University of Florida
Department of Electrical \& Computer Engineering
Page 1/15
Exam 1
Last Name. First Name

Instructions:

- Turn off all cell phones and other noise making devices.
- Show all work on the front of the test papers. Box each answer. If you need

Please read

 carefully. more room, make a clearly indicated note on the front of the page, "MORE ON BACK", and use the back. The back of the page will not be graded without an indication on the front.- This exam counts for 33% of your total grade.
- Read each question carefully and follow the instructions.
- You may not use any notes, HW, labs, other books, or calculators.
- The point values for problems may be changed at prof's discretion.
- You must pledge and sign this page in order for a grade to be assigned.
- Put your name at the top of this test page (and, if you remove the staple, all others). Be sure your exam consists of 15 distinct pages. Sign your name and add the date below.
- For each circuit design, equations must not be used as replacements for circuit elements.
- For each mixed-logic circuit diagram, label inputs of each gate with the appropriate logic equations
- Truth tables and voltage tables must be in counting order.
- Label the inputs and outputs of each circuit with activation-levels.
- Boolean expression answers must be in lexical order,(i.e., /A before A, A before

Good luck \&

 Go Gators!!! $B, \& D_{3}$ before D_{2}).- For K-maps, label each grouping with the appropriate equation.

PLEDGE: On my honor as a University of Florida student, I certify that I have neither given nor received any aid on this examination, nor I have seen anyone else do so.

SIGN YOUR NAME

Regrade comments below: Give page \# and problem \# and reason for the petition.

Problem	Available	Points
1	11	
2	15	
3	6	
4	4	
5	22	
6	8	
7	10	
8	16	
9	8	
TOTAL	100	

[11\%] 1. Solve the following arithmetic problems. Remember to show ALL work here and in EVERY problem on this exam.
a) Determine the unsigned hexadecimal, octal, binary, and BCD representations of the number 311_{10}.

Binary: \qquad
Octal: \qquad
Hex: \qquad
BCD: \qquad
(3\%) b) Determine the $\mathbf{1 0}$-bit signed magnitude, 1's complement, and 2 's complement representations of the decimal number -311_{10}.

Signed Mag: \qquad

1's Comp: \qquad
2's Comp: \qquad
$(2 \%) \quad$ c) What is $128_{10}-311_{10}$ in $\underline{\mathbf{1 0} \text {-bit } 2 \text { 's complement? You must use binary numbers to derive }}$ and determine the solution (not decimal). Remember that you must show all work.

$$
\left(128_{10}-311_{10}\right)_{2} 10 \text {-bit 2's comp: }
$$

\qquad
(2%) 1. d) What is overflow? Explain and give an example.
\qquad
\qquad
\qquad
\qquad
\qquad
[15\%] 2. Answer the following short questions. Show ALL work.
a) In a Quartus simulation, what does 0 mean? What does 1 mean?
b) Draw a circuit like you would in a Quartus schematic entry [bdf] file to implement the

2 min equation $Y=A^{*} / B$, where A and Y are active-low and B is active-high. Use the minimum number of gates.

(3%)
3 min

c) Draw a complete timing diagram, exactly as Quartus would; include 10ns propagation delays, as Quartus would. Label the inputs and output and the time axis.

Last Name, First Name
(4\%) 2. d) Draw the required switch circuits and LED circuit to complete the circuit design for this problem. (These should be circuit diagrams, not layout diagrams.) Draw the switches in their true positions.
e) Draw a layout of the entire above circuit including each of the switch and LED circuits for part \mathbf{d} and the logic from part b. A layout shows each of the parts as

14-pin Chip they appear on the breadboard. Include the needed switches, resistors (SIP and/or DIP), and REDs. I don't know what chip you used, so assume whatever pin numbers you want (for the 14-pin chip), along with the normal power and ground pins. Label the pin numbers in part \mathbf{b}. Label the wires for each of the inputs and
 outputs (A, B, and Y) with their activation levels. I suggest that you use labels to replace long wires. The dark part of the switches in the figure are the parts that you move to change the switch's closure state. Draw the switches in their true positions.

[6\%] 3. Directly implement the below equation with a mixed-logic circuit diagram. (Do NOT simplify the equation.) Use only real (as specified in class) gates. Use the minimum number of gates required. Use the appropriate mixed-logic symbols. You are free to choose the activation levels for signals that do not already have specified activation-levels.

G(L)

$$
\text { Propa }=\overline{\overline{[\overline{(G+\bar{A})} * \bar{T}]} * \overline{O * R}}
$$

\qquad

A() \qquad

T(L) \qquad
$\mathrm{O}(\mathrm{H})$ \qquad

R() \qquad
[4\%] 4. Find the MSOP or MPOS equivalent of the below Boolean expression. Show ALL work.
5 min

$$
\text { Propa }=\overline{\overline{[\overline{(G+\bar{A})})} * \bar{T}]} * \overline{O * R}
$$

Last Name, First Name
[22\%] 5. Design a system that counts as shown. The system must asynchronously go to the state with output 11_{2} when Start (activelow) goes true. Use a T-FF for the most significant bit of your design, a JK-FF for the least significant bit, and a D-FF(s) for any other bits you might need. An output, Boom (active-high), should be true if the count is 00 or 10 . The least-significant count bit, $\mathbf{Q}_{\mathbf{0}}$, should be active-high; all other count bit(s) must be active-low. Note: All the given FFs have asynchronous clear and set inputs as shown.

