
Application Report
«SPRAA85B–September 2009

Programming TMS320x28xx and 28xxx Peripherals in
C/C++

Lori Heustess .. AEC C2000

ABSTRACT
This application report explores a hardware abstraction layer implementation to make C/C++ coding easier
on C28x™ devices. This method is compared to traditional #define macros and topics of code efficiency
and special case registers are also addressed.

Contents
1 Introduction .. 1
2 Traditional #define Approach .. 3
3 Bit Field and Register-File Structure Approach ... 5
4 Bit Field and Register-File Structure Advantages ... 11
5 Code Size and Performance Using Bit Fields ... 12
6 Read-Modify-Write Considerations When Using Bit Fields .. 16
7 A Special Case: eCAN Control Registers .. 21
8 References ... 22

List of Figures

1 SCI SCICCR Register .. 8

2 SCI SCICTL1 Register ... 8

3 Code Composer Studio 3.3 Autocomplete Feature... 11

4 Code Composer Studio Watch Window .. 12

5 Peripheral Clock Control 0 Register (PCLKCR0) ... 12

List of Tables

1 SCI-A, SCI-B Configuration and Control Registers... 3

2 SCI-A and SCI-B Common Register File .. 5

3 CPU-Pipeline Activity For Read-Modify-Write Instructions in Example 13 .. 14

4 Read-Modify-Write Sensitive Registers... 20

1 Introduction

The TMS320x28xx and TMS328x28xxx are members of the C2000™ generation for embedded control
applications. To facilitate writing efficient and easy-to-maintain embedded C/C++ code on these devices,
Texas Instruments provides a hardware abstraction layer method for accessing memory-mapped
peripheral registers. This method is the bit field and register-file structure approach. This application report
explains the implementation of this hardware abstraction layer and compares it to traditional #define
macros. Topics of code efficiency and special case registers are also addressed.

C28x, C2000 are trademarks of Texas Instruments.
Code Composer Studio is a trademark of Texas Instruments Inc..
All other trademarks are the property of their respective owners.

1«SPRAA85B–September 2009 Programming TMS320x28xx and 28xxx Peripherals in C/C++
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=�SPRAA85B

Introduction www.ti.com

The hardware abstraction layer discussed in this application report has been implemented as a collection
of C/C++ header files available for download from Texas Instruments:

• Piccolo Series Microcontrollers
– 2802x C/C++ Header Files and Peripheral Examples (SPRC832)
– 2803x C/C++ Header Files and Peripheral Examples (SPRC892)

• Delfino (Floating-Point) Series
– C2833x/C2823x C/C++ Header Files and Peripheral Examples (SPRC530)
– C2834x C/C++ Header Files and Peripheral Examples (SPRC892)

• Other Fixed-Point C28x Microcontrollers
– C2833x/C2823x C/C++ Header Files and Peripheral Examples (SPRC530)
– C281x C/C++ Header Files and Peripheral Examples (SPRC097)
– C280x, C2801x C/C++ Header Files and Peripheral Examples (SPRC191)
– C2804x C/C++ Header Files and Peripheral Examples (SPRC324)

Depending on your current needs, the software included in these downloads are learning tools or the
basis for a development platform.

• Learning Tool:
The C/C++ Header Files and Peripheral Examples include several example Code Composer Studio™
projects. These examples explain the steps required to initialize the device and utilize on-chip
peripherals. The examples can be copied and modified to quickly experiment with peripheral
configurations.

• Development Platform:
The header files can be incorporated into a project as a hardware abstraction layer for accessing
on-chip peripherals using C or C++ code. You can also pick and choose functions as needed and
discard the rest.

This application report does not provide a tutorial on C, C++, C28xx assembly, or emulation tools. You
should have a basic understanding of C code and the ability to load and run code using Code Composer
Studio. While knowledge of C28xx assembly is not required to understand the hardware abstraction layer,
it is useful to understand the code optimization and read-modify-write sections. If you have assembly
instruction-related questions, see the TMS320C28x CPU and Instruction Set Reference Guide
(SPRU430).

Examples are based on the following software versions:

• C281x C/C++ Header Files and Peripheral Examples (SPRC097) V1.00
• C280x, C2801x C/C++ Header Files and Peripheral Examples (SPRC191) V1.41
• C2804x C/C++ Header Files and Peripheral Examples (SPRC324) V1.00
• C28x Compiler V4.1.1

The following abbreviations are used:

• C/C++ Header Files and Peripheral Examples refers to any of the header file packages: C281x C/C++
Header Files and Peripheral Examples (SPRC097) , C280x C2801x C/C++ Header Files and
Peripheral Examples (SPRC191) or C2804x C/C++ Header Files and Peripheral Examples (SPRC324)

• TMS320x280x and 280x refer to all devices in the TMS320x280x and TMS320x2801x family and the
UCD9501. For example: TMS320F2801, TMS320F2806, TMS320F2808, TMS320F28015 and
TMS320F28016.

