Exam 1

May the Schwartz be with you!

Instructions:

- Turn off all cell phones and other noise making devices and put away all electronics.
- Show all work on the front of the test papers. Box each answer. If you need more room, make a clearly indicated note on the front of the page, "MORE ON BACK", and use the back. The back of the page will not be graded without an indication on the front.
- You may not use any notes, HW, labs, other books, scratch paper, or calculators.
- This exam counts for 20\% of your total course grade.
- Read each question carefully and follow the instructions.
- The point values for problems may be changed at prof's discretion.
- You must pledge and sign this page in order for a grade to be assigned.

SubjuGator T-shirt in 2009.

- CLEARLY write your name at the top of this test page (and, if you remove the staple, all others). Be sure your exam consists of $\underline{13}$ distinct pages. Sign your name and add the date below. (If we struggle to read your name, you will lose points.)
- For anything undefined, if necessary, state a reasonable assumption.
- Failure to follow the below rules will result in NO partial credit

Please read carefully.

- The base (radix) of all number should be indicated with a subscript or prefix.
- Truth tables, voltage tables, and timing simulations must be in counting order.
- Label the inputs and outputs of each circuit with activation-levels.
- For each mixed-logic circuit diagram, label inputs of each gate with the appropriate logic equations.
- For K-maps, label each grouping with the appropriate equation.
- Labels inside of parts must be provided whenever it can be confusing, e.g., they MUST be specified for MUXes and Decoders, but not for NANDs and ORs.
- For each circuit design, equations must not be used as replacements for circuit elements.
- Boolean expression answers must be in lexical order, (i.e., /A before A, A before B, \& D_{3} before D_{2}).

3701 pun to get your mind primed before the exam (fill in the blank):

- Describe the 10 types of people in the world.

PLEDGE: On my honor as a University of Florida student, I certify that I have neither given nor received any aid on this examination, nor I have seen anyone else do so.

SIGN YOUR NAME

DATE (1 March 2018)

Regrade comments below: Give page \# and problem \# and reason for the petition.	Pages	Available	Points
	$2-3$	15	
	4	9	
	5	8	
	6	11	
	$7-9$	19	
	10	9	
	11	11	
		$12-13$	18

Exam 1

Last Name, First Name

[15\%] 1. Solve the following arithmetic problems. Remember to show ALL work here and in EVERY problem on this exam.
(4\%)
4 min
b) Determine the 11-bit signed magnitude, 1's complement, and 2's complement representations of the decimal number -30710. (I strongly recommend that you check your work before moving on to the next problem.)

Signed Mag: \qquad
1's Comp: \qquad
2's Comp: \qquad
(2\%) c) What is $51210-30710$ in 11-bit 2's complement? You must use binary numbers to derive and determine the solution (not decimal). Hint: $512=2^{9}$. You must show all work.

$$
\left(512_{10}-30710\right) 2 \text { 11-bit 2's comp: }
$$

\qquad

Exam 1

Last Name, First Name

(2\%)

1. d) What is $12810-30710$ in 11-bit 2 's complement? Hint: $128=2^{7}$. You must show all work. 3 min
e) What is -307 ${ }_{10}$ in $\mathbf{1 0 - b i t}$ 2's complement and also in 12-bit 2's complement? You must show all work.
\qquad
-3072 12-bit 2's comp \qquad
[2\%] 2. What must you do to an active-low input in Quartus so that it understands that the signal is active-low? What about an active-low output?

Exam 1

Last Name, First Name

3. Use the below circuit for this problem.
a) Draw the mixed-logic circuit diagram to directly implement these two equations with the minimum number of gates. (These should be circuit diagrams, not layout diagrams.) The A input and X output, must be activelow, i.e., $\mathrm{A}(\mathrm{L})$ and $\mathrm{X}(\mathrm{L})$. Y must be active-high, i.e., $\mathrm{Y}(\mathrm{H})$. Choose the

$$
\begin{aligned}
& X=A * \bar{B} \\
& Y=\overline{A+\bar{B}}
\end{aligned}
$$

b) Draw the required switch circuits and LED circuits to complete the circuit design for this problem. (These should be circuit diagrams, not layout diagrams.) Draw the switches in their true positions.

Exam 1

Last Name, First Name

4. Directly implement the below equation with a mixed-logic circuit diagram, i.e., do NOT simplify the equation. A strange new chip with gates like the one shown are the only ones available for this problem. Use only these gates (or their equivalents). Minimize the total number of gates. Pick whatever
 activation levels you want for the signals not already specified.
$U F=\overline{(\overline{\bar{B} * E}+A * \bar{T})+\overline{(C+\overline{\overline{A * T}+S})}}$
B() \qquad

E(L) \qquad
A(H) \qquad
T() \qquad UF(H)

C() \qquad

S() \qquad

Exam 1

Last Name, First Name
5. What are the MSOP or MPOS equations for the following circuits? Please look at each circuit carefully.
a)

(2\%)
4 min
b)

c) Take the result of either of the above circuits (shown again here) and AND it with Go * Gators, i.e., the "new Beat" output is the "above Beat"*Go*Gators. Use a minimum number of additional 2-input opencollector components and no other parts.

