
University of Florida EEL 3701 — Spring 2025 Dr. Eric M. Schwartz
Department of Electrical & Computer Engineering Revision 0 21-Feb-25
Page 1/6 Lab 4: ALU and RALU

OBJECTIVES
• Understand the use of multiplexers as data selectors.
• Design an arithmetic logic unit (ALU) circuit by combining SSI and MSI components.
• Augment the ALU with registers (a sequential datapath) and additional MUX components (for steering logic) to

create an RALU.

INTRODUCTION

The objective of this lab is to design a simple arithmetic logic unit (ALU) and then to expand and augment the
simple ALU. The augmentation of the ALU with registers (creating an RALU) and the addition of a few
multiplexers will result in the creation of a system that can be augmented with a controller to form a simple central
processing unit (CPU). In section 4 of the RALU part of this lab, you will act as the controller for the RALU. In
Lab 6, a controller circuit will replace you in the creation of a very simple 4-bit CPU. The 4-bit CPU in Lab 6 will
be expanded into an 8-bit CPU, called the Gator CPU (G-CPU or GCPU) in Lab 7.

LAB STRUCTURE
In this lab, you will design the core functionality of a simple CPU by creating two ALUs. In § 1, you will design a
purely combinational ALU with multiple functions. In § 2, you will add registers to this ALU to create the core
functionality of the GCPU.

REQUIRED MATERIALS
• Your entire lab kit (including your DAD)
• UF's DAD Waveforms Tutorial
• DE10-Lite Pins
• Useful Quartus Components:
o In “others | maxplus2” library
 74153: Two 4-input MUX’s (recommended)
 74151: 8-input MUX (recommended)
 74283: 4-bit Adder (recommended)
 7474: Dual D-FF (not recommended)
 74175: Quad D-FF (not recommended)

o In “primitives | storage” library
 dff (recommended)

o In “primitives | other” library
 vcc, gnd

• Document on website: Explanation_of_Table 4

SUPPLEMENTAL MATERIALS
• PLD on Breadboard Programming WARNING!
• DE10-Lite Schematic
• DE10-Lite Manual

https://mil.ufl.edu/3701/docs/Waveforms_tutorial.pdf
https://mil.ufl.edu/3701/docs/DE10/DE10-Lite_Pins.pdf
https://mil.ufl.edu/3701/labs/Lab4_explanation_of_Table4.pdf
https://mil.ufl.edu/3701/programming_warning.html
https://mil.ufl.edu/3701/docs/DE10/DE10-Lite_Schematic.pdf
https://mil.ufl.edu/3701/docs/DE10/DE10-Lite_User_Manual.pdf

University of Florida EEL 3701 — Spring 2025 Dr. Eric M. Schwartz
Department of Electrical & Computer Engineering Revision 0 21-Feb-25
Page 2/6 Lab 4: ALU and RALU

PRE-LAB PROCEDURE

1. ARITHMETIC LOGIC UNIT (ALU)

In this part of the lab, you will design a 4-bit ALU
(Lab4_ALU). The ALU has two 4-bit inputs (A3-0 and B3-0),
two function-select inputs (S1-0), and a carry input (Cin). The
ALU has a 4-bit function output (F3-0) and a carry output
(Cout) as described Table 1, shown in Figure 1 and Figure 2.

You must design independent circuits for each of these actions. The
function-select inputs, S1-0, determine which F3-0 is used for the ALU
output (see Table 1 and Figure 2). The carry output (Cout) should be set
only when an addition causes a carry output and the SUM function is
selected. In all other operations, the carry output should be false.

It is often helpful to create extra output signals so that your circuit
design is easier to debug (in simulation and in hardware). I suggest
adding outputs for each of the functional blocks (Fnot , For , Fsum , and
Fand). Using a functional compilation and simulation will also execute
much faster in Quartus. A functional compilation and simulation is independent of the chip chosen. I usually start
all my designs (when possible) by functional compiling my circuits before I even attempt to fit the design onto a
particular chip (full compilation). After you have thoroughly tested your circuit through simulation, you can remove
the unneeded outputs if it is necessary to make the design fit in PLD (which for us is the DE10-Lite’s PLD). Note
that when you perform a functional compilation and functional simulation, there is no limit to the amount of output
signals you can have; but once you do a full simulation, you are limited by the size of the PLD that is being
programmed. Functional compilation is also much faster than a full compilation (and the same is true for a function
simulation over a timing simulation). You will NOT demo the design in this section with hardware, but you will
simulate it.

1. Design the ALU in Quartus (Lab4_ALU). There is

no need to design an adder; just use the 74’283
described in the Materials section of this
document. Similarly, you can use MUXes
provided by Quartus in your design.

2. Simulate the circuit identifying that it works by
annotating your simulation. Please do NOT
make a simulation that includes ALL possible
input combinations. Only include enough test

cases to show that every operation of your ALU
works as expected.

