Page $1 / 12$

Instructions:

May the Schwartz be with you!

Exam 1

Engineexing

Last Name, First Name

- Turn off all cell phones and other noise making devices.
- Show all work on the front of the test papers. Box each answer. If you need more room, make a clearly indicated note on the front of the page, "MORE ON BACK", and use the back. The back of the page will not be graded without an indication on the front.
- This exam counts for 33% of your total grade.
- Read each question carefully and follow the instructions.
- You may not use any notes, HW, labs, other books, or calculators, computers, or any electronic devices.
- The point values for problems may be changed at prof's discretion.
- You must pledge and sign this page in order for a grade to be assigned.
- Boolean expression answers must be in lexical order, (i.e., /A before A, A before $B, \& D_{3}$ before D_{2}).
- Put your name at the top of this test page (and, if you remove the staple, all others). Be sure your exam consists of 12 distinct pages. Sign your name and add the date below.
- Failure to follow the below rules will result in NO partial credit
- Truth tables, voltage tables, and timing simulations must be in counting order.
- Label the inputs and outputs of each circuit with activation-levels.
- For each mixed-logic circuit diagram, label inputs of each gate with the appropriate logic equations.
- For K-maps, label each grouping with the appropriate equation.
- For each circuit design, equations must not be used as replacements for circuit elements.
- Boolean expression answers must be in lexical order,(i.e., /A before A, A before $B, \& D_{3}$ before D_{2}).

PLEDGE: On my honor as a University of Florida student, I certify that I

PropaGator 2 propulsion system
have neither given nor received any aid on this examination, nor I have seen anyone else do SO.

SIGN YOUR NAME
DATE (1 July 2014)

Regrade comments below: Give page \# and problem \# and reason for the petition.	Problem	Available	Points
.	1	11	
	2	14	
	3	6	
[4-5	11	
- ${ }^{\text {c }}$	6	18	
${ }^{+}$	7	8	
-	8	12	
-	9-11	10	
-	12-14	10	
.	TOTAL	101	

[11\%] 1. Solve the following arithmetic problems. Remember to show ALL work here and in EVERY problem on this exam.

4 min
b) Determine the $\mathbf{1 0}$-bit signed magnitude, 1's complement, and 2's complement representations of the decimal number -351_{10}.

Signed Mag: \qquad
1's Comp: \qquad
2's Comp: \qquad
Binary: \qquad
Octal: \qquad
Hex: \qquad
BCD: \qquad
c) What is $384_{10}-351_{10}$ in $\mathbf{1 0 - b i t} 2$'s complement? You must use binary numbers to derive and determine the solution (not decimal). Remember that you must show all work. (Hint: 256+128=384) Please circle your answer. derive and determine the solution (not decimal). Remember that you must show all work. Please circle your answer.
[11\%] 2. Answer the following short questions. Show ALL work.
a) Draw a circuit like you would in a Quartus schematic entry [bdf] file to DIRECTLY implement (i.e., do NOT simplify) the equation $\mathrm{Y}=/(\mathrm{A}+/ \mathrm{B})$, where A is active-high, and B and Y are active-low. Use the minimum number of gates.
(3\%)
3 min
b) Draw a complete timing diagram, exactly as Quartus would; include 10ns propagation delays, as Quartus would. Label the inputs and output and the time axis.

(4\%)
c) Draw the required switch circuits and LED

2 min circuit to complete the circuit design for this problem. The circuits should do nothing else. (These should be circuit diagrams, not layout diagrams.) Draw the switches in their true positions.
2. d) Draw a layout of the entire above circuit including each of the switch and LED circuits for part \mathbf{c} and the logic from part a. A layout shows each of the parts as

Last Name, First Name

Switches switches, resistors (SIP and/or DIP), and LED. I don't know what chip you used, so assume whatever pin numbers you want (for the 14-pin chip), along with LED wires for each of the inputs and outputs (A, B, and Y) with their activation levels. I suggest that you use labels to replace long wires. The dark part of the switches in the figure are the parts that you move to change the switch's closure state. Draw the switches in their true positions.

[6\%] 3. Directly implement the below equation with a mixed-logic circuit diagram. (Do NOT simplify the equation.) Use only gates of the 74HC32 (or their mixed-logic
5 min equivalents). Only if necessary, you can also use level-shifters. Use the minimum number of gates required. Use the appropriate mixed-logic symbols. You are free to choose the activation levels for signals that do not already have specified activation-levels.