6. Answer the below questions related to switch bouncing.
a) Draw a timing diagram, $V=\mathrm{f}(t)$, where V is the voltage and t is the time, for a normal (SPST) switch circuit going from open to closed. Include bouncing in the diagram. Label your axes in the diagram with appropriate numerical values.

b) Design a debounced switch circuit. Do not use any MSI gates. Label the output as CLK.

Exam 1

Last Name, First Name

[19\%] 7. Design a system that "counts" as shown. The system must asynchronously go to state " 3 " when Start (active-high) goes true and go to state " 4 " when Go (active-low) goes true. Assume that both Start and Go will never be simultaneously true. Use a T-FF for the most significant bit of your design, a D-FF for the least significant bit, and JK-FF(s) for any other bits you might need. An active-low output, Win should
 be true in states " 6 " or " 7 ." All other outputs should be active-high. Note: All the given FFs have asynchronous clear and set inputs as shown.
a) Draw a functional block diagram (showing all the inputs, all the outputs, and the functional blocks). Put your design in the dashed box with the inputs and outputs going into or out of the box, on the left or right, respectively. This is not a circuit diagram.

Outputs

7. b) Complete the next-state truth table (in counting order).

c) Find the required simplified (MSOP or MPOS) equations.

Exam 1

Last Name, First Name

7. d) Design the complete circuit, minimizing the total number of components, but using the DFF, JK-FF(s), and T-FF(s), as described previously. All inputs and outputs of the circuit should be clearly indicated coming into or out of the below dashed box. Your design must include the circuitry necessary to asynchronous go to state " 3 " when Start (activehigh) goes true and go to state "4" when Go (active-low) goes true. Assume that both Start and Go will never be simultaneously true.

Exam 1

Last Name, First Name below problems. Be careful to read the equation correctly. Choose activation levels for

each signal (that has not already been assigned) to minimize the number of additional parts below problems. Be careful to read the equation correctly. Choose activation levels for
each signal (that has not already been assigned) to minimize the number of additional parts required. Use only SSI gates and add the minimum number necessary. Show all work. (The three below problems are independent.)
8. Use the given multiplexers to design mixed-logic circuit diagrams that solve each of the

$$
\text { c) } \mathbf{Y}_{2}=(\mathbf{A}+/ \mathbf{B})(/ \mathbf{B}+\mathbf{C}) / \mathbf{C} \mathbf{D} \quad \text { (No enable!) }
$$

a) $\mathbf{Y}_{\mathbf{0}}=(\mathbf{A}+/ \mathbf{B}+\mathbf{C})(/ \mathbf{A D}+\mathbf{B})$

b) $\mathbf{Y}_{\mathbf{1}}=(\mathbf{A}+/ \mathbf{B}+\mathbf{C})(/ \mathbf{A} \mathbf{D}+\mathbf{B}) \quad$ (Note the $\mathbf{N O N}$ tri-state enable.)

[11\%] 9. Use the below equation for this problem.

$$
Y=\bar{A} \bar{B} \bar{C}+A \bar{B} C D+A \bar{B} \bar{C} \bar{D}+A \bar{B} D+A B C D+A \bar{C} D+\bar{B} C \bar{D}
$$

a) Simply the above equation and put the result in MPOS and MSOP form.

8 min
AB
CD
AB
CD
\qquad
$\mathrm{Y}_{\mathrm{MSOP}}=$
$\mathrm{Y}_{\text {Mpos }}=$
(3\%) 4 min
b) If the term $\operatorname{ABCD}=0011$, i.e., the textbook's $\mathrm{d}(3)$, are DON'T CARE (X), determine the new MSOP and MPOS equations

AB
 CD

\qquad
AB
CD
\qquad
$\mathrm{Y}_{\mathrm{MSOP}}=\quad \quad \mathrm{Y}_{\mathrm{MPOS}}=$
(1\%) c) Are the above equations (in part b) equivalent? Why or why not?
1 min
(4\%) 5 min
10. Design the following multiplexers. The select lines must work as they normally do in selecting the proper MUX inputs.
a) Design a 5-input MUX using only the two MUXes below. If possible, use only one of each of these two MUXes; if not possible, use a minimum amount of these parts (but only these MUXes); if still not possible, use the minimum number of additional SSI gates. The active-high inputs are X_{J}, the active-high select lines are S_{K}, and the active-high output is Y.

(4\%)
5 min
b) Design a 6-input MUX using only the two MUXes below. If possible, use only one of each of these two MUXes; if not possible, use a minimum amount of these parts (but only these MUXes); if still not possible, use the minimum number of additional SSI gates. The active-high inputs are X_{J}, the active-high select lines are S_{K}, and the active-high output is Y.

10. c) Design a 6-input MUX with a non tri-state enable using only the two MUXes below. If possible, use only one of each of these two MUXes; if not possible, use a minimum amount of these parts (but only these MUXes); if still not possible, use the minimum number of additional SSI gates. The active-high inputs are X_{J}, the active-high select lines are S_{K}, the active-low non tri-state enable is E , and the active-high output is Y .

d) Design a 6-input MUX using only the two MUXes below (both with tri-state enables). If possible, use only one of each of these two MUXes; if not possible, use a minimum amount of these parts (but only these MUXes); if still not possible, use the minimum number of additional SSI gates. The active-high inputs are X_{J}, the active-high select lines are S_{K}, and the active-high output is Y .

e) Design an SSI circuit that can transform the design in part d to a 6-input MUX with tri-state enable. Describe how it could be connected to the design in part d.

