Instructions:

- Turn off all cell phones, beepers and other noise making devices.
- Show all work on the front of the test papers. Box each answer. If you need more room, make a clearly indicated note on the front of the page, "MORE ON BACK", and use the back. The back of the page will not be graded without an indication on the front.
- This exam counts for 33% of your total grade.
- Read each question carefully and follow the instructions.
- You may not use any notes, HW, labs, other books, or calculators.
- The point values for problems may be changed at prof's discretion.
- You must pledge and sign this page in order for a grade to be assigned.
- Put your name at the top of this test page (and, if you remove the staple, all others). Be sure your exam consists of 11 distinct pages. Sign your name and add the date below.
- For each circuit design, equations must not be used as replacements for circuit elements.
- For each mixed-logic circuit diagram, label inputs of each gate with the appropriate logic equations
- Truth tables and voltage tables must be in counting order.
- Label the inputs and outputs of each circuit with activation-levels.
- Boolean expression answers must be in lexical order,(i.e., /A before A, A before B, \& D D_{3} before D_{2}).
- For K-maps, label each grouping with the appropriate equation.

PLEDGE: On my honor as a University of Florida student, I certify that I have neither given nor received any aid on this examination, nor I have seen anyone else do so.

SIGN YOUR NAME
DATE (1 July 2010)

Regrade comments below: Give page \# and problem \# and reason for the petition.

Page	Available	Points
$2-3$	19	
4	15	
5	10	
6	9	
7	10	
8	8	
9	11	
$10-11$	18	
TOTAL	100	

[15\%] 1. Do the following arithmetic problems. Remember to show ALL work here and in EVERY problem on this exam.
(4\%)
b) Determine the 7-bit signed magnitude, 1's complement, and 2's complement representations of the decimal number -55_{10}.

Signed Mag: \qquad
1's Comp: \qquad
2's Comp: \qquad
(2\%) c) What is $60_{10}-55_{10}$ in 7-bit 2's complement? You must use binary numbers to derive
3 min
a) Determine the unsigned hexadecimal, octal, binary, and BCD representations of the number 55_{10}.

Binary: \qquad
Octal:

Hex:
BCD: \qquad
(3\%) 1 d) What is $92_{10}-55_{10}$ in $\boldsymbol{8}$-bit 2 's complement? You must use binary numbers to derive 3 min and determine the solution (not decimal). Remember that you must show all work.

$$
\left(92_{10}-55_{10}\right)_{2} \text { 8-bit 2's comp: }
$$

\qquad
(3\%) 1 e) What is $92_{10}+55_{10}$ in $\boldsymbol{8}$-bit 2 's complement? You must use binary numbers to derive and determine the solution (not decimal). Remember that you must show all work.

$$
\left(92_{10}+55_{10}\right)_{2} 8 \text {-hit 2's comp: }
$$

\qquad
[2\%] 2. What is the difference in a functional compilation/simulation of a Quartus design and a full
2 min compilation/timing simulation?
[1\%] 3. When designing a circuit in Quartus with an active-low output, what special technique is
1 min required? Circle one of the below.
a) Use an inverter
b) Nothing special
c) Use a bubble
d) Both a and c
e) None of these
[1\%] 4. When designing a circuit in Quartus with an active-low input, what special technique is 1 min required? Circle one of the below.
a) Use an inverter
b) Nothing special
c) Use a bubble
d) Both a and c
e) None of these

Exam 1

[7\%] 5. Use a 2-input NAND gate (drawn as a NAND gate) with inputs $A(H)$ and $B(L)$ and output $\mathrm{C}(\mathrm{H})$ for this problem.
a) Draw the mixed-logic circuit diagram. What is the mixed logic equation?

2 min
b) Draw the truth table and the voltage table (both in counting order).

2 min

2 min
A —
B —
C
[8\%]
5 min
,
c) Draw the Quartus simulation that would easily confirm the correct operation of this 2input NAND gate.
6. Directly implement the below equation with a mixed-logic circuit diagram. Use only one type gate, i.e., use as many of the SAME chips as needed (but with a minimum number of gates). Use the appropriate mixed-logic symbols. Pick whatever activation levels you want for the inputs and output, except \mathbf{S} and \mathbf{U} must be active-high.

$$
G o=\overline{(\bar{S} * \bar{U}+B)+\overline{(T * \bar{E})} *(A+M)}
$$

S(H)
U(H)
\qquad

B()
T()__
E() \qquad
A() \qquad
M(\qquad
[10\%] 7. Use the below circuit for this problem.
a) Draw the mixed-logic circuit diagram to implement the below two equations using parts from the 74^{\prime} Gator chip show. Also draw the required switch circuits and LED circuits. (These should be circuit diagrams, not layout diagrams.) Draw the switches in their true positions. A must be active-high, i.e., A(H).

