May the Schwartz be with you!

Instructions:

- Turn off all cell phones and other noise making devices and put away all electronics.
- Show all work on the front of the test papers. Box each answer. If you need more room, make a clearly indicated note on the front of the page, "MORE ON BACK", and use the back. The back of the page will not be graded without an indication on the front.
- This exam counts for 33% of your total grade.
- Read each question carefully and follow the instructions.
- You may not use any notes, HW, labs, other books, or calculators, computers, or any electronic devices.
- The point values for problems may be changed at prof's discretion.
- You must pledge and sign this page in order for a grade to be assigned.
- CLEARLY write your name at the top of this test page (and, if you remove the staple, all others). Be sure your exam consists of 11 distinct pages. Sign your name and add the date below. (If we struggle to read your name, you will lose points.)
- Failure to follow the below rules will result in $\underline{\mathrm{NO}}$ partial credit
* The base (radix) of all number should be indicated with a subscript or prefix.
* Truth tables, voltage tables, and timing simulations must be in counting order.
* Label the inputs and outputs of each circuit with activation-levels.
* For each mixed-logic circuit diagram, label inputs of each gate with the appropriate logic equations.
* For K-maps, label each grouping with the appropriate equation.
* Labels inside of parts must be provided whenever it can be confusing, e.g., they MUST be specified for MUXes and Decoders, but not for NANDs and ORs.
* For each circuit design, equations must not be used as replacements for circuit elements.
* Boolean expression answers must be in lexical order, (i.e., /A before A, A before $B, \& D_{3}$ before D_{2}).

PLEDGE: On my honor as a University of Florida student, I certify that I have neither given nor received any aid on this examination, nor I have seen anyone else do so.

SIGN YOUR NAME
DATE (28 June 2016)

Regrade comments below: Give page \# and problem \# and reason for the petition.	
	\cdot

Problem	Available	Points
1	12	
2	14	
3	7	
4	9	
5	4	
6	15	
7	18	
8	9	
9	12	
TOTAL	100	

Exam 1

Last Name, First Name
[12\%] 1. Solve the following arithmetic problems. Remember to show ALL work here and in EVERY problem on this exam.
(4\%) a) Determine the unsigned hexadecimal, octal, binary, and BCD representations of the 4 min number 31110.
(3\%) b) Determine the $\mathbf{1 0}$-bit signed magnitude, 1's complement, and 2's complement
2 min representations of the decimal number $-\mathbf{3 1 1 1 0}$.
\qquad
(2\%) c) What is $\mathbf{1 9 2} \mathbf{1 0} \mathbf{- 3 1 1} \mathbf{1 0}$ in 10-bit 2's complement? You must use binary numbers to derive and determine the solution (not decimal). You must show all work. (Hint: 128+64=192) Please circle your answer.

$$
\left(192_{10}-311_{10}\right)_{2} \text { 10-bit 2's comp: }
$$

Exam 1

Last Name, First Name

(2\%) 1. d) What is $\mathbf{- 1 9 2 1 0} \mathbf{- 3 1 1 1 0}$ in 10-bit 2's complement? You must use binary numbers to $3 \mathrm{~min} \quad$ derive and determine the solution (not decimal). You must show all work.
$\left(-192_{10}-311_{10}\right)_{2}$ 10-bit 2's comp: \qquad
[14\%] 2. Answer the following short questions. Show ALL work.
a) Draw a circuit like you would in a Quartus schematic entry [bdf] file to DIRECTLY implement (i.e., do NOT simplify) the equation $\mathrm{Y}=/(/ \mathrm{A}+\mathrm{B})$, where A is active-high, and Y is active-low. B's activation level is intentionally unspecified, i.e., your choice. Use the minimum number of gates.
(3\%)
3 min
b) Draw a complete timing diagram, exactly as Quartus would; include 10ns propagation delays, as Quartus would. Label the inputs and output and the time axis.

