May the Schwartz
Last Name, First Name be with you!

Instructions:

- Turn off all cell phones and other noise making devices and put away all electronics.
- Show all work on the front of the test papers. Box each answer. If you need more room, make a clearly indicated note on the front of the page, "MORE ON BACK", and use the back. The back of the page will not be graded without an indication on the front.
- This exam counts for $3 \mathbf{3} \%$ of your total course grade.
- Read each question carefully and follow the instructions.
- You may not use any notes, HW, labs, other books, or calculators.
- The point values for problems may be changed at prof's discretion.
- You must pledge and sign this page in order for a grade to be assigned.
- CLEARLY write your name at the top of this test page (and, if you remove the staple, all others). Be sure your exam consists of $\underline{12}$ distinct pages. Sign your name and add the date below. (If we struggle to read your name, you will lose points.)
- Failure to follow the below rules will result in NO partial credit
- The base (radix) of all number should be indicated with a subscript or prefix.
- Truth tables, voltage tables, and timing simulations must be in counting order.
- Label the inputs and outputs of each circuit with activation-levels.
- For each mixed-logic circuit diagram, label inputs of each gate with the appropriate logic equations.

Please read
 carefully.

- For K-maps, label each grouping with the appropriate equation.
- Labels inside of parts must be provided whenever it can be confusing, e.g., they MUST be specified for MUXes and Decoders, but not for NANDs and ORs.
- For each circuit design, equations must not be used as replacements for circuit elements.
- Boolean expression answers must be in lexical order, (i.e., /A before A, A before B, \& D_{3} before D_{2}).

PLEDGE: On my honor as a University of Florida student, I certify that I have neither given nor received any aid on this examination, nor I have seen anyone else do so.

SIGN YOUR NAME
DATE (27 June 2017)

Regrade comments below: Give page \# and problem \# and reason for the petition.	Pages	Available	Points
	2-3	18	
	4	11	
	5	10	
	6-7	18	
	8	14	
	9	9	
	10-11	12	
	12	8	
	TOTAL		

[12\%] 1. Solve the following arithmetic problems. Remember to show ALL work here and in EVERY problem on this exam.
(4%) a) Determine the unsigned hexadecimal, octal, binary, and BCD representations of the

4 min
(3\%) c) What is 448_{10} - 437_{10} in 10-bit 2's complement? You must use binary numbers to derive number 43710 . (I strongly recommend that you check your work before moving on to the next problem.)

Binary: \qquad
Octal: \qquad
Hex: \qquad
BCD: \qquad
b) Determine the $\mathbf{1 0}$-bit signed magnitude, 1's complement, and 2's complement representations of the decimal number -437_{10}. (I strongly recommend that you check your work before moving on to the next problem.)

Signed Mag: \qquad

1's Comp: \qquad
2's Comp: \qquad and determine the solution (not decimal). Hint: $448=2^{8}+2^{7}+2^{6}$. You must show all work.

$$
(44810-43710) 2 \text { 10-bit 2's comp: }
$$

\qquad

Exam 1

Last Name, First Name
(2\%) 1. d) What is -43710 in 11-bit 2's complement? You must show all work.
[6\%] 2. Directly implement the below equation with a mixed-logic circuit diagram, ie., 5 min do NOT simplify the equation. Use only gates of the 74 '10 (shown here) or their mixed-logic equivalents. Minimize the total number of gates. You are free to choose the activation levels that will optimize your solution. Check twice that you are correctly reading the equation!

$$
U F=\overline{(\overline{B+A * \bar{S}+E})+\overline{(B * \bar{A}+L)}+L}
$$

B() \qquad
A() \qquad

S() \qquad
E() \qquad

L() \qquad
[11\%] 3. Use the below circuit for this problem.
b) Draw the required switch circuits and LED circuits to complete the circuit design for this problem. (These should be circuit diagrams, not layout diagrams.) Draw the switches in their true positions.
(2\%)
a) Draw the mixed-logic circuit diagram to directly implement the below two equations using parts any one single chip. Use the minimum number of gates from this single chip. (These should be circuit diagrams, not layout diagrams.)
$X=\overline{A * \bar{B}}$
$Y=\bar{A}+B$
c) Draw a layout of the entire above circuit including each of the switch and LED circuits from part band the logic from part a. A layout shows each of the parts as they appear on the breadboard. Include the needed switches, resistors (SIP and/or DIP), and LEDs. I don't know what chip(s) you used, so assume whatever pin numbers you want (for the 14-pin chip), along with the normal power and ground pins. Label the pin numbers in part a. Label the wires for each of the inputs and outputs ($\mathrm{A}, \mathrm{B}, \mathrm{X}$, and Y) with their activation levels. I suggest that you use labels to replace long wires. The dark part of the switches in the figure to the right are the parts that you move to change the switch's closure state. Draw the switches in their true positions. For any other required parts, you may use any size parts that you need.