O() \qquad
$\mathrm{U}(\mathrm{L})$

S() \qquad

A() \qquad
4. Find the MSOP or MPOS equivalent of the below Boolean expression. Show ALL work.

$$
U F=\overline{[\overline{(G * \bar{A} * T)}+\overline{\bar{A} \bar{T}}]+\overline{(O+\overline{\bar{R} S})} * O+\overline{(\bar{A}+S)}}
$$

/TT

$$
\boldsymbol{U F}=
$$

\qquad
5. What are the (SOP or POS) equations for the outputs of the following circuits?
(4\%) 4 min
(3\%) b)
4 min

[18\%] 6. Design a system that "counts" as shown when E (active-low) is true; when E is false, the "count" should hold. The system must asynchronously go to the state " 7 " when Start (active-high) goes true. Use a T-FF for the least significant bit of your design, a JK-FF for the most significant bit, and a D-FF(s) for any other bits you might need. An output, Zero (active-low), should be true if the "count" is " 0 ." The least-significant "count" output bit should be active-low; all other "count" output bits should be active-high. Note: All the given FFs have asynchronous clear and set inputs as shown.

a) Draw a functional block diagram (showing all the inputs, all the outputs, and the functional blocks). Put your design in the dashed box
with the inputs and outputs going into or out of the box, on the left or outputs, and the functional blocks). Put your design in the dashed box
with the inputs and outputs going into or out of the box, on the left or right, respectively. This is not a circuit diagram.
(\%)
3 min

(\%)
b) Complete the next-state truth table (in counting order).

(\%) d) Design the complete circuit, minimizing the total number of components, but using the JK-FF, T-FF, and D-FF(s) (if necessary), as described previously. All inputs and outputs of the circuit should be clearly indicated coming into or out of the below dashed box. Your design must include the circuitry necessary to asynchronous re-start the system at " 7 " when the Start (active-high) signal goes true and show the active-low output Zero when the output is " 0 ."

Last Name, First Name
[8\%] 7. Use the given multiplexers to design mixed-logic circuit diagrams that solve each of the
b) $\mathbf{G A} \mathbf{1}_{\mathbf{1}}=\mathbf{T} / \mathbf{O} * \mathbf{R}+/ \mathbf{O}^{*} / \mathbf{R}^{*} \mathbf{S}$

3 min

c) $\mathbf{G A}_{2}=\mathbf{T}^{*} / \mathbf{O} * \mathbf{R}+/ \mathbf{O}^{*} / \mathbf{R}^{*} \mathbf{S}$ tri-state enable.)

(Note the active-low NON tri-state enable.)

(Note the active-low

$\mathrm{T}_{(\mathrm{H})} \mathrm{O}_{(\mathrm{H})} \mathrm{R}(\mathrm{H})$
[12\%] 8. Use the below equation for this problem.

$$
Y=\bar{A} \bar{B} C D+\bar{A} \bar{B} \bar{D}+A \bar{B} \bar{D}+A B \bar{C}+A B C \bar{D}+A \bar{C} D
$$

(6\%)
a) Use K-maps to simply the equation and put the result in MSOP and form MPOS.

7 min

CD

AB \qquad
$\mathrm{Y}_{\mathrm{MSOP}}=$
$\mathrm{Y}_{\text {MPos }}=$
b) If the terms $A B C D=0011$ and $A B C D=0110$, i.e., the textbook's $d(3,6)$, are $\mathbf{D O N ' T}$ CAREs (X), determine the new MSOP and MPOS equations. Are these solutions (in part b) equivalent? Explain why or why not.

CD
AB \qquad

CD
AB \qquad
$\mathrm{Y}_{\mathrm{MSOP}}=$
$\mathrm{Y}_{\text {MPOS }}=$

Equivalent?:

 etc.) gates. The enable is $\mathrm{E}(\mathrm{L})$, the output is $\mathrm{Y}(\mathrm{H})$, the input(s) and select line(s) should be number subscripted as in our class notes and labs. First draw a functional block diagram and then show ALL the work in your design process.10. Design a 4-input MUX with non tri-state enable using only 2-input MUXes (from the previous problem) and the minimum number of SSI gates. The overall enable is $\mathrm{E}(\mathrm{L})$, the output is $\mathrm{Y}(\mathrm{H})$, the input(s) and select line(s) should be number subscripted as in our class notes and labs. First draw a functional block diagram and then show ALL the work in your design process.

Last Name, First Name
[3\%] 11. Design a 5-input MUX with non tri-state enable using only the functional block diagrams from the last two problems, and SSI gates, ONLY if necessary. The overall enable is $\mathrm{E}(\mathrm{L})$, the output is $\mathrm{Y}(\mathrm{H})$, the input(s) and select line(s) should be number subscripted as in our class notes and labs.
[43\%] 12. Design a 2-input MUX with active-low tri-state enable using only the minimum number of
4 min SSI gates and a tri-state buffer, if necessary. The enable is $\mathrm{E}(\mathrm{L})$, the output is $\mathrm{Y}(\mathrm{H})$, the input(s) and select line(s) should be number subscripted as in our class notes and labs. Show ALL work in your design process.

Last Name, First Name
[4\%] 13. Design a 4-input MUX with with active-low tri-state enable using only 2-input MUXes (from the previous problem), the minimum number of tri-state buffers, if necessary. The overall tri-state enable is $\mathrm{E}(\mathrm{L})$, the output is $\mathrm{Y}(\mathrm{H})$, the input(s) and select line(s) should be number subscripted as in our class notes and labs. First draw a functional block diagram and then show ALL the work in your design process.
[3\%] 14. Design a 5-input MUX with tri-state enable using only the functional block diagrams from the last two problems and if necessary the minimum number of SSI gates and tri-state buffers. The overall enable is $\mathrm{E}(\mathrm{L})$, the output is $\mathrm{Y}(\mathrm{H})$, the input(s) and select line(s) should be number subscripted as in our class notes and labs.

