University of Florida
Department of Electrical \& Computer Engineering
Page 1/11

Exam 2

- You may not use any notes, HW, labs, other books, or calculators. PropaGator 2: UF MIL's potential $2^{\text {nd }}$ robot boat.

- The point values for problems may be changed at prof's discretion.
- You must pledge and sign this page in order for a grade to be assigned.
- Put your name at the top of this test page (and, if you remove the staple, all others). Be sure your exam consists of 11 distinct pages. Sign your name and add the date below.
- Failure to follow the below rules will result in NO partial credit
- Truth tables, voltage tables, and timing simulations must be in counting order.
- Label the inputs and outputs of each circuit with activation-levels.
- For each mixed-logic circuit diagram, label inputs of each gate with the appropriate logic equations.
- For K-maps, label each grouping with the appropriate equation.
- For each circuit design, equations must not be used as replacements for circuit elements.
- Boolean expression answers must be in lexical order (i.e., /A before A, A before $B, \& D_{3}$ before D_{2}).

PLEDGE: On my honor as a University of Florida student, I certify that I have neither given nor received any aid on this examination, nor I have seen anyone else do so.

DATE (6 November 2013)

Regrade comments below: Give page \# and problem \# and reason for the petition.	Page	Available	Points
-			
-	$2-3$	5	
-	4	17	
-			
-	$5-6$	22	
-			
-	7-8	20	
-			
-	9-11	26	
-	TOTAL	100	
.			

[15\%] 1. Design a system that sequences through the following outputs: $\mathrm{C}_{16}, 8_{16}, 7_{16}, \mathrm{C}_{16}, 8_{16}, 7_{16}$, etc., 3 min with each of these output bits active-low. The system must asynchronously reset to output the "C16" when Start (active-low) goes true. When the sequence output is $\mathbf{8}_{16}$, the activehigh output \mathbf{Z} should be true. Use a T-FF for the most significant bit of the design, a JK-FF for the least significant bit, and a D-FF for any other bits you might need. Note: All the given FFs have active-low asynchronous clear and set inputs. Use the minimum number of flip-flops and then try to minimize the number of SSI gates necessary to solve this problem. (Other than the flip-flops, no MSI or LSI gates, PLDs, or ROMs allowed.)
(\%)
5 min
a) Complete the next-state truth table. You may not need all the rows and/or columns.

b) Find the required simplified (MSOP or MPOS) equations.

Exam 2 components, but using the T-FF and JK-FF (and D-FF(s), if necessary) as described previously. All inputs and outputs of the circuit should be clearly indicated coming into or out of the below box. Your design must include the circuitry necessary to asynchronous re-start the system at output " $\mathbf{C}_{\mathbf{1 6}}$ " when the Start (active-low) signal goes true and show the active-high output \mathbf{Z} (which is true when the output is $\mathbf{8}_{16}$).
Inputs
3. Answer the following questions about a state machine designed with one EEPROM, one T flip-flop, one J-K flip-flop, and any other necessary flip-flops of type D.
4. Write the complete VHDL equation (one line) for the following equation. Do NOT simplify.

$$
G=A+\bar{T} * \overline{\overline{O * R}+S}
$$

5. Answer the following questions. a) When is a Mealy output required?

1 min
2. Draw a complete mixed-logic circuit diagram including two switch circuits, one for an active-low input signal, $\mathbf{X}(\mathbf{L})$ and one for an active-high input, $\mathbf{Y}(\mathbf{H})$. to generate the equation $\mathrm{W}=\mathrm{X}^{*} / \mathrm{Y}$, with $\mathbf{W}(\mathbf{L})$. Draw the switches in their true positions. Draw an LED circuit for the active-low output, W(L). Do NOT draw a layout.
a) What is the size of the EEPROM (addresses \times data bits) if the state machine has 3 inputs, 2 outputs, and 5 states? Provide numbers only, i.e, 37×9, NOT expressions like $37 \times \sqrt[4]{37}$.
b) What is the size of the EEPROM (addresses \times data bits) if the state machine has 1 input, 3 output, and 13 states? Provide numbers only, i.e, 37×9, NOT expressions like $3^{7} \times \sqrt[4]{37}$.
\qquad
b) As alternative to using a Mealy part 5a, describe (if possible) how to use a Moore output to accomplish the required task. What is the major disadvantage of this solution?

Wednesday, 6 November 2013
Exam 2
[22\%] 6. Given as many $\mathbf{6 4} \times \mathbf{4}$ SRAMs as needed, up to three $\mathbf{3 2} \times \mathbf{4}$ EEPROMs, and up to one $\mathbf{1 2 8} \times \mathbf{8}$
3 min FLASH EEPROM, design the memory module described below, with an active-low chip enable, $\mathbf{C E}(\mathbf{L})$. The device should begin at address zero with a $64 x 8$ memory block made up of $\mathbf{6 4 \times 4}$ of SRAM AND $\mathbf{6 4 \times 4} \mathbf{E E P R O M}$. Immediate follow this memory block with $\mathbf{1 2 8 \times 8}$ FLASH EEPROM. Add the minimum number of memory devices and the minimum number of additional SSI components required. (Other than the memory, no other MSI or LSI components are allowed.)

