Page 1/15

Exam 1

Last Name.

Instructions:

- Turn off all <u>cell phones</u> and other noise making devices.
- Show all work on the front of the test papers. Box each answer. If you need more room, make a clearly indicated note on the front of the page, "MORE ON BACK", and use the back. The back of the page will not be graded without an indication on the front.

Please read carefully.

- This exam counts for 33% of your total grade.
- Read each question <u>carefully</u> and <u>follow the instructions</u>.
- You may <u>not</u> use any notes, HW, labs, other books, or calculators.
- The point values for problems may be changed at prof's discretion.

First Name

- You must pledge and sign this page in order for a grade to be assigned.
- Put your name at the top of this test page (and, if you remove the staple, all others). Be sure your exam consists of 15 distinct pages. Sign your name and add the date below.
- For each circuit design, equations must <u>not</u> be used as replacements for circuit elements.
- For each mixed-logic circuit diagram, label inputs of each gate with the appropriate logic equations
- Truth tables and voltage tables must be in **counting** order.
- Label the inputs and outputs of each circuit with activation-levels.
- Boolean expression answers must be in lexical order, (i.e., /A before A, A before B, & D₃ before D₂).
- For K-maps, label **each** grouping with the appropriate equation.

Go Gators!!!

Good luck &

PLEDGE: On my honor as a University of Florida student, I certify that I have neither given nor received any aid on this examination, nor I have seen anyone else do so.

SIGN YOUR NAME	DATE (2 July 2013)

Regrade comments below:	Give page # and problem # and reason for the petition.

Problem	Available	Points
1	11	
2	15	
3	6	
4	4	
5	22	
6	8	
7	10	
8	16	
9	8	
TOTAL	100	

EEL 3701—Summer 2013 Tuesday, 2 July 2013

Dr	Fric	M	Schwar	t7

Page 2/15

Exam 1

	6	
110/1 1		Last Name, First Name
11%] 1.	Solve the following arithmetic problems EVERY problem on this exam.	Remember to show ALL work here and in
(4%) 4 min		, octal, binary, and BCD representations of the
		Binary:
		Octal:
		Hex:
		BCD:
(3%) 2 min	b) Determine the <u>10-bit</u> signed magn representations of the decimal number	
		Signed Mag:
		1's Comp:
		2's Comp:
(2%) 3 min	and determine the solution (not decima	nplement? You must use binary numbers to derive l). Remember that you must show all work.
		128 ₁₀ – 311 ₁₀) _{2 10-bit 2's comp} :

Page 3/15

Exam 1

-	u) v	Vhat is o	verflow?	Explain	n and giv	ve an ex	ample.		Last Nan	,	rst Name	
-	<i>-</i> , .	, 1100 15 0	, 01110 ,, .	P14413	2 0110 81	. • • • • • • • • • • • • • • • • • • •						
-												
_												
-												
_												
	Ancy	ver the f	ollowing	short au	ections	Show A	AII we	vrk				
			_	_					0			
	a) li	n a Quar	tus simu	lation, w	hat does	0 mean	? What	does I i	mean?			
-												
-												
-												
<u>-</u> 1											o implen	
	e <u>n</u>	quation ninimun	Y = A* <u>a</u> number	F/B, whe	ere A ar	nd Y ar	e active	e-low ar	nd B is	active	-high.	Use th
	е <u>п</u> с) Б	quation ninimun Oraw a <u>c</u>	Y = A* <u>n number</u>	f/B, where of gates	ere A ar	nd Y ar	e active	e-low ar	nd B is	active		Use th
	е <u>п</u> с) Б d	quation ninimun Oraw a <u>c</u> elays, as	Y = A* number number omplete Quartus	timing would.	ere A ar s. diagram Label th	nd Y ar , exactly ne inputs	e active y as Qu s and ou	e-low ar artus wo tput and	ould; inc	active	-high.	Use the
	е <u>п</u> с) Б d	quation ninimun Oraw a <u>c</u> elays, as	Y = A* number number omplete Quartus	timing would.	diagram,	, exactly	y as Qu and ou	e-low ar artus wo tput and	ould; inc	active	-high.	Use th
	е <u>п</u> с) Б d	quation ninimun Oraw a <u>c</u> elays, as	Y = A* number number omplete Quartus	timing would.	diagram.	, exactly ae inputs	as Qu and ou	artus wo	ould; inc	active	-high.	oagatio
	е <u>п</u> с) Б d	quation ninimun Oraw a <u>c</u> elays, as	Y = A* number number omplete Quartus	timing would.	diagram Label th	, exactly ar	as Qu and ou	artus wo	ould; inc	active	Ons prop	oagatio

University of Florida
Department of Electrical & Computer Engineering

EEL 3701—Summer 2013 Tuesday, 2 July 2013

D_r	Fric	M	Schwartz
171.	DITE.	IVI.	Denwartz

Cathode

LEDs

Page 4/15

Fyam	1
CXAIII	1

Last Name, First Name

2. d) Draw the required switch circuits and LED circuit to complete the circuit design for this (4%) problem. (These should be circuit diagrams, not layout diagrams.) Draw the switches 2 min in their **true** positions.

