Last Name, First Name

UF's NaviGator at Lake Wauburg.

- This exam counts for 20% of your total grade.
- Read each question carefully and follow the instructions.
- You may not use any notes, HW, labs, other books, or calculators.
- The point values for problems may be changed at prof's discretion.
- You must pledge and sign this page in order for a grade to be assigned.
- CLEARLY write your name at the top of this test page (and, if you remove the staple, all others). Be sure your exam consists of 11 distinct pages. Sign your name and add the date below. (If we
Please read carefully. struggle to read your name, you will lose points.)
- Failure to follow the below rules will result in NO partial credit
- The base (radix) of all number should be indicated with a subscript or prefix.
- Truth tables, voltage tables, and timing simulations must be in counting order.

Good luck \& Go Gators!!!

- Label the inputs and outputs of each circuit with activation-levels.
- For each mixed-logic circuit diagram, label inputs of each gate with the appropriate logic equations.
- For K-maps, label each grouping with the appropriate equation.
- Labels inside of parts must be provided whenever it can be confusing, e.g., they MUST be specified for MUXes and Decoders, but not for NANDs and ORs.
- For each circuit design, equations must not be used as replacements for circuit elements.
- Boolean expression answers must be in lexical order, (i.e., /A before A, A before B, \& D_{3} before D_{2}).

PLEDGE: On my honor as a University of Florida student, I certify that I have neither given nor received any aid on this examination, nor I have seen anyone else do so.

SIGN YOUR NAME

Regrade comments below: Give page \# and problem \# and reason for the petition.

Pages	Available	Points
$2-3$	15	
4	12	
5	13	
$6-7$	19	
8	10	
9	13	
$10-11$	18	
TOTAL	100	

Last Name, First Name
[13\%] 1. Solve the following arithmetic problems. Remember to show ALL work here and in EVERY problem on this exam.
(4\%) a) Determine the unsigned hexadecimal, octal, binary, and BCD representations of the
b) Determine the $\mathbf{1 0}$-bit signed magnitude, 1's complement, and 2's complement representations of the decimal number -337_{10}. (I strongly recommend that you check your work before moving on to the next problem.)

Signed Mag: \qquad
1's Comp: \qquad
2's Comp: \qquad
c) What is $256_{10}+337_{10}$ in 10-bit 2's complement? You must use binary numbers to derive and determine the solution (not decimal). Hint: $256=2^{8}$. You must show all work.

$$
\left(256_{10}+337_{10}\right)_{2} \text { 10-bit 2's comp: }
$$

\qquad
(2\%) 1. d) What is $256_{10}-337_{10}$ in 10-bit 2's complement? You must show all work. 3 min
$(2 \%) \quad$ e) What is $10111001_{2} \div 010_{2}$ You must use binary numbers to derive and determine the solution (not decimal). Show at least two digits to the right of the binary point. You must show all work.

Answer:
[2\%] 2. What must you do to an active-low input in Quartus so that it understands that the signal is active-low? What about an active-low output?
\qquad
\qquad
\qquad
\qquad
\qquad

Last Name, First Name
[4\%] 3. Simplify the following logic equation using only Boolean identities, laws or theorems.
5 min Show all steps. Give the solution in MSOP or MPOS form.

$$
\text { Tebow }=[(\overline{\bar{G}+\bar{A} * T}) * O * \bar{R}] * \overline{(\bar{G}+\overline{\bar{R}} * A}+T)
$$

Tebow =

\qquad
[8\%] 4. Directly implement the below equation with a mixed-logic circuit diagram,
6 min ie., do NOT simplify the equation. Use only real (as specified in class) gates, but you can NOT use OR gates or AND gates (or their equivalents). Minimize the total number of gates. Pick whatever activation levels you want for the signals not already specified.
$U F=\overline{(\overline{B+E * \bar{A}} * \bar{T})+\overline{(M+\overline{I * \bar{Z}})}}$

B(H) \qquad
ELL) \qquad
A() \qquad

T() \qquad

M() \qquad

I() \qquad

Z(L) \qquad

Exam 1

Last Name, First Name
[13\%] 5. Use the below circuit for this problem.
a) Draw the mixed-logic circuit diagram to directly implement the below two equations using parts from the 74 'UF chip show. (These should be circuit diagrams, not layout diagrams.) Label the pin numbers on your circuit diagram. X must be active-high, i.e., X(H).

$$
\begin{aligned}
& X=A * B \\
& Y=\overline{A+B}
\end{aligned}
$$

(4\%)
2 min
b) Draw the required switch circuits and LED circuits to complete the circuit design for this problem. (These should be circuit diagrams, not layout diagrams.) Draw the switches in their true positions.
(3\%) c) Draw a layout of the entire above circuit including each of the switch and LED circuits from part b and the logic from part a. A layout shows each of the parts as they appear on the breadboard. Include the needed switches, resistors (SIP and/or DIP), and LEDs. Label the wires for each of the inputs and outputs ($\mathrm{A}, \mathrm{B}, \mathrm{X}$, and Y) with their activation levels. I suggest that you use labels to replace long wires. The dark part of the switches in the figure to the right are the parts that you move to change the switch's closure state. Draw the switches in their true positions. For any other required parts, you may use any size parts that you need.