(~2\%)
3 min
a) Draw a functional block diagram (showing all the inputs, all the outputs, and the functional blocks). Put your design in a box with the inputs and outputs going into or out of the box, on the left or right, respectively. This is not a circuit diagram.

(~4\%)
b) Complete the next-state truth table (in counting order).

$(\sim 3 \%)$ 5. c) Find the required simplified (MSOP or MPOS) equations.
4 min
($\sim 4 \%$) 9. d) Design the complete circuit, minimizing the total number of components, but using the 5 min JK-FF, T-FF, and D-FF(s) (if necessary), as described previously. All inputs and outputs of the circuit should be clearly indicated coming into or out of the below box. Your design must include the circuitry necessary to asynchronous re-start the system at "11" when the Start (active-low) signal goes true and show the active-high output Boom when the output is 00 or 10 .

Last Name, First Name
5. e) Modify your solution in parts a) through d) to generate the following sequence of
i) Draw a functional block diagram (showing all the inputs, all the outputs, and the functional blocks). Put your design in a box with the inputs and outputs going into or out of the box, on the left or right, respectively. This is not a circuit diagram.

ii) Complete the next-state truth table (in counting order) or add columns to the

	.										
	.										

table in part \mathbf{b}.

University of Florida
Department of Electrical \& Computer Engineering
Page 9/15

EEL 3701—Summer 2013
Tuesday, 2 July 2013
Exam 1

3 min
($\sim 3 \%$) iv) Design the complete circuit for the problem in part e or modify the design in part d.

Inputs

Last Name, First Name
(Note that there is no enable.)
3 min
(2\%)
c) Use the MUX and up to two of the open collector parts

3 min
6. Use the given multiplexers to design mixed-logic circuit diagrams that solve each of the below problems. Be careful to read the equation correctly. Choose activation levels for each signal (that has not already been assigned) to minimize the number of additional parts required. For parts a and b, use the minimum number of additional SSI gates. Show all work. (The three below problems are independent.)
a) $\mathbf{U F}_{\mathbf{0}}=\mathbf{B} * / \mathbf{O} * / \mathbf{T}+/ \mathbf{T} * \mathbf{S}$
(Note the active-low NON tri-state enable.)
 shown here, but no other components. Note that this is the same equation and MUX as in part b.

$\mathrm{UF}_{2}=\mathrm{B} * / \mathrm{O}^{*} / \mathrm{T}+/ \mathrm{T} * \mathrm{~S}$

[10\%] 7. Use the below equation for this problem.

$$
\begin{gathered}
Y=(\bar{A}+B+\bar{C}) *(\bar{A}+B+C+D) *(A+\bar{B}+C) *(A+B+\bar{C}) * \\
(A+B+\bar{D}) *(A+B+D) *(A+\bar{C}+\bar{D})
\end{gathered}
$$

(7\%)
a) Simply the below equation and put the result in MPOS and form MSOP.

7 min

CD
AB

CD
AB
$\mathrm{Y}_{\mathrm{MSOP}}=$
b) If the terms $\mathrm{ABCD}=0110$ and $\mathrm{ABCD}=1000$, i.e., the textbook's $\mathrm{d}(6,8)$, are $\mathbf{D O N} \mathbf{T}$ CAREs (\mathbf{X}), determine the new MPOS and MSOP equations. Are these solutions equivalent? Explain why or why not.

CD
AB \qquad
$\mathrm{Y}_{\text {MPOS }}=$

Equivalent?:
[16\%] 8. In this problem you will design several decoders.
$(\sim 2 \%) \quad$ a) Draw a truth table (with wild cards [-] or don't cares [X], if necessary) and a functional block diagram of a 1-to-2 Decoder with no enable. The input(s) should be labeled X and the output(s) Y, both with proper subscripts, if necessary. All signals should be activehigh.
$(\sim 2 \%) \quad$ b) Derive the equation(s) and design the circuit for the 1-to-2 Decoder with no enable. Use only SSI (AND, NAND, OR, etc.) gates.
($\sim 2 \%$) c) Draw a functional block, derive the equation(s), and design the circuit for the 1-to-2 Decoder with an active-high enable. You must use the decoder from part b. Use the minimum number of additional SSI gates.

Last Name, First Name
$(\sim 2 \%) 8$. d) Draw a truth table (with wild cards [-] or don't cares [X], if necessary) and a functional block diagram of a 2-to-4 Decoder with an active-high enable. The input(s) should be labeled X and the output(s) Y , both with proper subscripts, if necessary. All signals should be active-high.
$(\sim 4 \%) \quad$ e) Design the circuit for the 2-to-4 Decoder with an active-high enable. Use only the decoders from part b or c and use SSI gates ONLY if necessary.
(~4\%) 8. f) Design the circuit for a 3-to-8 Decoder with an active-high enable. Use only 2-to-4 decoders with $\underline{3}$ enables, $E_{0}(L), E_{1}(H)$, and $E_{2}(H)$, i.e., one of the enables is active-low and two enables are active-high. Use SSI gates ONLY if necessary.

Last Name, First Name
[8\%] 9. What are the (SOP or POS) equations for the outputs of the following circuits?
a)

(1%)
1 min

b)
A(H)

(3\%)
3 min

(3%)
3 min

d)