(3%)	
5 min	l

e) Draw a layout of the entire above circuit including each of the switch and LED circuits for part d and the logic from part b. A layout shows each of the parts as 14-pin Chip they appear on the breadboard. Include the needed switches, resistors (SIP and/or DIP), and LEDs. I don't know what chip you used, so assume whatever pin numbers you want (for the 14-pin chip), along with the **normal** power and ground pins. Label the pin numbers in part b. Label the wires for each of the inputs and outputs (A, B, and Y) with their activation levels. I suggest that you use labels to replace long wires. The dark part of the switches in the figure are the parts that you move to change the switch's closure state. Draw the switches in their **true** positions.

Page 5/15

Exam 1

Last Name, First Name

[6%] 3. Directly implement the below equation with a mixed-logic circuit diagram. (Do <u>NOT</u> simplify the equation.) Use only real (as specified in class) gates. Use the **minimum number of gates** required. Use the appropriate mixed-logic symbols. You are free to choose the activation levels for signals that do not already have specified activation-levels.

$$Propa = \overline{\left[\overline{(G + \overline{A})} * \overline{T}\right]} * \overline{O} * R$$
_{G(L)}

A()___

___Propa(L)

O(H)

R()___

[4%] 4. Find the MSOP or MPOS equivalent of the below Boolean expression. Show ALL work.

5 min

$$Propa = \overline{\left[\overline{(G + \overline{A})} * \overline{T}\right]} * \overline{O * R}$$

Page 6/15

Exam 1

Last Name, First Name

[22%] 5. Design a system that counts as shown. The system must asynchronously go to the state with output 11₂ when Start (active-low) goes true. Use a T-FF for the most significant bit of your design, a JK-FF for the least significant bit, and a D-FF(s) for any other bits you might need. An output, Boom (active-high), should be true if the count is 00 or 10. The least-significant count bit, Q₀, should be active-high; all other count bit(s) must be active-low. Note: All

the given FFs have **asynchronous** clear and set inputs as shown.

Start 11_2 01_2 10_2

(~2%)
3 min

<u>Inputs</u>

a) Draw a functional **block diagram** (showing **all** the inputs, **all** the outputs, and the functional blocks). Put your design in a box with the inputs and outputs going into or out of the box, on the left or right, respectively. This is **not** a circuit diagram.

5 min

 $(\sim 4\%)$

b) Complete the next-state **truth** table (**in counting order**).

] .

Page 7/15

Exam	1
LYXAIII	

Last Name, First Name

(~3%) 5. c) Find the required **simplified** (MSOP or MPOS) equations.

4 min

Design the complete circuit, <u>minimizing</u> the total number of components, but using the JK-FF, T-FF, and D-FF(s) (if necessary), as described previously. All **inputs** and **outputs** of the circuit should be **clearly indicated <u>coming into or out of</u>** the below box. Your design must include the circuitry necessary to **asynchronous** re-start the system at "11" when the **Start** (active-low) signal goes true and show the active-high output **Boom** when the output is 00 or 10.

<u>Inputs</u> _____ <u>Outputs</u>

-		;
į		:
-		į
!		;
i		!
 		i
į		<u> </u>
i		!
! !		i
į		!
-		į
1		;
į		
		i
!		;
i		!
 		i
į		<u> </u>
i		!
! !		i
į		<u> </u>
;		į
!		<u> </u>
i		:
		i
!		<u> </u>
i		!
		i
		!
		į
1		;
i		!
		i
<u> </u>	 	

Page 8/15

Exam 1

Last Name, First Name

5. e) Modify your solution in parts a) through d) to generate the following sequence of outputs (with all bits active-high). The system must

outputs (with all bits active-high). The system must asynchronously reset to the state with output 4 when **Start** (active-low) goes true. (The rest of this is identical to part a, except that Boom should be true if the output is 1 or 3.) Repeated from part a: Use a **T-FF** for the <u>most</u> significant bit of your design, a **JK-FF** for the <u>least</u> significant bit, and a D-FF(s) for any other bits you might need. An output, **Boom** (active-high), should be true if the count is 00 or 10. The least significant count bit, Q_0 , should be active-high; all other count bit(s) must be active-low.

(~2%)
3 min

i) Draw a functional **block diagram** (showing **all** the inputs, **all** the outputs, and the functional blocks). Put your design in a box with the inputs and outputs going into or out of the box, on the left or right, respectively. This is **not** a circuit diagram.

