Instructions:

May the Schwartz be with you!

UF's NaviGator AMS team.

Please read carefully.

- This exam counts for 20% of your total grade.
- Read each question carefully and follow the instructions.
- You may not use any notes, HW, labs, other books, or calculators.
- The point values for problems may be changed at prof's discretion.
- You must pledge and sign this page in order for a grade to be assigned.
- CLEARLY write your name at the top of this test page (and, if you remove the staple, all others). Be sure your exam consists of $\underline{11}$ distinct pages. Sign your name and add the date below. (If we struggle to read your name, you will lose points.)
- Failure to follow the below rules will result in NO partial credit
- The base (radix) of all number should be indicated with a subscript or prefix.
- Truth tables, voltage tables, and timing simulations must be in counting order.

Good luck \& Go Gators!!!

- Label the inputs and outputs of each circuit with activation-levels.
- For each mixed-logic circuit diagram, label inputs of each gate with the appropriate logic equations.
- For K-maps, label each grouping with the appropriate equation.
- Labels inside of parts must be provided whenever it can be confusing, e.g., they MUST be specified for MUXes and Decoders, but not for NANDs and ORs.
- For each circuit design, equations must not be used as replacements for circuit elements.
- Boolean expression answers must be in lexical order, (i.e., /A before A, A before B, \& D_{3} before D_{2}).

PLEDGE: On my honor as a University of Florida student, I certify that I have neither given nor received any aid on this examination, nor I have seen anyone else do so.

SIGN YOUR NAME
DATE (9 November 2016)

| Regrade comments below: Give page \# and problem \# and reason for the petition. | Page Available Points
 . $2-3$ 17

 . 4 14
 . $5-6$ 22
 . 7 15
 . $8-10$ 20
 . 11 12
 TOTAL 100
 . | |
| :--- | :---: | :---: | :---: |

[17\%] 1. In this problem you will ultimately design a circuit to
a) Complete the next-state truth table. You may not need all the rows and/or columns. Use wild cards (*) where possible. JK-FF inputs. (You do NOT have to find the other equations.)

b) Find the required VHDL equations (no need to simplify) for determining \mathbf{B} and the

Exam 2

(2\%) d) What changes are necessary if X and B are active-high instead of active-low? Describe

1. c) Design the complete mixed-logic circuit diagram, using a JK-FF and T-FF (and D-FF(s), if necessary) as described previously. Use a block diagram for combinatorial logic (like you did in Lab 5 when you created a graphical symbol in Quartus); label all inputs and outputs as Quartus would when a graphical symbol is created. All inputs and outputs of your circuit design should be clearly indicated coming into or out of the below box. Your design must include the circuitry necessary to asynchronously cause the system to go to state $\mathbf{S 2}$ when the Start (active-high) signal goes true.

2. Draw a complete mixed-logic circuit diagram to generate the below equation. The circuit must include three switch circuits, one for an active-high input signal $\mathbf{W}(\mathbf{H})$, one for an active-low input $\mathbf{I}(\mathbf{L})$, and one other for input \mathbf{N}.

$$
\text { Cubs }=\overline{W+I * \bar{N}}
$$

Use the minimum number of gates on only a single SSI chip (i.e., a single 74HCxxx). Draw the switches in their true positions. Draw an LED circuit for the active-high output, Cubs(H). Do NOT draw a layout.
4. Two of the four modes in VHDL are called in and out.
a) What does the mode inout mean, and for what type of device is it used?
b) What does the mode buffer mean, and for what type of device is it used?

Exam 2

[22\%] 5. Given as many of each of the following as needed, design the memory module described 3 min below, with an active-low chip enable, CE(L): 32×4 SRAMs, $\mathbf{1 6 \times 8}$ EEPROMs, and $\mathbf{1 6 \times 4}$ FLASH EEPROMs, The memory module should begin at address $\mathbf{\$ 1 0}=\mathbf{1 0} \mathbf{1 6}$ with 32×4 of Flash at the same addresses as 32×4 SRAM followed immediately by $\mathbf{1 6 \times 8}$ of EEPROM. Add the minimum number of memory devices required. Addresses outside of those required (but within \$0 to \$FF) must be unaffected.

a) Draw vertical and horizontal lines in the box below and label each resulting box with the memory type and size, using only the defined types and sizes given above. Also, fill in the subscript on the D (top left) and the maximum address (bottom left and right).

b) What are the address and data ranges for each of the memory components drawn above (in binary and in hex)?

