
University of Florida EEL 3701 — Spring 2024 Dr. Eric M. Schwartz
Department of Electrical & Computer Engineering Revision 1 27-Mar-24
Page 1/3 Lab 5: State Machine Example: Traffic Light Controller

OBJECTIVES

• Use an ASM diagram to describe the behavior of a complex state machine.
• Use VHDL to simplify combinational logic design.
• Understand the difference between asynchronous and synchronous state machine outputs (i.e., Mealy and

Moore outputs).

INTRODUCTION

State machines are extremely common in large digital circuits. So far, we have only designed simple counter state
machines (in Lab 3), where the outputs of the state machine were the current state bits of the machine. However,
most state machines in the real world have additional logic that creates the outputs of the state machine from its
current state and additional user inputs. To help design these more complex state machines, we will use an ASM
diagram to provide a graphical description of our state machine’s behavior. We will then translate the ASM diagram
into a next-state truth table. We will then augment this truth table (after choosing the type of flip-flops) in order to
help us implement the logic required for the state machine.

This lab will also introduce you to VHDL. Hardware description languages such as VHDL and Verilog are preferred
by digital designers to increase the speed of development and increase the ease of debugging. Most electronic design
automation (EDA) tools such as Quartus support these languages as a standard way of specifying the behaviors of
digital circuits. In fact, Quartus translates your BDFs into AHDL code (an internal Altera hardware description
language) when it is compiling them for upload to the DE10-Lite and for simulation in the Waveform Viewer.
While VHDL can be used to design combinational and sequential logic, this lab (and course) will only focus on the
implementation of combinational logic. Sequential logic can be very obtuse in VHDL and is outside the scope of
this introductory course.

LAB STRUCTURE
In this lab, you will design a traffic light controller state machine. You will start by designing an ASM diagram that
describes the behavior of the state machine. After creating the corresponding next-state truth table and adding
columns based on your choice of flip-flops, you will then derive next-state and output logic equations for your state
machine that can be implemented in VHDL. Finally, you will make a symbol for the VHDL combinatorial circuit
to include in a BDF that connects your combinational logic with the flip flops and I/O pins needed for your design.

REQUIRED MATERIALS

• Creating Graphical Components in Quartus

SUPPLEMENTAL MATERIALS
• DE10-Lite Manual
• DE10-Lite Schematic
• DE10-Lite Pins
• DE10-Lite Safe Program

http://mil.ufl.edu/3701/docs/quartus/Component_Creation.pdf
https://mil.ufl.edu/3701/docs/DE10/DE10-Lite_User_Manual.pdf
https://mil.ufl.edu/3701/docs/DE10/DE10-Lite_User_Schematic.pdf
https://mil.ufl.edu/3701/docs/DE10/DE10-Lite_Pins.pdf
https://mil.ufl.edu/3701/docs/quartus/safe_3701.qar

University of Florida EEL 3701 — Spring 2024 Dr. Eric M. Schwartz
Department of Electrical & Computer Engineering Revision 1 27-Mar-24
Page 2/3 Lab 5: State Machine Example: Traffic Light Controller

PRE-LAB PROCEDURE

1. STATE MACHINE DESIGN

Design a state machine to control the traffic lights at an
intersection in Gainesville’s midtown, the intersection of
West University Avenue and NW 17th Street. To reduce the
number of LEDs needed in the lab, you only need to control
the light outputs for West University Avenue, not NW 17th
Street (Buckman Drive). The traffic light controller has three
active-high outputs (Red, Yellow, Green), and two
inputs, one active-low and one active-high: car waiting at 17th
Street [CW(L)] and emergency vehicle approaching
[EV(H)].

TIMING SPECIFICATIONS:
1. The University Avenue green light normally stays on for

five cycles. However, if an emergency vehicle comes up to the light (while traveling down the 17th Street), EV
will go true and this can occur during any of the five green cycles. If this occurs, the light should immediately
turn yellow and stay on for at least one clock cycle (but no more than two) and then proceed on to step #4.
Otherwise, if EV is not true after the five cycles, move to step #2.

2. After the University Avenue green light has been on for five cycles as described in step 1, in the fifth cycle,
check if there is a car waiting (CW is true). If so, then continue to step #3; else go back up to step #1.

3. Green turns off and Yellow turns on. This lasts for two clock cycles.

4. Yellow turns off and Red turns on for four clock cycles.

5. If EV is not true, go back to step #1. Otherwise, as long as EV remains true, keep the light Red.

A few notes about our traffic lights and traffic light controller are listed below.
1. There should never be more than one traffic light on at a time.

2. There should always be a single traffic light on.

3. You can assume that an emergency vehicle will take at least one clock cycle to approach an intersection.

1. Draw an ASM chart for your controller. Note:
You should never have a situation when two
lights are on at the same time, i.e., Green and
Yellow should never be on at the same time.