b) What are the address and data ranges for each of the memory components drawn above (in binary and in hex)?
32×4 EEPROM(s):

64x4 SRAM(s):
(\%) 6. c) Design the required memory device circuit diagram below. Add the minimum number

8 min

 of additional memory components and SSI gates necessary (no MSI gates, LSI gates or PLDs). Add memory components and address and data subscripts as needed; cross out unneeded address and data pins. Use labels instead of wires for the design. Also, write the equations for each CS at the bottom of the page. Show all connections with either labels or wires (labels are preferred), just as in Quartus. Don't forget the system's active-low chip enable, $\mathbf{C E}$, and $\mathbf{R} / \sim \mathbf{W}$ [pronounced read, write not, with $R(H)$ and W(L)].

Equations:
[20\%] 7. Use the below circuit diagram and the ROM contents table below to solve this problem. Note that the addresses and data in the table are in hexadecimal [base 16]. (This problem is very similar to a problem in homework 8 that was also done in class.) Note that a T-FF, a D-FF, and a JK-FF are utilized in the below circuit.
(16%) a) Derive the ASM chart for this circuit. Show ALL work, i.e., use at least part of the 15 min below table. You can draw your ASM on this page or on the next page.

				Contents of ROM (Hex)												
					Addr	Data										
				$\mathbf{0}$	$\mathbf{2 3}$											
				$\mathbf{1}$	$\mathbf{2 3}$											
					$\mathbf{2}$	$\mathbf{3 4}$										
				$\mathbf{3}$	$\mathbf{1 5}$											
				$\mathbf{4}$	$\mathbf{1 4}$											
				$\mathbf{5}$	$\mathbf{0 4}$											
				$\mathbf{6}$	$\mathbf{0 9}$											
				$\mathbf{7}$	$\mathbf{0 9}$											
					$\mathbf{8}$	$\mathbf{1 E}$										
				$\mathbf{9}$	$\mathbf{3 A}$											
				A	$\mathbf{0 7}$											
				\mathbf{B}	$\mathbf{0 7}$											
				C	$\mathbf{0 6}$											
					D	$\mathbf{0 6}$		$\mathbf{0 5}$								

7. a) (Repeated from previous page.) Derive the ASM chart for this circuit. Show ALL work, i.e., use at least part of the above blank table. You can draw your ASM on this page or on the previous page.
b) If the input X is active-low, explain how this will change the ASM (if at all). Do NOT redraw the ASM.
\qquad
\qquad
\qquad
c) If the output Y0 is active-low, redraw the first two states of the ASM. Do NOT redraw the entire ASM, just redraw the first two states.
8. A block diagram of your lab 6 is shown here, along with two tables from the same handout, one of which is modified.

(10\%)
a) Assume that you can add a small additional circuit to calculate the value of Cout that behaves as follows and as described in the MSC Action table above. The value of Cout should be 0 if its value is not described in the above table. Determine the equation for Cout. You do NOT need to simplify the equation.
(\%) 8. b) Exchange the values in registers A and B , i.e., if $\mathrm{A}=3$ and $\mathrm{B}=7$ before the below operations, then afterwards $\mathrm{A}=7$ and $\mathrm{B}=3$. (Your algorithm should still work even if
5 min the two numbers are changed.) If this is not possible, then say so. Describe what is accomplished in each step. Use the minimum number of clock cycles. Give appropriate values for ALL signals.

$\#$	MSA	MSB	MSC	Input	Cin	RegA	RegB	Output	Cout	RegA+	RegB+	Output +	Cout+
1						0011	0111						
2													
3													
4													
5													
6													
7													

1.
2. \qquad
3. \qquad
4. \qquad
5. \qquad
6.
7.

c) Use the table below to add two numbers, 3 and 7, and put the results in register A. (Your algorithm should still work even if the two numbers are changed.) Describe what is accomplished in each step. Use the minimum number of clock cycles. Give appropriate values for ALL signals.

$\#$	MSA	MSB	MSC	Input	Cin	RegA	RegB	Output	Cout	RegA+	RegB+	Output +	Cout
1						1111	0110						
2													
3													
4													
5													
6													
7													

1.
2.
3. \qquad
4.
5. \qquad
6.
7.

\qquad
\qquad
(\%) 8. d) Use the table below to SUBTRACT $\$ 5$ from \$E. (Your algorithm should still work even if the two numbers are changed.) Store your solution in register B. Describe what is
5 min accomplished in each step. Use the minimum number of clock cycles. Give appropriate values for ALL signals.

$\#$	MSA	MSB	MSC	Input	Cin	RegA	RegB	Output	Cout	RegA+	RegB+	Output +	Cout+
1						1111	1111						
2													
3													
4													
5													
6													
7													

1. \qquad
2. \qquad
3. \qquad
4. \qquad
5. \qquad
6. \qquad
7. \qquad
e) Design a circuit that can be added to your circuit design to "remember" the last carry output, the modified Cout from part a. "Remember" the Cout any time one of the three functions that can set the value (the last three in the MUXC Action table) are executed. Call the remembered output R_Cout. Specify all the inputs and outputs for this circuit.