3. Each of the above items, including circuit
schematic and annotated Quartus simulation
results should be part of the Canvas-submitted lab
document. (Of course, you should also submit
your archive file.)

4. You do NOT need to build this circuit.

Figure 2: Function selection of ALU.

2

00 01 10 11

4

S MUX

4

Fand

4

Fnot

4

For

4

Fsum

Figure 1: ALU functional block diagrams (with all

signals active-high).

ALU

ABCin

S

44

2

FCout

4
2

F4

S

ALU

4A

4B
Cin

Cout
S1:S0 Action Equation

00 complement of A F = /A
01 bit-wise OR F= A or B
10 Sum (w/ Cin), Cout F = A + B + Cin , Cout
11 bit-wise AND F = A and B

Table 1. ALU functions.

University of Florida EEL 3701 — Spring 2025 Dr. Eric M. Schwartz
Department of Electrical & Computer Engineering Revision 0 21-Feb-25
Page 3/6 Lab 4: ALU and RALU

2. REGISTERED ALU
A block diagram of the RALU you will design is shown
in Figure 3. By adding a controller (in Lab 6), we will
turn the RALU into a simple CPU.

The device has one 4-bit wide INPUT bus and one 4-bit
wide OUTPUT bus. These buses are used to bring data
to and from the ALU. The OUTPUT bus is fed back for
possible re-entry to the system.

REG A and REG B are 4-bit wide registers (i.e., four D
Flip-Flops) that are used to hold data originating from
MUX A and MUX B. MUX A and B (each containing
four 4-input multiplexers) are used to connect a
particular bus to REG A and REG B, respectively. The
buses are connected to REG A and REG B as described
in Table 2.

The outputs of REGA and REGB are thus fed back to
MUX A and MUX B inputs as well as to a
combinational logic block. The combinational logic
block is used to perform the following operations on the data in REGA and REGB: complement, ANDing, ORing,
addition, and shifts (both left and right). The signals REGA and REGB are system outputs.

MUX C consists of four 8-input multiplexers. They are used to select a particular operation to put onto the output
bus. The three select lines MSC2:0 function as shown in Table 3 (where the most significant bit is on the left).

The carry output, Cout, should come directly from the adder circuit (with no additional circuit necessary).

1. Draw a complete and detailed functional block
diagram (expanding on the block diagram given
above), labeling all inputs and outputs and internal
signals. All signals are active-high, so in this case,
activation can be left out.

2. Design the required circuit (using project name
Lab4_RALU) in Quartus. The signal names
should match those of your functional block
diagram. In addition to the output bus, the outputs
of registers A and B (REGA and REGB) should
be outputs of your design.

As in the previous section, it is often helpful to
create extra output signals so that your circuit
design is easier to debug (in simulation and in

hardware). For example, you could add the signals
that come out of MUX A and MUX B as outputs
as well as each of the eight functions that come out
of the Combinational Logic block of Figure 3.
After you have thoroughly tested your circuit
through simulation, you can remove the unneeded
outputs if it is necessary to make the design fit in
your DE10-Lite’s PLD.

3. Simulate each of the simple functions (in Table 3)
implemented directly with MUX C using the
Quartus simulator. Include each of these
simulations in your lab document. (As usual, all
pre-lab material must be submitted through
Canvas prior to the start of your lab. Be sure to
also submit your archive files.)

Table 3: ALU function selection MUX (for MUX C).
MSC2:0 Action

000 REGA Bus to OUTPUT Bus
001 REGB Bus to OUTPUT Bus
010 complement of REGA Bus to OUTPUT Bus
011 bit wise AND REGA/REGB Bus to OUTPUT Bus
100 bit wise OR REGA/REGB Bus to OUTPUT Bus
101 sum of REGA Bus & REGB Bus to OUTPUT Bus
110 shift REGA Bus left one bit to OUTPUT Bus

111
shift REGA Bus right one bit to OUTPUT Bus
without sign extension

Table 2: Input source MUXs for Registers A and B.
MSA/
MSB1

MSA/
MSB0

Bus Selected as Input
to REGA/REGB

0 0 INPUT Bus
0 1 REGA Bus
1 0 REGB Bus
1 1 OUTPUT Bus

3

4 4

4 4
REG A REG B

MUX A’s MUX B’s

MUX C’s OUTPUT Bus

REGA Bus
REGB Bus

OUTPUT Bus

MSA1
MSA0

CLK

MSC2:0

CLK

MSB1
MSB0

Combinatorial Logic

REGA Bus REGB Bus

Cout Cin

INPUT Bus

4 4
4

4

4

Figure 3: A simple RALU.

University of Florida EEL 3701 — Spring 2025 Dr. Eric M. Schwartz
Department of Electrical & Computer Engineering Revision 0 21-Feb-25
Page 4/6 Lab 4: ALU and RALU

4. A control word (in this case the word is 7-bits) can

now be defined as the bit pattern:

 MSA1:0, MSB1:0, MSC2:0

By setting the appropriate control word bit pattern,
it is now possible to load data into the system and
perform all the ALU functions mentioned
previously.