• The simplest way to create a multiple clock
delay (e.g., step 1 in the Timing section and
step 4) is to have successive states. This is
precisely what you should do. (An
alternative, NOT recommended or allowed
here, but used in EEL 4712: Digital Design,
is to design a counter to count the required
number of states. In EEL 4712, VHDL is
used to design several different types of

counters, making this a relatively simple
procedure.)

2. Create a next-state truth table showing the current
state, input, next state, flip-flop inputs and system
outputs (i.e., red, green or yellow) for each state
in your ASM diagram.

3. During previous labs during the semester, you
designed your circuits using logic gates (by
drawing the circuit elements in Quartus). This is
called schematic entry. You could create a
Quartus schematic entry design using D flip-flops
and SSI logic gates (as you have all semester, and
recently, for implementation in the PLD); but you
do NOT need to do this for this lab. (Do this only

Figure 1. Traffic Light

4 lane West Univ Ave

2 lane
NW 17th street

Traffic
light

2 lane
Buckman Dr

University of Florida EEL 3701 — Spring 2024 Dr. Eric M. Schwartz
Department of Electrical & Computer Engineering Revision 1 27-Mar-24
Page 3/3 Lab 5: State Machine Example: Traffic Light Controller

if you want to; there will be no credit for doing
this part and this design should NOT be
submitted.) In part 4 you will use VHDL to
replace the combinational part (not the flip-
flops) of your schematic entry design, and this is
required. Since only combinational logic is
required (or allowed) in VHDL for 3701 this
semester, VHDL process blocks are unnecessary
(not allowed), and should not be utilized in our
course.

Note: Simplification of the equations is helpful,
but not required in this lab. Quartus will
automatically simplify for you (and always has)
and can also generate an optimized circuit (even
when the circuit is made in VHDL)!

To view the simplified equations made by
Quartus, do the following: After compiling your
design, make a Quartus equation file by selecting
Processing | Start | Start Equation Writer (Post-
Synthesis). The generated file will have an “.eqn”
extension in the output_files folder. Open this file
to observe the equations. Some of the operators in
Quartus equation files are as follows: & = AND,
! = NOT, # = OR, and $ = XOR (exclusive OR).

To view the optimized circuit made by Quartus,
do the following: You can view the generated
circuit for your design by compiling your design
and then running Tools | Netlist Viewers | RTL
Viewer. The circuit may look very complex, but
it will be optimized for use on our DE10-Lite
board.

• If you want to (NOT required), simulate this
design in Quartus. There will be no credit for
doing this part.

4. Design a solution for this problem using D flip-
flop(s) for all the state bits, but this time use a
VHDL program instead of the combinational

circuits that drive the flip-flops. The design
should be named Lab5_DFF_Traf_Cont. Your
design will consist of a VHDL and a bdf file; the
bdf file will have an instantiation of the VHDL
design and the required connections to the flip-
flops. (See the Creating Graphical Components
file on the website for information on how to
incorporate VHDL code in a bdf file.) Output the
state bits (the outputs of the flip-flops) so that you
always know the present state of your system.
Having these state bit outputs available greatly
simplifies the debugging process.

5. Simulate this design in Quartus. As always,
annotate your design simulation.

6. Make a debounced switch circuit for your clock
input using the red SPDT switch included in your
lab kit. Use your DE10-Lite for the NAND or
NOR part of the debouncing circuit. You will add
the necessary logic to the bdf file described
above. Use KEY0 or KEY1 on the DE10-Lite for
your clock input.

7. Program your PLD with your
Lab5_DFF_Traf_Cont design. You can use
your DE10-Lite or your DAD for the non-clock
inputs and outputs. Use a debounced switch
circuit for your clock. If using your DAD as I/O
for your DE10-Lite, it may be easier to use the
2x20 male GPIO headers on the DE10-Lite. See
Chapter 3.5 of the DE10-Lite Manual for the
associated pins.

Warning: Make sure that you have programmed
your DE10-Lite with the DE10-Lite Safe
Program as a POF file. Afterwards, only program
your DE-10 Lite with your design for this lab as
a SOF file.

PRE-LAB PROCEDURE SUMMARY

1. Design a state machine that will control a traffic light according to strict timing specifications in § 1.

IN-LAB PROCEDURE

In lab, you will demo your state machine from Part 7 functioning on your DE-10 Lite.

http://mil.ufl.edu/3701/docs/quartus/Component_Creation.pdf
https://mil.ufl.edu/3701/docs/DE10/DE10-Lite_User_Manual.pdf
https://mil.ufl.edu/3701/docs/quartus/safe_3701.qar
https://mil.ufl.edu/3701/docs/quartus/safe_3701.qar

	Design a state machine to control the traffic lights at an intersection in Gainesville’s midtown, the intersection of West University Avenue and NW 17th Street. To reduce the number of LEDs needed in the lab, you only need to control the light output...
	TIMING SPECIFICATIONS:

