
University of Florida EEL 3701 — Spring 2024 Dr. Eric M. Schwartz
Department of Electrical & Computer Engineering Revision 1 8-Apr-24
Page 1/5 Lab 7: Assembly Programming

OBJECTIVES
• Understand the structure of a simple but functional CPU.
• Learn how to write assembly code, hand-assemble it into machine code, and verify its functionality with a

simulator.
• Understand how assembly code instructions correspond to the functional hardware simulation of a CPU.

INTRODUCTION

With the knowledge gained in earlier labs, you now have a detailed understanding of the internal structure of a
simple Central Processing Unit (CPU). Instead of continuing with your previous existing hardware designs, you
are now given a more complete CPU, which is denoted as the Gator CPU (or G-CPU). In Part A of this lab you
will dissect and simulate the assembly code that is given with the G-CPU. In Part B, you will write a G-CPU
assembly code program. You will then simulate this new code in Quartus in order to observe the G-CPU bus and
register changes during program execution.

LAB STRUCTURE
In this lab, you will analyze and write assembly programs for the GCPU. In § 1, you will analyze a provided GCPU
program to understand how it works. In § 2, you will write your own GCPU program that interprets an input table
of data and outputs a table of processed data. You will also simulate and test your program to verify that it works
correctly.

REQUIRED MATERIALS
• GCPU Quartus Archive (on the web site)
• G-CPU documentation (on the web site)
• Lab7_PartA.xlsx (on the website)
• Assembly_List.xlsx (on the website)
• G-IDE-Full-v1.4 (on the website)
•

SUPPLEMENTAL MATERIALS
• Video example using G-IDE (on the website)

https://mil.ufl.edu/3701/labs/gcpu/gcpu_s24.qar
https://mil.ufl.edu/3701/labs/gcpu/G-CPU_Complete_Docs_5Apr2024.pdf
https://mil.ufl.edu/3701/labs/Lab7_PartA.xlsx
https://mil.ufl.edu/3701/labs/Assembly_List.xlsx
https://mil.ufl.edu/3701/software/G-IDE-Full-v1.4.exe
https://youtu.be/u1TX7eM5E8Q

University of Florida EEL 3701 — Spring 2024 Dr. Eric M. Schwartz
Department of Electrical & Computer Engineering Revision 1 8-Apr-24
Page 2/5 Lab 7: Assembly Programming

PRE-LAB PROCEDURE

GETTING STARTED WITH THE GCPU
The course website has multiple files that describe the GCPU. While working on this lab, you should download the
G-CPU documentation PDF from the Lab 7 section on the course website. This document has a GCPU block
diagram, information about every GCPU assembly instruction’s function and machine code representation,
flowcharts, a next-state truth table, and each of the bdf files. This information will be vital as you write and debug
programs on the GCPU. To get started using the GCPU in Quartus, do the following:

1. Download GCPU Quartus Archive: gcpu_s24.qar.
2. Double click on the file gcpu_s24.qar (or Open Quartus and select “Project | Restore Archived Project…”).

a. Specify a “Destination folder:”. I suggest storing it wherever you keep your other Quartus projects. (Do
NOT use any dashes, spaces, or underscores in the path.)

b. In Quartus, open the file computer.vwf. This will open the Simulator Waveform Editor.
• Select Simulation, then Simulation Settings, then the Restore Defaults button on the bottom of this

screen, and then select Save. This will fix the path information for the destination you used for the GCPU
files.

3. The project has many folders, all under the destination folder you selected above. The main (top level) file,
computer_simulation.bdf, is in this folder. The mif files and the simulation (.vwf) files are also in this folder.
a. Whenever you want to simulate a program with the GCPU, make sure to set the top-level entity in

Quartus to computer_simulation.bdf.
b. If you ever want to test your GCPU program on the DE10-Lite hardware (where 7-segment displays will

show the values in Accumulator A, Accumulator B, and the low-byte of the program counter), make sure
to set the top-level entity in Quartus to computer_programming.bdf. If you do not set
computer_programming.bdf as your top-level entity (instead of computer_simulation.bdf), the GCPU
will behave incorrectly on the DE-10 Lite and may damage the hardware. Switch the top-level entity back
to computer_simulation.bdf whenever you want to simulate the GCPU again.

CREATING PROGRAMS FOR THE GCPU

Note: When opening a MIF file in Quartus, be sure to select Open as: Text (not Auto). If you use auto, all the
comments described below will disappear!