(4\%)
c) Draw the required switch circuits and LED circuit

2 min to complete the circuit design for this problem. The circuits should do nothing else. (These should be circuit diagrams, not layout diagrams.) Draw the switches in their true positions.

Exam 1

Last Name, First Name
(3\%) 2. d) Draw a layout of the entire above circuit including each of the switch and LED circuits for part \mathbf{c} and the logic from part a. A layout shows each of the parts as

14-pin Chip they appear on the breadboard. Include the needed switches, resistors (SIP and/or DIP), and LED. I don't know what chips) you used, so assume whatever pin numbers you want (for the 14-pin chip), along with the normal power and
 ground pins. Label the pin numbers in part a. Label the wires for each of the inputs and outputs (A, B, and Y) with their activation levels. I suggest that you use labels to replace long wires. The dark part of the switches in the figure are the parts that you move to change the switch's closure state. Draw the switches in their true positions.

[7\%] 3. Directly implement the below equation with a mixed-logic circuit diagram. (Do NOT simplify the equation.) Use only gates of the 74 HC 02 (or their mixedlogic equivalents). Only if necessary, you can also use other SSI components. Use the minimum number of gates required. Use the appropriate mixed-logic symbols. You are free to choose the activation levels that will optimize your solution. (No pin numbers are necessary.)

$$
\begin{aligned}
& \operatorname{Thx}=\{\overline{[(B * \bar{A}+S) * E]}+\overline{\bar{B}+\bar{A} * L}\} * L \\
& \mathrm{~A}()_{\mathrm{B}}+
\end{aligned}
$$

\qquad

E() \qquad

L()__

Exam 1

Last Name, First Name
[7\%] 4. What are the (SOP or POS) equations for the outputs of the following circuits? Please use lexical order.
(4\%)
4 min
a)

(3\%)
4 min
b)

c) What is the equation if the two outputs Soft and Ball are connected with a wire? Assume this combined signal is called Go and that it is active-high, i.e., $\mathbf{G o (H)}$. Put this SOP or POS solution in lexical order.
[4\%] 5. Find the MSOP or MPOS equivalent of the below Boolean expression. Show ALL work. (Please verify that you are correctly reading the equation.) Note that this equation is not identical to the equation in part 3.

$$
\operatorname{Th} x=\{\overline{[\overline{(B * \bar{A}+S)} * E]}+\overline{\bar{B}+\bar{A} * L}\} * L
$$

$$
\text { Th } x=
$$

Exam 1

Last Name, First Name
[15\%] 6. Design a system that "counts" as shown with the values of $\mathbf{3 1 6}_{16}$, $\mathbf{7 1 6}^{\mathbf{1 6}}$ and

3 min A16. 4-bits are output to represent these numbers. The system must asynchronously go to the state " 3 " when Start (active-high) goes true. Use a T-FF for the most significant bit of your design, a JK-FF for the least significant bit, and a D-FF(s) for any other bits you might need. An output, Seven (active-low), should be true if the "count" is "7." The four "count" output bits should all be active-high. Note: All the given FFs have asynchronous clear and set inputs as shown.
a) Draw a functional block diagram (showing all the inputs, all the outputs, and the functional blocks). Put your design in the dashed box with the inputs and outputs going into or out of the box, on the left or right, respectively. This is not a circuit diagram.
 lnputs
b) Complete the next-state truth table (in counting order).

Exam 1

Last Name, First Name

6. c) Find the required simplified (MSOP or MPOS) equations.
d) Design the complete circuit, minimizing the total number of components, but using the T-FF, JK-FF, and D-FF(s) (if necessary), as described previously. All inputs and outputs of the circuit should be clearly indicated coming into or out of the below dashed box. Your design must include the circuitry necessary to asynchronous re-start the system at " 3 " when the Start (active-high) signal goes true. The Seven (active-low) output must be true when the "count" is "7."