Derive and test control words (i.e., write and
simulate programs) to do each of the following
complex functions. Create (and turn in) a table
(see Table 4 and Explanation_of_Table 4) with
columns labeled MSA, MSB, MSC, etc. and
showing the sequences of steps necessary to
implement each of these complex functions.
Describe what is occurring for each line in the
column labeled Description. Include these tables
in your lab document. You must include the
simulation outputs for each these complex
functions in your lab report. As always, add
appropriate annotations. At a minimum, describe
in your annotation what is happening at each
active clock edge.

a. Load A and B with known values, bit wise AND
the registers and then store the result in A.
Preserve the contents of register B during this
operation.

b. Load A and B with known values, bit wise OR
the registers and then store the result in B.
Preserve the contents of register A during this
operation.

c. Load A with a known value, complement A and
then store the result in B. Preserve the contents
of register A during this operation.

d. Load A and B with known values, sum them
and then store the result in A. Preserve B
during this operation.

e. Load A with a value, shift it right one bit and
then store it in B.

f. Load A with a value, shift it left one bit and then
store it in B.

g. Now write “a program” (i.e., the sequence of
steps necessary) to ADD 3 and $C, AND $5 to
the result, multiply the result by 4, OR $A to
the result, complement this new result, and

then finally divide it by 2. (Don’t worry if the
result makes no sense; just perform the
required operations. This “program” should
work independently of the input values, i.e., the
“program” should remain unchanged even if
the 3 and $C inputs are changed to $E and 7
and the 5 and $A were changed to $B and 4.
This is not the case for the divide and multiply
values.)

5. Download your design to your DE10-Lite with
nothing else connected to the board (except
power and ground).

6. Use your DAD for inputs (including CLK) and the
HEX displays on the DE10-Lite for outputs (i.e.,
the three buses RegA, RegB, and Output). Use the
DP (decimal point) of the Output bus HEX display
for Cout. Use the static I/O of the DAD for the
inputs.

7. Once you are convinced that your RALU works
correctly, you must make a DAD custom
pattern (see the bottom of page 4 in the
Waveforms Tutorial) with a single control word,
along with the Input bus, Cin, and CLK, for each
line of Table 4. You MUST use a custom pattern
at a slow enough frequency (e.g., 0.5 Hz) to see all
the numbers on the 7-segment displays on the
DE10-Lite. Note that when the static I/O is open
and running, if the signals are set for buttons or
switches, the static I/O will override the pattern
generator. (If the DAD had more digital I/O pins,
we could use it for both the inputs and outputs.)
Verify that your circuit design functions as
specified in the Pre-Lab Requirements,
specifically part g.

a. Save the Waveforms workspace (which will
include the control word custom pattern file) to
Lab4_4g.dwf3work and submit it to Canvas.

b. You will demo your lab to your PI using this
custom pattern file.

8. You must adhere to the Lab Rules & Policies
document for every lab. Re-read, if necessary.
Documents must be submitted through Canvas for
every lab. All pre-lab material is to be submitted
BEFORE the beginning of your lab.

PRE-LAB PROCEDURE SUMMARY

1. Design a simple ALU using SSI and MSI combinational logic § 1.
2. Design a more complex RALU that includes sequential components in § 2.
3. Write control word sequences to create programs for your RALU in § 2.

https://mil.ufl.edu/3701/labs/Lab4_explanation_of_Table4.pdf

University of Florida EEL 3701 — Spring 2025 Dr. Eric M. Schwartz
Department of Electrical & Computer Engineering Revision 0 21-Feb-25
Page 5/6 Lab 4: ALU and RALU

IN-LAB PROCEDURE

1. Complete the lab quiz utilizing the RALU you created in § 2.
2. Demonstrate the correct function of program 4g from § 2.

PRE-LAB QUESTIONS (RALU)

1) Draw the single simple device that can be added to your circuit design to “remember” the last carry output.
Specify the inputs and outputs for this device.

2) Will a divide by two work for all 4-bit 2’s complement numbers? Explain.

3) Describe how you can take the 2’s complement of a number, i.e., if A is loaded with a number, get the 2’s
complement of A into B.

4) Describe how you subtract with your RALU. Hint: See the previous question.

5) Suppose you’re not allowed to use a flip-flop that has an asynchronous CLR or SET, how can you add a
function that clears the contents of either A or B?

University of Florida EEL 3701 — Spring 2025 Dr. Eric M. Schwartz
Department of Electrical & Computer Engineering Revision 0 21-Feb-25
Page 6/6 Lab 4: ALU and RALU

Table 4: Sample table for Pre-lab Requirement 4.

MSA MSB MSC Input Cin RegA RegB Output RegA+ RegB+ Output+ Cout+ Description

Note that the + means “after the clock edge”