In § 1 of this lab, you will compile and simulator a pre-existing program, provide in eprom.mif. In § 2 of this lab,
you will write a new program, hand assemble your code, and then put the machine codes into the “eprom.mif” file.
Key points related to this file are:

1. The comments are surrounded by “%” signs. The left most number (or numbers) represents the address (or
range of addresses) followed by the hex value to the right. For example:

37 :7C % Address=$37, Data=$7C%
[37..42] :A3 % Address=$37-$42, Data=$A3%

2. The last line of code in the “eprom.mif,” file (after your program) should insert zeroes for all the remaining
data in the ROM. This is accomplished as shown below:

[XX..FFF] :00 %zero remaining memory%

where XX represents the next address after the last address of your code. For example, if the last byte of your
assembly program resides in memory location $25, then replace XX by $26 as shown below:

[26..FFF] :00 %zero remaining memory%

This will initialize all your remaining unused memory to a known value of zero. (A zero happens to represent
the TAB instruction.)

Note: When opening a MIF file in Quartus, be sure to select Open as: Text (not Auto). If you use Auto, all the
comments described above will disappear!

https://mil.ufl.edu/3701/labs/gcpu/G-CPU_Complete_Docs_5Apr2024.pdf
https://mil.ufl.edu/3701/labs/gcpu/gcpu_s24.qar

University of Florida EEL 3701 — Spring 2024 Dr. Eric M. Schwartz
Department of Electrical & Computer Engineering Revision 1 8-Apr-24
Page 3/5 Lab 7: Assembly Programming

1. SIMULATING EXISTING CODE

1. Open the file called “eprom.mif” in the main
folder. IMPORTANT: Open this file after
setting “Open as” to “Text” from the default
“Auto.” If you already opened the file with
“Auto,” do not save any changes you make.
Close it and open it with “Open as:” set to “Text.”
The file eprom.mif contains the code that the
GCPU will execute. The GCPU starts executing
instructions from address 0 after it is reset.

2. Briefly describe the purpose of this program.
Include this description in your pre-lab report.

3. The data for the program in “eprom.mif” can be
found in the file “sram.mif.” This is just a sample
data file; later you will modify this file to create
different data to test the program. Create a small
table (see Table 2 on the last page of this
document, also on the website in
Lab7_PartA.xlsx) that describes how the
registers change as the program is executed. For
each row in the table, enter the value in columns
labeled A through PC, assuming that the
instruction has already been completed.

4. Compile the computer_simulation.bdf file
(functionally) with the given program file
eprom.mif and data file sram.mif. Open the
provided simulation waveform file
computer.vwf. Before simulating the first time
(after restoring the archive), in the Simulation
Waveform Editor, select Simulation |
Simulation Settings; then select Restore

Defaults at the bottom, and then select Save.
Functionally simulate this design.

5. Compare the hand simulation results in your table
with the Quartus simulation results in
computer.vwf. Break this simulation into at least
two sections (but three or more may be necessary
to capture all of the relevant information) and
insert each into your lab report.

6. Use your table to identify when the flags (i.e.,
status bits Z and N) change and specify why they
are set at a particular time. Annotate your table
and the Quartus-generated simulation to
indicate what is going on during each step of the
simulation. You do not have to include the entire
simulation in your submitted lab document, just
enough to prove that you understand what is
happening.

7. Use your table and the simulation to identify
where data is being written into memory or read
from memory. Pay close attention to the address
bus. Annotate your table and the Quartus-
generated simulation with this information.

8. Modify the data in sram.mif and repeat steps 4-7
above. Note: When you change data in either the
eprom.mif file or the sram.mif file, you must
recompile the computer.bdf file. Include the
simulation results in your submitted lab
document.

9. Compile all the documents described above into
your lab document.

2. NEW PROGRAM CREATION

1. Write a program to compare a
series of pairs of numbers;
store the larger value in an
output table. The input table
is arranged as shown in
Table 1 and as follows:
OutAddr, TabSize, Num1a,
Num1b, Num2a, Num2b, …
OutAddr is the starting
address of the output table.
TabSize is the number of
pairs for which the larger
numbers will be determined.
When you have completed
the data processing, execute
an endless loop (like a dog chasing its tail).

2. Assume that the input table is in ROM starting at
$0A37. It could just as well be in SRAM at
address $125C, for example. (Note that the output
table must be in SRAM, since you cannot write to
ROM.) To test your program, you will have to
create the program and some data in the ROM
(eprom.mif) file as well as setup the SRAM
(sram.mif) file for storing your results. (If the
input data was instead in the sram.mif file, your
program should still work, as long as you knew
the starting location.)

3. Use the X register to point to the data that is read
from the input table and use the Y register to point
to the output table.