[19\%] 6. Design a system that "counts" as shown. The system must asynchronously go to state " 0 " when Start (active-low) goes true and go to state "1" when Go (active-high) goes true. Assume that both Start and Go will never be simultaneously true. Use a D-FF for the most significant bit of your design, a
 JK-FF for the least significant bit, and T-FF(s) for any other bits you might need. An active-low output, Home should be true in states "4" and " 5 ." All other outputs should be active-high. Note: All the given FFs have asynchronous clear and set inputs as shown.

Inputs
 促 ()

a) Draw a functional block diagram (showing all the inputs, all the outputs, and the functional blocks). Put your design in the dashed box with the inputs and outputs going into or out of the box, on the left or right, respectively. This is not a circuit diagram.

b) Complete the next-state truth table (in counting order).

Outputs

Exam 1

(\quad)
6 min
6. c) Find the required simplified (MSOP or MPOS) equations.
d) Design the complete circuit, minimizing the total number of components, but using the D-FF, JK-FF(s), and T-FF(s), as described previously. All inputs and outputs of the circuit should be clearly indicated coming into or out of the below dashed box. Your design must include the circuitry necessary to asynchronous go to state " 0 " when Start (active-low) goes true and go to state " 1 " when Go (active-high) goes true. Assume that both Start and Go will never be simultaneously true.

Inputs

Last Name, First Name
[10\%] 7. Use the given multiplexers to design mixed-logic circuit diagrams that solve each of the below problems. Be careful to read the equation correctly. Choose activation levels for each signal (that has not already been assigned) to minimize the number of additional parts required. Use only SSI gates and add the minimum number necessary. Show all work. (The four below problems are independent.)
a) $\mathbf{Y}_{\mathbf{0}}=(\mathbf{A}+/ \mathbf{B})(/ \mathbf{B}+\mathbf{C}) / \mathbf{C} \mathbf{D}$

5 min
$\begin{array}{ll}(\%) & \text { b) } \mathbf{Y}_{\mathbf{1}}=(\mathbf{A}+/ \mathbf{B})(\mathbf{B}+\mathbf{C}) / \mathbf{C} \mathbf{D} \\ 3 \mathrm{~min} & \end{array}$

(\%)
c) $\mathbf{Y}_{\mathbf{2}}=(\mathbf{A}+/ \mathbf{B})(/ \mathbf{B}+\mathbf{C}) / \mathbf{C} \mathbf{D}$
(Note the $\underline{\mathbf{N O N}}$ tri-state enable.)

(\%)
c) $\mathbf{Y}_{3}=(\mathbf{A}+/ \mathbf{B})(/ \mathbf{B}+\mathbf{C}) / \mathbf{C} \mathbf{D}$
(Note the $\underline{\mathbf{N O N}}$ tri-state enable.)

[13\%] 8. Use the below equation for this problem.

$$
Y=(\bar{A}+B+\bar{C}+D)(A+\bar{C}+\bar{D}) *(\bar{A}+C+D) *(A+\bar{C}+D) *(\bar{B}+C+D) *(A+C+D)
$$

(9\%)
a) Simply the above equation and put the result in MPOS and MSOP form.

8 min
AB
CD \qquad
$\mathrm{Y}_{\mathrm{MPOS}}=$

$$
\mathrm{Y}_{\mathrm{MSOP}}=
$$

b) If the terms $A B C D=0001$ and 1011, i.e., the textbook's $d(1)$ and $d(11)$, are DON'T CARE (X), determine the new MPOS and MSOP equations

AB
CD \qquad

AB
CD \qquad

$$
Y_{M S O P}=
$$

(1\%) c) Are the above equations (in part b) equivalent? Why or why not?
1 min \qquad
\qquad
\qquad

Thursday, 13 October 2016
Exam 1
[18\%] 9. Design the following decoders.
a) Draw a functional block diagram, make a truth table, determine the equations, and then create a circuit design for a 1-to-2 Decoder. Use only the minimum number of SSI gates. All inputs and outputs are active-high. Label inputs as Xi and outputs labeled Yj , where i and j are numbers (as done in class).
(4\%)
4 min
b) Design a 1-to-2 Decoder with two enables, $\mathbf{E}_{\mathbf{0}}(\mathbf{H})$ and $\mathbf{E}_{\mathbf{1}}(\mathbf{L})$. Use all the same steps of the design as in part a.
(4\%) 9. c) Design a 2-to-4 Decoder with one enable, $\mathbf{E}(\mathbf{H})$, using the minimum number of 1-to-2 Decoders (from part b), as necessary, and the minimum number of additional SSI gates, as necessary. Do NOT draw the SSI gates that make up the 1-to-2 Decoders; instead use the functional block diagram from part b. It is NOT necessary (but may be helpful) to go through each of the steps described in part a, but you must draw the functional block diagram along with the final circuit diagram.
(4\%) 4 min
d) Design a 3-to-8 Decoder with no enables, using only 2-to-4 Decoders of part c and SSI gates, if necessary. It is NOT necessary (but may be helpful) to go through each of the steps dfescribed in part a, but you must draw the functional block diagram along with the final circuit diagram.