• TMS320x2804x and 2804x refers all devices in the TMS320x2804x family. For example, the
TMS320F28044.

• TMS320x281x and 281x refer to all devices in the TMS320x281x family. For example: TMS320F2810,
TMS320F2811, and TMS320F2812, TMS320C2810, and so forth.

• C28x refers to the TMS320C28x CPU; this CPU is used on all of the above DSPs.

2 Programming TMS320x28xx and 28xxx Peripherals in C/C++ «SPRAA85B–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www-s.ti.com/sc/techlit/sprc832.zip
http://www-s.ti.com/sc/techlit/sprc892.zip
http://www-s.ti.com/sc/techlit/sprc530.zip
http://www-s.ti.com/sc/techlit/sprc876.zip
http://www-s.ti.com/sc/techlit/sprc530.zip
http://www-s.ti.com/sc/techlit/sprc097.zip
http://www-s.ti.com/sc/techlit/sprc191.zip
http://www-s.ti.com/sc/techlit/sprc324.zip
http://www.ti.com/lit/pdf/spru430
http://www.ti.com/lit/pdf/sprc097
http://www.ti.com/lit/pdf/sprc191
http://www.ti.com/lit/pdf/sprc324
http://www.ti.com/lit/pdf/SPRC097
http://www.ti.com/lit/pdf/SPRC324
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=�SPRAA85B

www.ti.com Traditional #define Approach

2 Traditional #define Approach

Developers have traditionally used #define macros to access registers in C or C++. To illustrate this
approach, consider the SCI-A and SCI-B register files shown in Table 1.

Table 1. SCI-A, SCI-B Configuration and Control Registers

SCI-A Register Name (1) Address Description

SCICCRA 0x7050 SCI-A Communications Control Register

SCICTL1A 0x7051 SCI-A Control Register 1

SCIHBAUDA 0x7052 SCI-A Baud Register, High Bits

SCILBAUDA 0x7053 SCI-A Baud Register, Low Bits

SCICTL2A 0x7054 SCI-A Control Register 2

SCIRXSTA 0x7055 SCI-A Receive Status Register

SCIRXEMUA 0x7056 SCI-A Receive Emulation Data Buffer Register

SCIRXBUFA 0x7057 SCI-A Receive Data Buffer Register

SCITXBUFA 0x7059 SCI-A Transmit Data Buffer Register

SCIFFTXA 0x705A SCI-A FIFO Transmit Register

SCIFFRXA 0x705B SCI-A FIFO Receive Register

SCIFFCTA 0x705C SCI-A FIFO Control Register

SCIPRIA 0x705F SCI-A Priority Control Register

SCI-B Register Name (2) Address Description

SCICCRB 0x7750 SCI-B Communications Control Register

SCICTL1B 0x7751 SCI-B Control Register 1

SCIHBAUDB 0x7752 SCI-B Baud Register, High Bits

SCILBAUDB 0x7753 SCI-B Baud Register, Low Bits

SCICTL2B 0x7754 SCI-B Control Register 2

SCIRXSTB 0x7755 SCI-B Receive Status Register

SCIRXEMUB 0x7756 SCI-B Receive Emulation Data Buffer Register

SCIRXBUFB 0x7757 SCI-B Receive Data Buffer Register

SCITXBUFB 0x7759 SCI-B Transmit Data Buffer Register

SCIFFTXB 0x775A SCI-B FIFO Transmit Register

SCIFFRXB 0x775B SCI-B FIFO Receive Register

SCIFFCTB 0x775C SCI-B FIFO Control Register

SCIPRIB 0x775F SCI-B Priority Control Register
(1) These registers are described in theTMS320x281x Serial Communications Interface (SCI) Reference Guide (SPRU051).
(2) These registers are reserved on devices without the SCI-B peripheral. See the data manual for details.

A developer can implement #define macros for the SCI peripherals by adding definitions like those in
Example 1 to an application header file. These macros provide an address label, or a pointer, to each
register location. Even if a peripheral is an identical copy a macro is defined for every register. For
example, every register in SCI-A and SCI-B is specified separately.