Exam 1

[4\%] 4. Simplify the following logic equation using only Boolean identities, laws or theorems. Show all steps. Give the solution in MSOP or MPOS form.

$$
\text { Gator }=[\overline{(\overline{S * \bar{O}+F}) * \bar{T}}] * \overline{(\overline{\overline{\bar{B} * A} * \bar{L}}+\bar{L})}
$$

Gator =

[6\%] 5. What are the (SOP or POS) equations for the outputs of the following circuits? For this 5 min problem, you do NOT need to use lexical order. Do NOT simplify.
a)

b)

Exam 1

Last Name, First Name
[18\%] 6. Design a system that normally counts down as follows 7, 6, 5, 4, $0,7,6, \ldots$, when the $\operatorname{Delay}(\mathrm{L})$ is false. But if $\operatorname{Delay}(\mathrm{L})$ is true, then three more count values are inserted between 4 and 0 , i.e., the count sequence $7,6,5,4,3,2,1,0,7,6, \ldots$ The system must asynchronously go to state " 7 " when Start (active-high) goes true. Use a D-FF for the most significant bit of your design, a JKFF for the least significant bit, and T-FF(s) for any other bits you might need. An active-low output, Hold should be true when the count is 3,2 , or 1 . All other outputs (including the state bits)
 should be active-high. Note: All the given FFs have asynchronous clear and set inputs as shown.
a) Draw a functional block diagram (showing all the inputs, all the outputs, and the functional blocks). Put your functional blocks of your design in the dashed box with the inputs and outputs going into or out of the box, on the left or right, respectively. This is not a circuit diagram.

Inputs

b) Complete the next-state truth table (in counting order).

Outputs

6. c) Find the simplified (MSOP or MPOS) equations for $\mathbf{K}_{\mathbf{0}}$ (from the JK-FF) and Hold. Find an SOP or POS equation for $\mathbf{J}_{\mathbf{0}}$ (from the JK-FF, which does NOT need to be simplified). You do NOT need to find any of the other equations.
d) Design the complete circuit, minimizing the total number of components, but using the D-FF, JK-FF(s), and T-FF(s), as described previously. All inputs and outputs of the circuit should be clearly indicated coming into or out of the below dashed box. Draw empty boxes for combinatorial equations not required and not found. Your design must include the circuitry necessary to asynchronous go to count 7 when Start (active-high) goes true.

Inputs

Exam 1

Last Name, First Name

$$
Y_{1}=
$$

c) $G=f_{4}\left(C, D, Y_{1}, S\right)$ $\mathrm{G}=$
d) If $\mathrm{F}(\mathrm{H})$ and $\mathrm{G}(\mathrm{H})$ are connected (as shown with the dashed lines) and the combined signal is called $X(H)$, what is the equation for $X=f_{5}(A, B, C, D, S)$.
$\mathrm{X}=$
8. Use the given multiplexers to design mixed-logic circuit diagrams that solve each of the below problems. Be careful to read the equation correctly. Choose activation levels for each signal (that has not already been assigned) to minimize the number of additional parts required. Use only SSI gates and add the minimum number necessary. Show all work. (The below two problems are independent.)
a) $\boldsymbol{R}_{\mathbf{0}}=\overline{(\boldsymbol{O}+\overline{\boldsymbol{B}})}+(\overline{\boldsymbol{O}} * \boldsymbol{T}) \boldsymbol{S}$

5 min
. Determine each of the below equations in lexical order. For parts a through c, assume that the dashed line is not there.
a) $\mathrm{Y}_{0}=\mathrm{f}_{1}(\mathrm{~A})$ and $\mathrm{Y}_{1}=\mathrm{f}_{2}(\mathrm{~A})$.

$$
Y_{0}=
$$

b) $F=f_{3}\left(B, Y_{0}\right)$
$\mathrm{F}=$

Exam 1

Last Name, First Name
[9\%] 9. Use the below equation for this problem.
$Y=(\bar{A}+\bar{B}+\bar{C}+\bar{D}) *(\bar{A}+\bar{B}+C+D) *(\bar{A}+B+C) *(\bar{A}+B+D) *(\bar{A}+C+\bar{D}) *(A+B+\bar{C}+D) *(A+\bar{B}+\bar{D})$
(8\%)
a) Fill in the below K-maps for finding the MPOS (on the left) and MSOP (on the right).

7 min Put DON'T CARE (X) in the ABCD=0010 and 1011 locations, i.e., the textbook's d(2) and $d(11)$. Now determine the MPOS and MSOP equations
AB
CD

AB
CD

$$
\mathrm{Y}_{\mathrm{MPOS}}=
$$

$$
\mathrm{Y}_{\text {MSop }}=
$$

(1\%) b) Are the above equations equivalent? Why or why not?
1 min \qquad
\qquad
\qquad
\qquad
\qquad
[12\%] 10. Solve the below problems.
c) Draw a functional block diagram for a 1-bit ALU with the functions in the below table. Note that for addition, there is both a carry input (Cin) and a carry output (Cout).

S1	S0	Function
0	0	A or B
0	1	not B
1	0	A plus B plus CIN
1	1	A equiv B

(4\%) 10. d) Design the 1-bit ALU described above using ONLY SSI or MSI gates. Functional block diagrams from parts a and b should be used instead of the circuit designs of parts a and b. For other parts of the design, use circuit elements. The Cout in this design should equal 0 unless addition is used, and in that case it should be equal to the Cout from the adder.
e) Design a 2-bit ALU using described above using ONLY previous designs in this problem. Functional block diagrams in parts a, b, and c should be used instead of the circuits designed circuits. The Cout in this design should equal 0 unless addition is used, and in that case it should be equal to the Cout from the adder.
[8\%] 11. Design the following multiplexers. The select lines must work as they normally do in selecting the proper MUX inputs.
a) Design a 6-input MUX with a non 3 -state enable using only MUXes of the type given. Design the minimum cost solution, i.e., use as few of these MUXes as possible. If possible, use nothing else! (If this is not possible, use the minimum number of additional SSI gates.) The active-high inputs are X_{J}, the active-high select lines are S_{K}, the activelow non tri-state enable is E, and the active-high output is Y.
 possible, use nothing else! (If this is not possible, use the minimum number of additional SSI gates.) The active-high inputs are X_{J}, the active-high select lines are S_{K}, the activelow tri-state enable is E, and the active-high output is Y.

