MPOS equations.

\[
\begin{array}{c|c|c|c|c|c|c|c|c|c|c|c}
 & A & B & C & D & & & & & & & \\
\hline
\text{CD} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\text{CB} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\]

\[
Y_{\text{MSOP}} = \quad Y_{\text{MPOS}} =
\]

c) Are the above equations (in part b) \textcolor{red}{equivalent}? Why or why not?
9. Solve the below decoder-related problems.

(4%) a) Determine the truth table for the below decoder. Also create a functional block diagram from the given block diagram.

\[
\begin{array}{cccc}
\text{2:4 Decoder} \\
W_0 & Z_0 \\
W_1 & Z_1 \\
& Z_2 \\
& Z_3
\end{array}
\]

(4%) b) Determine the equations for the decoder (use space above). Simplify the equations. Design a circuit (use space below) to implement this design. Use only SSI gates.

(3%) c) Add an active-low enable to the above truth table (on the left) and complete the table. (It is not necessary to put this augmented table in counting order.) Add to (but do NOT modify) the above circuit for the new design. Use the signal names in part b in your design below. Rename the new outputs P_3 through P_0.
10. Design the following specified multiplexers.

(4%) a) Create a **functional block diagram** and then design a 4-input multiplexer (with **no enable**). For this design, use only 2-input multiplexers with no enables. **Only if necessary, you may use SSI parts to complete your design.** Use the minimum number of MUXs.

(4%) b) Create a **functional block diagram** and then design a 4-input multiplexer with a **non tri-state enable**. For this design, use only 2-input multiplexers with **non tri-state enables**. (All enables can have any activation-level.) **Only if necessary, you may use SSI parts to complete your design.** Use the minimum number of MUXs.
(4%) 10 c) Create a functional block diagram and then design a 4-input multiplexer with no enable. For this design, use only 2-input multiplexers with tri-state enables. (All enables can have any activation-level.) Only if necessary, you may use SSI parts to complete your design. Use the minimum number of MUXs.

(4%) d) Create a functional block diagram and then design a 4-input multiplexer with a tri-state enable. For this design, use only 2-input multiplexers with tri-state enables. (All enables can have any activation-level.) Only if necessary, you may use SSI parts to complete your design. Use the minimum number of MUXs.