3«SPRAA85B–September 2009 Programming TMS320x28xx and 28xxx Peripherals in C/C++
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/spru051
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=�SPRAA85B

Traditional #define Approach www.ti.com

Example 1. Traditional #define Macros

/**
* Traditional header file
**/

#define Uint16 unsigned int
#define Uint32 unsigned long

// Memory Map
// Addr Register

#define SCICCRA (volatile Uint16 *)0x7050 // 0x7050 SCI-A Communications Control
#define SCICTL1A (volatile Uint16 *)0x7051 // 0x7051 SCI-A Control Register 1
#define SCIHBAUDA (volatile Uint16 *)0x7052 // 0x7052 SCI-A Baud Register, High Bits
#define SCILBAUDA (volatile Uint16 *)0x7053 // 0x7053 SCI-A Baud Register, Low Bits
#define SCICTL2A (volatile Uint16 *)0x7054 // 0x7054 SCI-A Control Register 2
#define SCIRXSTA (volatile Uint16 *)0x7055 // 0x7055 SCI-A Receive Status
#define SCIRXEMUA (volatile Uint16 *)0x7056 // 0x7056 SCI-A Receive Emulation Data Buffer
#define SCIRXBUFA (volatile Uint16 *)0x7057 // 0x7057 SCI-A Receive Data Buffer
#define SCITXBUFA (volatile Uint16 *)0x7059 // 0x7059 SCI-A Transmit Data Buffer
#define SCIFFTXA (volatile Uint16 *)0x705A // 0x705A SCI-A FIFO Transmit
#define SCIFFRXA (volatile Uint16 *)0x705B // 0x705B SCI-A FIFO Receive
#define SCIFFCTA (volatile Uint16 *)0x705C // 0x705C SCI-A FIFO Control
#define SCIPRIA (volatile Uint16 *)0x705F // 0x705F SCI-A Priority Control
#define SCICCRB (volatile Uint16 *)0x7750 // 0x7750 SCI-B Communications Control
#define SCICTL1B (volatile Uint16 *)0x7751 // 0x7751 SCI-B Control Register 1
#define SCIHBAUDB (volatile Uint16 *)0x7752 // 0x7752 SCI-B Baud Register, High Bits
#define SCILBAUDB (volatile Uint16 *)0x7753 // 0x7753 SCI-B Baud Register, Low Bits
#define SCICTL2B (volatile Uint16 *)0x7754 // 0x7754 SCI-B Control Register 2
#define SCIRXSTB (volatile Uint16 *)0x7755 // 0x7755 SCI-B Receive Status
#define SCIRXEMUB (volatile Uint16 *)0x7756 // 0x7756 SCI-B Receive Emulation Data Buffer
#define SCIRXBUFB (volatile Uint16 *)0x7757 // 0x7757 SCI-B Receive Data Buffer
#define SCITXBUFB (volatile Uint16 *)0x7759 // 0x7759 SCI-B Transmit Data Buffer
#define SCIFFTXB (volatile Uint16 *)0x775A // 0x775A SCI-B FIFO Transmit
#define SCIFFRXB (volatile Uint16 *)0x775B // 0x775B SCI-B FIFO Receive
#define SCIFFCTB (volatile Uint16 *)0x775C // 0x775C SCI-B FIFO Control
#define SCIPRIB (volatile Uint16 *)0x775F // 0x775F SCI-B Priority Control

Each macro definition can then be used as a pointer to the register's location as shown in Example 2.

Example 2. Accessing Registers Using #define Macros

/**
* Source file using #define macros
**/
...

*SCICTL1A = 0x0003; //write entire register
*SCICTL1B |= 0x0001; //enable RX

...

Some advantages of traditional #define macros are:

• Macros are simple, fast, and easy to type.
• Variable names exactly match register names; variable names are easy to remember.

Disadvantages to traditional #define macros include the following:

• Bit fields are not easily accessible; you must generate masks to manipulate individual bits.
• You cannot easily display bit fields within the Code Composer Studio watch window.
• Macros do not take advantage of Code Composer Studio's auto-completion feature.
• Macros do not benefit from duplicate peripheral reuse.

4 Programming TMS320x28xx and 28xxx Peripherals in C/C++ «SPRAA85B–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=�SPRAA85B

www.ti.com Bit Field and Register-File Structure Approach

3 Bit Field and Register-File Structure Approach

Instead of accessing registers using #define macros, it is more flexible and efficient to use a bit field and
register-file structure approach.

• Register-File Structures:
A register file is the collection of registers belonging to a peripheral. These registers are grouped
together in C/C++ as members of a structure; this is called a register-file structure. Each register-file
structure is mapped in memory directly over the peripheral registers at compile time. This mapping
allows the compiler to efficiently access the registers using the CPU's data page pointer (DP).

• Bit Field Definitions:
Bit fields can be used to assign a name and width to each functional field within a register. Registers
defined in terms of bit fields allow the compiler to manipulate single elements within a register. For
example, a flag can be read by referencing the bit field name corresponding to that flag.