Exam 2

Last Name, First Name
(\%) 5. c) Design the required memory device circuit diagram below. Use the single decoder 8 min shown (bottom right) and add the minimum number of additional memory components and SSI gates necessary (but no other MSI gates, LSI gates, or PLDs). Add memory components and address and data subscripts as needed; cross out unneeded address and data pins. Use labels instead of wires for the design. Also, write the equations for each CS at the bottom of the page. Show all connections with either labels or wires (labels are preferred), just as in Quartus. Don't forget the system's $\mathbf{C E}(\mathbf{L}), \mathbf{R}(\mathbf{L})$, and $\mathbf{W}(\mathbf{L})$. Note: $\mathrm{R}(\mathrm{L})$ and $\mathrm{W}(\mathrm{L})$ are never true at the same time.

Equations:
[6\%] 6. What are the MSOP or MPOS equations for the following circuits? Please look at each circuit carefully.
(\%)
4 min
a)

$(\%)$
4 min
b)

[9\%] 7. Design an 8-input MUX with a tri-state enable using only 2-input MUXes with single tristate enables and a one more single device. This other device can be any one of the following MSI devices: DeMUX, Decoder, Encoder, Open-Collector Gate, or Tri-State Buffer. Draw a functional block diagram and then a circuit diagram. (If you can not solve the problem as stated, i.e., with one additional MSI device, then use SSI gates in addition to the 2-input MUXes.)
[20\%] 8. A block diagram and tables from your Lab 4 are shown below.

(4\%)
5 min
a) Assume that you can add a small additional circuits to determine when REGA is equal to zero and another small circuit to determine when REGB is (2's complement) negative. Design a circuit for each of these active-high outputs (Aeq0 and Bneg, respectively). Show ALL work.

Wednesday, 9 November 2016
Exam 2
(5\%) 8. c) Calculate $\mathbf{\$ D}+\mathbf{\$} \mathbf{C}^{*}$, putting the result in RegA (where + is addition and $*$ is multiplication). Describe your algorithm (plan) and then what is accomplished in each
5 min step. Use the minimum number of clock cycles. Give appropriate values for ALL signals. (Your algorithm should still work if all of the numbers are changed.)

$\#$	MSA	MSB	MSC	Input	Cin	RegA	RegB	Output	Cout	RegA+	RegB+	Output + Cout +	
1						1011	1111						
2													
3													
4													
5													
6													

Plan: \qquad

1. \qquad
2. \qquad
3. \qquad
4.
5.
6.

(5\%) 8. b) Subtract 7 from 3, i.e., $X=3-7$; put the resulting difference in RegB. Describe your algorithm (plan) and then what is accomplished in each step. Use the minimum number of clock cycles. Give appropriate values for ALL signals. (Your algorithm should still work even if the two numbers, i.e., the 7 and the 3 are changed.)

$\#$	MSA	MSB	MSC	Input	Cin	RegA	RegB	Output	Cout	RegA+	RegB+	Output + Cout +	
1						0101	1010						
2													
3													
4													
5													
6													

Plan:

1. \qquad
2. \qquad
3. \qquad
4. \qquad
5. \qquad
6. \qquad

Exam 2

(6\%) 8. d) When discussing Lab 6 in class, I have shown that we create assembly language instructions by adding a controller to the Lab 4 hardware. A JMP instruction (e.g., JMP Addr3:0) causes the processor to jump to the specified address (Addr3:0). All microprocessors have instructions (often known as branch instructions) that ask a question that will result in either a jump to another address or continuation to the next address. A "branch if RegA=0" instruction, (i.e., BrAeq0 Addr3:0) will cause the CPU to jump to address Addr3:0 if RegA = $\mathbf{0}$ and to increment the program counter (i.e., PC3:0 \leftarrow PC3:0 + 1) if RegA $\neq \mathbf{0}$.

Design a circuit, using the below 4-bit counter, to either load the counter with a 4-bit address or increment the counter, depending on the value of Aeq0 (determined in part a).

[12\%] 9. Use the below circuit diagram and the ROM contents table below to solve this problem. Note that the addresses and data in the table are in hexadecimal [base 16]. (This problem is very similar to a problem in Homework 8, which was also solved in class.) Note that a DFF and a T-FF are utilized in the below circuit.

Derive the ASM chart for this 14 min circuit. Show ALL work, i.e., use at least part of the below table. Draw your ASM in the space provided on this page.

			Contents of ROM (Hex)												
				Addr	Data										
				O	E										
			1	9											
				2	3										
			3	$\mathbf{8}$											
			4	F											
				5	F										
				6	5										
			7	5											