$$
\begin{aligned}
\mathbf{X} & =\mathbf{A} * \mathbf{B} \\
\mathbf{Y} & =\mathbf{A}+\mathbf{B}
\end{aligned}
$$

74'Gator

74'Gator

Exam 1

Last Name, First Name

[9\%] 8. Use the given multiplexers to design mixed-logic circuit diagrams that solve each of the
a) $\mathbf{Y}_{\mathbf{0}}=\mathbf{A}^{*} / \mathbf{B}+/ \mathbf{B}^{*} \mathbf{C}+/ \mathbf{A}^{*} / \mathbf{B} * \mathbf{D}$
b) $\mathbf{Y}_{\mathbf{1}}=\mathbf{A}^{*} / \mathbf{B}+/ \mathbf{B}^{*} \mathbf{C}+/ \mathbf{A}^{*} / \mathbf{B}^{*} \mathbf{D}$

3 min
(5\%)
4 min - below problems. Be careful to read the equation correctly. Choose activation levels for each signal to minimize the number of additional parts required. Use the minimum number of additional gates. Show all work. (The two below problems are independent.)
[4\%] 9. Find the MSOP or MPOS equivalent of the below Boolean expression. Show ALL work. 4 min

$$
Y=\overline{(A+\overline{\bar{C}+D})} * \overline{\bar{A}+\overline{\bar{B} * C * D}}
$$

$$
\mathrm{Y}=
$$

\qquad
[6\%] 10. Determine the MSOP and MPOS equivalent of the below Boolean expression.
6 min

$$
\begin{array}{r}
\mathrm{W}=(/ \mathrm{A}+/ \mathrm{C}+\mathrm{D})^{*}(\mathrm{~A}+/ \mathrm{B}+/ \mathrm{C})^{*}(\mathrm{~B}+\mathrm{C}+/ \mathrm{D})^{*}(\mathrm{~B}+\mathrm{D}) \\
\mathrm{W}_{\mathrm{MSOP}}= \\
\mathrm{W}_{\mathrm{MPOS}}=
\end{array}
$$

Exam 1

[8\%] 11. Design an 11-input MUX using as many of the given elements as needed. The two given MUXs each have tri-state (T.S.) outputs such that if the chip is disabled, the output is tristated (high impedance). Note that you need a similar tri-state enable for the 11-input MUX. Use labels instead of wires. First try to minimize number of required components and then minimize the cost. The cost for available single MUXs are: big MUX=37¢ and little MUX $=24$ ¢ . The cost per single gates are Inverter=3థ, 2-input NAND=7¢, and 2-input NOR=13¢. The 11-input MUX must work as expected, e.g., if $S_{3} S_{2} S_{1} S_{0}=j$, then $Y=X_{j}$, $j=0,1, \ldots, 10$.

Exam 1

[11\%] 12. What is the logic equation of each of the following signals in terms of the given signals? Put all answers is SOP or POS form in proper lexical order. Show your work! Reminder: There are no activation levels in a logic equation.
(2\%)
2 min
(4\%)
3 min
(4\%)
2 min
(1\%)
2 min
Answer: $\mathrm{N}=$ \qquad

[18\%] 13. Design a system that counts as shown. The system must
a) Determine the excitation tables for a JK-FF and a T-FF.
(6\%)
b) Complete the next-state truth table (in counting order).

												.
												.
												.
												.
												.
												.
												.
												.
												.
												.

(1\%) c) Draw a functional block diagram (showing all the inputs, all the outputs, and the functional blocks). Put your design in a box with the inputs and outputs going into or out of the box, on the left or right, respectively. This is not a circuit diagram.
(6\%) 13. d) Find the required simplified equations. Show all work.
6 min
(4\%) e) Design the complete counter circuit, minimizing the total number of components, but using the JK-FF and D-FF [and T-FF(s), if necessary] as described above. All inputs and outputs of the circuit should be clearly indicated coming into or out of the below box. Your design must include the circuitry necessary to re-start the counter to the required $\mathrm{Q}_{2} \mathrm{Q}_{1} \mathrm{Q}_{0}=101$ state asynchronously, after the $\operatorname{Start}(\mathbf{L})$ signal goes true. It should also include $\mathbf{B a d}(\mathbf{H})$.