4. REG A should be used as a loop counter. REG B
should be used for calculations. (Hint: You may

Table 1: Input
Data Table
OutAddrLow
OutAddrHigh

TabSize
Num1a
Num1b
Num2a
Num2b
Num3a
Num3b
Num4a
Num4b

*
*
*

NumTabSizea
NumTabSizeb

https://mil.ufl.edu/3701/labs/Lab7_PartA.xlsx

University of Florida EEL 3701 — Spring 2024 Dr. Eric M. Schwartz
Department of Electrical & Computer Engineering Revision 1 8-Apr-24
Page 4/5 Lab 7: Assembly Programming

need to temporarily store the loop counter in
memory, i.e., SRAM, while REG A is used for
other purposes.)

5. Install G-IDE-Full-v1.4 (the GCPU integrated
Development Environment) and then use the G-
IDE to assemble and simulator your program.
Continue to test your program until you are
satisfied that it is functioning properly. Include a
screen shot of your program in G-IDE in your lab
report.

6. Hand assemble your program. Verify that you
hand assembly matches what was produced in
rom.mif from G-IDE. (Note that you will be
expected to be able to perform hand assembly
during your Lab 7 Quiz and during your Final
Exam.) Write a “list” file that has addresses,
opcodes (machine codes), assembly language
instructions, and comments. To create the list file,
use Assembly_List.xlsx (available on our
website) or Table 3 on the last page of this
document. Copy the completed table into your lab
document.

7. Verify the program works by creating an
eprom.mif. For this verification, use
OutAdd = $1B73, TabSize = 3, and use three sets
of data. Predict the simulation result with a table
like that described in Part 1. Annotate this table
as in Part 1. Recompile Quartus with your
program and eprom.mif. The simulation results
and annotations with the instructions should be
submitted in your lab document. Your program
must work (with no changes) for a completely
different set of data (in either eprom.mif or

sram.mif) file, i.e., do not embed the number
$1B73 for the output address or 3 (the table size)
in your program. These values should be in the
table.

8. Copy the “list” file into your lab document. Also
include the annotated table from Part A in your
lab document. Submit (through Canvas) this file
along with your design archives, and the lab
report document. Finally, archive and submit this
through Canvas.

9. Once your program works correctly, switch the
top-level entity of the GCPU to
computer_programming.bdf. You can then
perform a full compilation and program the
GCPU to your DE-10 Lite. Verify that your
program works correctly on the DE-10 Lite by
comparing the REGA, REGB, and PC values to
your hand-simulation and Quartus simulation.

IMPORTANT NOTES:
• There is no way to read the data written to

sram.mif.
• If you wish to use variables or store values in your

code, you must reference the RAM area of you
memory space. RAM is located in $1000 through
$1FFF. ROM is read only (and is located from $0
through $0FFF).

• When you change data in either the eprom.mif
file or the sram.mif file, you must recompile the
computer_simulation.bdf file before trying to
simulate.

• Never program your DE10-Lite with
computer_simulation.bdf compilation. (Only
program after the computer_programming.bdf.)

PRE-LAB PROCEDURE SUMMARY

1. Analyze the machine code and execution of a pre-written GCPU program in § 1.
2. Write, hand-assemble, and test your own GCPU program in § 2.

IN-LAB PROCEDURE

In the lab quiz, your PI will ask you to write a simple GCPU program and hand assemble it. You will be allowed to
use G-IDE for this quiz to help with simulation and debugging.

For your prelab demo, you will demonstrate your Part 2 program running on your DE10-Lite and also in G-IDE.
Feel free to adjust which 7 segments are used for REGA and REGB if some of the segments on your board are no
longer functioning.

https://mil.ufl.edu/3701/software/G-IDE-Full-v1.4.exe
https://mil.ufl.edu/3701/labs/Assembly_List.xlsx

University of Florida EEL 3701 — Spring 2024 Dr. Eric M. Schwartz
Department of Electrical & Computer Engineering Revision 1 8-Apr-24
Page 5/5 Lab 7: Assembly Programming

Table 2: Sample assembly hand-simulation table format for Prelab Part 1, #3 (and elsewhere). Notes: All
values in hexadecimal except Z & N. The first row past the header row is an example row. This table is available
on our website in Lab7_PartA.xlsx.

Address(es) [$] Opcodes [$] Instruction A [$] B [$] X [$] Y [$] Z N PC [$] Comments
0000-0002 08 00 18 LDX #$1800 00 00 1800 0000 1 0 0003

Table 3: Sample assembly list table format for Prelab Part 2, #5. This table is also available on our website in
Assembly_List.xlsx and Assembly_List.docx.

Addr [$] Opcodes [$] Assembly Instruction Comments
0000-0002 08 00 18 LDX #$1800

https://mil.ufl.edu/3701/labs/Lab7_PartA.xlsx
https://mil.ufl.edu/3701/labs/Assembly_List.xlsx
https://mil.ufl.edu/3701/labs/Assembly_List.docx