(~2%)
5 min

ii)

Complete the next-state **truth** table (**in counting order**) or add columns to the

table in part b.

Page 9/15

EEL 3701—Summer 2013 Tuesday, 2 July 2013

Exam 1

Last Name, First Name

Dr. Eric. M. Schwartz

EEL 3701—Summer 2013 Tuesday, 2 July 2013

Dr. Eric. M. Schwartz

Page 10/15

Exam	1
LYXAIII	

Last Name, First Name

(~2%)
3 min

5. iii) Find the required **simplified** (MSOP or MPOS) equations.

(~3%) iv) Design the complete circuit for the problem in part e or **modify the design** in part d. 3 min <u>Inputs</u> **Outputs** Page 11/15

Exam 1

Last Name, First Name

[8%]

6. Use the given multiplexers to **design mixed-logic circuit diagrams** that solve each of the below problems. **Be careful to read the equation correctly.** Choose activation levels for each signal (that has not already been assigned) to **minimize** the number of additional parts required. For parts a and b, use the **minimum** number of additional SSI gates. Show all work. (The three below problems are **independent**.)

(3%) 3 min a) $UF_0 = B*/O*/T + /T*S$

(Note the active-low **NON** tri-state enable.)

4-input MUX with
non 3-state Enable

0
1
2
Y
3
--E
S
O
(H)

(3%)

3 min

b) $UF_1 = B*/O*/T + /T*S$

(Note that there is no enable.)

(2%)
3 min

c) Use the MUX and up to two of the **open collector** parts shown here, but **no other** components. Note that this is the same equation and MUX as in part b.

 $UF_2 = B*/O*/T + /T*S$

Page 12/15

Exam 1

Last Name, First Name

[10%] 7. Use the below equation for this problem.

$$Y = (\bar{A} + B + \bar{C}) * (\bar{A} + B + C + D) * (A + \bar{B} + C) * (A + B + \bar{C}) * (A + B + \bar{D}) * (A + B + D) * (A + \bar{C} + \bar{D})$$

(7%) a) Simply the below equation and put the result in MPOS and form MSOP.

7 min

CD AB CD AB

 $Y_{MPOS} = Y_{MSOP} =$

(3%)
3 min

b) If the terms ABCD=0110 and ABCD=1000, i.e., the textbook's d(6,8), are **DON'T CAREs** (**X**), determine the new MPOS **and** MSOP equations. Are these solutions equivalent? Explain why or why not.

 $Y_{MPOS} = Y_{MSOP} =$

Equivalent?:

University of Florida
Department of Electrical & Computer Engineering

EEL 3701—Summer 2013 Tuesday, 2 July 2013

Dr. Eric. M. Schwartz

Page 13/15

Exam 1

Last Name, First Name

[16%] 8. In this problem you will design several decoders.

(~2%)

a) Draw a truth table (with wild cards [-] or don't cares [X], if necessary) and a functional block diagram of a **1-to-2 Decoder** with **no** enable. The input(s) should be labeled X and the output(s) Y, both with proper subscripts, if necessary. All signals should be active-high.

(~2%)

b) Derive the equation(s) and design the circuit for the **1-to-2 Decoder** with <u>no</u> enable. Use only SSI (AND, NAND, OR, etc.) gates.

(~2%)
3 min

c) Draw a functional block, derive the equation(s), and design the circuit for the **1-to-2 Decoder** with an active-high enable. You must use the decoder from part b. Use the minimum number of additional SSI gates.

EEL 3701—Summer 2013 Tuesday, 2 July 2013 Dr. Eric. M. Schwartz

Page 14/15

Fyam	1
TVXAIII	

Last Name, First Name

(~2%) 8. d) Draw a truth table (with wild cards [-] or don't cares [X], if necessary) and a functional block diagram of a **2-to-4 Decoder** with an active-high enable. The input(s) should be labeled X and the output(s) Y, both with proper subscripts, if necessary. All signals should be active-high.

(~4%) e) Design the circuit for the **2-to-4 Decoder <u>with</u>** an active-high enable. Use only the decoders from part b or c and use SSI gates <u>ONLY</u> if necessary.

(~4%) 8. f) Design the circuit for a **3-to-8 Decoder** with an active-high enable. Use only **2-to-4** decoders with $\underline{\mathbf{3}}$ enables, $E_0(L)$, $E_1(H)$, and $E_2(H)$, i.e., one of the enables is active-low and two enables are active-high. Use SSI gates $\underline{\mathbf{ONLY}}$ if necessary.

Page 15/15

Exam 1

Last Name, First Name

[8%] 9. What are the (SOP or POS) equations for the outputs of the following circuits?

(1%)

a) $A(H) \underbrace{Y_0(L)}$

(1%) b)
1 min

A(H) $Y_l(L)$