Inputs

Exam 1

Last Name, First Name
[18\%] 7. Design the following multiplexers. The select lines must work as they normally do in selecting the proper MUX inputs.
a) Design a 5-input MUX with no enable using only MUXes of the two types given. Assume that a 4 -input MUX costs 2.5 times more than a 2 -input MUX. Design the minimum cost solution. If possible, use nothing else! (If this is not possible, use the minimum number of additional SSI gates.)

b) Design a 5-input MUX with non 3-state enable using only MUXes of the two types

5 min given. Assume that a 4 -input MUX costs 2.5 times more than a 2-input MUX. Design the minimum cost solution. If possible, use nothing else! (If this is not possible, use the minimum number of additional SSI gates.)

Exam 1

Last Name, First Name

7. c) Design a $\mathbf{6}$-input MUX with non 3-state enable using only MUXes of the two types given. Assume that a 4 -input MUX costs 2.5 times more than a 2-input MUX. Design the minimum cost solution. If possible, use nothing else! (If this is not possible, use the minimum number of additional SSI gates.)

(5\%) d) Design a $\underline{6}$-input MUX with $\underline{\text { NO }}$ enable using only MUXes of the two types given. (Note that the activation-level of enable on the 2-input MUX has changed.) Assume that a 4 -input MUX costs 2.5 times more than a 2-input MUX. Design the minimum cost solution. If possible, use nothing else! (If this is not possible, use the minimum number of additional SSI gates.)

Exam 1

Last Name, First Name

[9\%] 8. Use the below equation for this problem.
$Y=(\bar{A}+B+\bar{C}+D) *(\bar{A}+B+C) *(A+B+\bar{C}+\bar{D}) *(A+B+C) *(\bar{B}+C+\bar{D})$
(5\%)
7 min
a) Use K-maps to simply the equation and put the result in MPOS and form MSOP. Are these solutions (in part a) equivalent? Explain why or why not.

CD
AB \qquad
$\mathrm{Y}_{\mathrm{MPOS}}=$

CD
AB \qquad
$\mathrm{Y}_{\mathrm{MSOP}}=$

Equivalent?:

b) If the terms $A B C D=1000$ and $A B C D=1010$, i.e., the textbook's $d(8,10)$, are $\mathbf{D O N}$ ' \mathbf{T} CAREs (X), determine the new MPOS and MSOP equations. Are these solutions (in part b) equivalent? Explain why or why not.

CD
AB \qquad
$\mathrm{Y}_{\text {MPOS }}=$
$\mathrm{Y}_{\mathrm{MSOP}}=$

Equivalent?:

Last Name, First Name
[12\%] 9. Use the given multiplexers to design mixed-logic circuit diagrams that solve each of the below problems. Be careful to read the equation correctly. Choose activation levels for each signal (that has not already been assigned) to minimize the number of additional parts required. Use the minimum number of additional SSI gates. Show all work. (The three below problems are independent.)
a) $\mathbf{X}_{\mathbf{0}}=(\overline{U+\bar{F}}) * S+\overline{(U+\bar{B}+J)}=/(\mathbf{U}+/ \mathbf{F}) \mathbf{S}+/(\mathbf{U}+/ \mathbf{B}+\mathbf{J})$ Please note that the MUX has a tri-state enable.

(4\%)
b) $\mathbf{X}_{\mathbf{1}}=(\overline{U+\bar{F}}) * S+\overline{(U+\bar{B}+J)}=/(\mathbf{U}+/ \mathbf{F}) \mathbf{S}+/(\mathbf{U}+/ \mathbf{B}+\mathbf{J})$ Please note that the MUX has a NON tri-state enable.

c) $\mathbf{X}_{\mathbf{2}}=(\overline{U+\bar{F}}) * S+\overline{(U+\bar{B}+J)}=/(\mathbf{U}+/ \mathbf{F}) \mathbf{S}+/(\mathbf{U}+/ \mathbf{B}+\mathbf{J})$

3 min Please note that \mathbf{J} is active-low and the MUX has a NON tri-state enable.

