Page $1 / 12$

Instructions:

Exam 1

May the Schwartz be with you!

- Turn off all cell phones and other noise making devices and put away all electronics.
- Show all work on the front of the test papers. Box each answer. If you need more room, make a clearly indicated note on the front of the page, "MORE ON BACK", and use the back. The back of the page will not be graded without an indication on the front.
- You may not use any notes, HW, labs, other books, scratch paper, or calculators.
- This exam counts for $\mathbf{3 0} \%$ of your total course grade.
- Read each question carefully and follow the instructions.
- The point values for problems may be changed at prof's discretion.
- You must pledge and sign this page in order for a grade to be assigned.

Last Name, First Name

SubjuGator in 2018

- CLEARLY write your name at the top of this test page (and, if you remove the staple, all others). Be sure your exam consists of $\underline{12}$ distinct pages. Sign your name and add the date below. (If we struggle to read your name, you will lose points.)
- For anything undefined, if necessary, state a reasonable assumption.
- Failure to follow the below rules will result in NO partial credit

Happy 4th!

Please read carefully.

- The base (radix) of all number should be indicated with a subscript or prefix.
- Truth tables, voltage tables, and timing simulations must be in counting order.
- Label the inputs and outputs of each circuit with activation-levels.

Go Gators!

- For each mixed-logic circuit diagram, label inputs of each gate with the appropriate logic equations.
- For K-maps, label each grouping with the appropriate equation.
- Labels inside of parts must be provided whenever it can be confusing, e.g., they MUST be specified for MUXes and Decoders, but not for NANDs and ORs.
- For each circuit design, equations must not be used as replacements for circuit elements.
- Boolean expression answers must be in lexical order, (i.e., /A before A, A before $B, \& D_{3}$ before D_{2}).

PLEDGE: On my honor as a University of Florida student, I certify that I have neither given nor received any aid on this examination, nor I have seen anyone else do so.

SIGN YOUR NAME
DATE (3 July 2018)

Regrade comments below: Give page \# and problem \# and reason for the petition.	Pages	Available	Points	
	$2-3$	19		
	4	10		
	5	9		
	6	12		
	7	12		
	$8-9$	16		
	$10-11$	14		
		12	8	

[19\%] 1. Solve the following arithmetic problems. Remember to show ALL work here and in EVERY problem on this exam.
a) Determine the unsigned hexadecimal, octal, binary, and BCD representations of the number 567_{10}. (I strongly recommend that you check your work before moving on to the next problem.)

Binary: \qquad
Octal: \qquad
Hex: \qquad
BCD: \qquad
b) Determine the 12-bit signed magnitude, 1's complement, and 2's complement representations of the decimal number -56710. (I strongly recommend that you check your work before moving on to the next problem.)

Signed Mag: \qquad
1's Comp: \qquad
2's Comp: \qquad
(2%) c) What is -567_{10} in 11-bit 2 's complement? You must use binary numbers to derive and 3 min determine the solution (not decimal). Hint: $2048=2^{11}, 1024=2^{10}$, and $512=2^{9}$. You must show all work.
(3\%) 1. d) What is $-567_{10}-567_{10}$ in 11-bit 2 's complement? You must show all work. 3 min

$$
(-56710-56710)_{2} 11 \text {-bit 2's comp: }
$$

\qquad
[6\%] 2. Directly implement the below equation with a mixed-logic circuit diagram, i.e., 6 min do NOT simplify the equation. Use only gates of the type shown here (or their mixed-logic equivalents). Minimize the total number of gates. You are free
 to choose the activation levels that are not already specified and that will optimize your solution. Check twice that you are correctly reading the equation!

$$
U F=\overline{\overline{\{[(I+\bar{S}) * \overline{T * \bar{H} * E}] * B\}}+E * \overline{(S+\bar{T})}}
$$

I() \qquad
S(H)
$\mathrm{T}(\mathbf{L})$ \qquad
H()
$\mathrm{E}(\mathbf{H})$
B(L)
$\mathrm{E}(\mathbf{H})$
S(H) \qquad
$\mathrm{T}(\mathbf{L})$
[4\%] 3. Simplify the following logic equation using only Boolean identities, laws or theorems. (Note that this equation is NOT the same as in the previous problem. Show all steps. Give the solution in MSOP or MPOS form.

$$
U F=\overline{\overline{\{[(I+\bar{S}) * \overline{T * \bar{H} * E}] * B\}}+[B+E * \overline{(S+\bar{T})}]}
$$

[6\%] 4. What is the (SOP or POS) equation for the output of the circuit for part a? For this problem, you do NOT need to use lexical order. Do NOT simplify.
(4\%) 5 min
a)

(2\%) b) If possible, add a single SSI (not
2 min MSI, i.e., not an open-collector gate) gate to design a circuit for

$$
\boldsymbol{G o}=\overline{\boldsymbol{V}} * \overline{\boldsymbol{F}} * \boldsymbol{S u b}
$$ where Go and Sub are active-low. If not possible, add the minimum number of additional SSI gates.

[9\%] 5. Use the given multiplexers to design mixed-logic circuit diagrams that solve each of the

2 min
(4\%) 6 min
c) $\boldsymbol{U} \boldsymbol{F}_{2}=\boldsymbol{B} *(\overline{\boldsymbol{A}}+\boldsymbol{S})+[\boldsymbol{B} *(\boldsymbol{A}+\boldsymbol{L})] * \boldsymbol{L} \quad$ (No enable!)

4 min below problems. Be careful to read the equation correctly. Choose activation levels for each signal (that has not already been assigned) to minimize the number of additional parts required. Use only SSI gates and add the minimum number necessary. Show all work. (The three below problems are independent, but the equations are identical.)
a) $\boldsymbol{U} \boldsymbol{F}_{\mathbf{0}}=\boldsymbol{B} *(\overline{\boldsymbol{A}}+\boldsymbol{S})+[\boldsymbol{B} *(\boldsymbol{A}+\boldsymbol{L})] * \boldsymbol{L}$
b) $\boldsymbol{U} \boldsymbol{F}_{1}=\boldsymbol{B} *(\overline{\boldsymbol{A}}+\boldsymbol{S})+[\boldsymbol{B} *(\boldsymbol{A}+\boldsymbol{L})] * \boldsymbol{L} \quad$ (Note the $\underline{\mathbf{N O N}}$ tri-state enable.)

[12\%] 6. Use the below equation for this problem.

$$
Y=(\bar{A}+\bar{B}+\bar{C}+\bar{D}) *(\bar{A}+B+C) *(\bar{A}+B+D) *(A+\bar{B}+\bar{D}) *(A+B+C+\bar{D}) *(B+\bar{C}+\bar{D})
$$

a) Simply the above equation and put the result in MPOS and MSOP form.

8 min
AB
CD \qquad
$\mathrm{Y}_{\text {MPos }}=$
$\mathrm{Y}_{\text {MSOP }}=$
(3\%)
4 min
b) If the term $\mathrm{ABCD}=1111$, i.e., the textbook's d(15), are DON'T CARE (X), determine the new MSOP and MPOS equations
AB
CD \qquad
AB
CD
\qquad
$\mathrm{Y}_{\text {MPOS }}=\quad \mathrm{Y}_{\text {MSOP }}=$
$(1 \%) \quad$ c) Are the above equations (in part b) equivalent? Why or why not?
1 min
[12\%] 7. Use the below circuit for this problem.
c) Draw a layout of the entire above circuit including each of the switch and LED circuits from part b and the logic from part a. A layout shows each of the parts as they appear on the breadboard. Include the needed switches, resistors (SIP and/or DIP), and LEDs. I don't know what chip(s) you used, so assume whatever pin numbers you want (for the 14-pin chip), along with the normal power and ground pins. Label the pin numbers in part a. Label the wires for each of the inputs and outputs ($\mathrm{A}, \mathrm{B}, \mathrm{C}$, and X) with their activation levels. I suggest that you use labels to replace crossing wires. The dark part of the switches in the figure to the right are the parts that you move to change the switch's closure state. Draw the switches in their true positions. For any other required parts, you may use any size parts that you need.

[16\%] 8. Design a system that "counts" as shown. The system must

| | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | asynchronously go to state " 3 " when Start (active-low) goes true. E (extend) is an active-high signal that determines the next "count" after " 0 ," as shown in the figure. Use a T-FF for the most significant bit of your design, a JK-FF for the least significant bit, and D-FF(s) for any other bits you might need. An active-high output, Yay should be true when the "count" is " 1 ." All other outputs should be active-high. Note: All the given FFs have asynchronous clear and set inputs as shown.

a) Draw a functional block diagram (showing all the inputs, all the outputs, and the functional blocks). Put your design in the dashed box with the inputs and outputs going into or out of the box, on the left or right, respectively. This is not a circuit diagram.

Outputs

b) Complete the next-state truth table (in counting order).
(7\%)

	.											

(3%) 8. c) Find the required simplified (MSOP or MPOS) equations for \mathbf{J}, \mathbf{K}, and Yay. For the other
5 min equations, you do not need MSOP or MPOS equations, but you must provide correct SOP or POS for each.
d) Design the complete circuit, using the T-FF, D-FF(s), and JK-FF(s), as described previously. All inputs and outputs of the circuit should be clearly indicated coming into or out of the below dashed box. For non-required circuits, use a box specifying inputs and outputs. Your design must include the circuitry necessary to asynchronous go to state " $\mathbf{3}$ " when Start (active-low) goes true.

[14\%] 9. In this problem you will design a 3-to-8 decoder with a single activehigh enable. Two 2-to-4 and two 1-to-2 decoders, all with two enables, one active-high and one active-low, are shown below.
(1\%)
2 min
(8\%)
6 min
a) Draw a functional block diagram of a 3-to-8 decoder with a single active-high enable, \mathbf{E}. The other inputs ($\mathbf{X}_{\mathbf{J}}$) must be active-high and the outputs ($\mathbf{Y}_{\mathbf{K}}$) must be active-low.
b) Design the 3-to-8 decoder with a single active-high enable below, using only the below parts. (If you can not solve it this way, add additional necessary parts.)

(1\%) 9. c) Draw a functional block diagram of the 1-to-2 decoder shown here $2 \mathrm{~min} \quad$ (and used in the previous problem).

4 min
d) Design the 1-to-2 decoder of parts b and c using only SSI components. Show ALL your work.
[8\%] 10. In this problem you will design an 8-input multiplexer with a single active-low tri-state enable.
2 min Two 4-input multiplexers, each with three tri-state enables (one active-high and two active-low), are shown below. Two 2-input multiplexers, each with two tri-state enables (one active-high and one active-low), are shown.
a) Draw a functional block diagram of an 8 -input multiplexer with a single active-low tri-state enable. All other inputs and outputs are active-high. The inputs are X and S (with subscripts), the output is Y .
b) Design the 8 -input multiplexer with a single active-low tri-state enable. Use the minimum number of the parts below. (If you can not solve it this way, add additional necessary parts.)

2-input MUX with