The remainder of this section describes a register-file structure with bit-field implementation for the SCI
peripherals. This process consists of the following steps:

1. Create a simple SCI register-file structure variable type; this implementation does not include bit fields.
2. Create a variable of this new type for each of the SCI instances.
3. Map the register-file structure variables to the first address of the registers using the linker.
4. Add bit-field definitions for select SCI registers.
5. Add union definitions to provide access to either bit fields or the entire register.
6. Rewrite the register-file structure type to include the bit-field and union definitions.

In the C/C++ Header Files and Peripheral Examples, the register-file structures and bit fields have been
implemented for all peripherals on the TMS320x28xx and TMS320x28xxx devicess.

3.1 Defining A Register-File Structure

Example 1 showed a hardware abstraction implementation using #define macros. In this section, the
implementation is changed to a simple register file structure. Table 2 lists the registers that belong to the
SCI peripheral. This register file is identical for each instance of the SCI, i.e., SCI-A and SCI-B.

Table 2. SCI-A and SCI-B Common Register File

Name Size Address Offset Description

SCICCR 16 bits 0 SCI Communications Control Register

SCICTL1 16 bits 1 SCI Control Register 1

SCIHBAUD 16 bits 2 SCI Baud Register, High Bits

SCILBAUD 16 bits 3 SCI Baud Register, Low Bits

SCICTL2 16 bits 4 SCI Control Register 2

SCIRXST 16 bits 5 SCI Receive Status Register

SCIRXEMU 16 bits 6 SCI Receive Emulation Data Buffer Register

SCIRXBUF 16 bits 7 SCI Receive Data Buffer Register

SCITXBUF 16 bits 9 SCI Transmit Data Buffer Register

SCIFFTX 16 bits 10 SCI FIFO Transmit Register

SCIFFRX 16 bits 11 SCI FIFO Receive Register

SCIFFCT 16 bits 12 SCI FIFO Control Register

SCIPRI 16 bits 15 SCI Priority Control Register

The code in Example 3 groups the SCI registers together as members of a C/C++ structure. The register
in the lowest memory location is listed first in the structure and the register in the highest memory location
is listed last. Reserved memory locations are held with variables that are not used except as space
holders, i.e., rsvd1, rsvd2, rsvd3, and so forth. The register's size is indicated by its type: Uint16 for 16-bit
(unsigned int) and Uint32 for 32-bit (unsigned long). The SCI peripheral registers are all 16-bits so only
Uint16 has been used.

5«SPRAA85B–September 2009 Programming TMS320x28xx and 28xxx Peripherals in C/C++
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=�SPRAA85B

Bit Field and Register-File Structure Approach www.ti.com

Example 3. SCI Register-File Structure Definition

/**
* SCI header file
* Defines a register file structure for the SCI peripheral
**/

#define Uint16 unsigned int
#define Uint32 unsigned long

struct SCI_REGS {
Uint16 SCICCR_REG SCICCR; // Communications control register
Uint16 SCICTL1_REG SCICTL1; // Control register 1
Uint16 SCIHBAUD; // Baud rate (high) register
Uint16 SCILBAUD; // Baud rate (low) register
Uint16 SCICTL2_REG SCICTL2; // Control register 2
Uint16 SCIRXST_REG SCIRXST; // Receive status register
Uint16 SCIRXEMU; // Receive emulation buffer register
Uint16 SCIRXBUF_REG SCIRXBUF; // Receive data buffer
Uint16 rsvd1; // reserved
Uint16 SCITXBUF; // Transmit data buffer
Uint16 SCIFFTX_REG SCIFFTX; // FIFO transmit register
Uint16 SCIFFRX_REG SCIFFRX; // FIFO receive register
Uint16 SCIFFCT_REG SCIFFCT; // FIFO control register
Uint16 rsvd2; // reserved
Uint16 rsvd3; // reserved
Uint16 SCIPRI_REG SCIPRI; // FIFO Priority control

};

The structure definition in Example 3 creates a new type called struct SCI_REGS. The definition alone
does not create any variables. Example 4 shows how variables of type struct SCI_REGS are created in a
way similar to built-in types such as int or unsigned int. Multiple instances of the same peripheral use the
same type definition. If there are two SCI peripherals on a device, then two variables are created:
SciaRegs and ScibRegs.

Example 4. SCI Register-File Structure Variables

/**
* Source file using register-file structures
* Create a variable for each of the SCI register files
**/

volatile struct SCI_REGS SciaRegs;
volatile struct SCI_REGS ScibRegs;

The volatile keyword is very important in Example 4. A variable is declared as volatile whenever its value
can be changed by something outside the control of the code in which it appears. For example, peripheral
registers can be changed by the hardware itself or within an interrupt. If volatile is not specified, then it is
assumed the variable can only be modified by the code in which it appears and the compiler may optimize
out what is seen as an unnecessary access. The compiler will not, however, optimize out any volatile
variable access; this is true even if the compiler's optimizer is enabled.

3.2 Using the DATA_SECTION Pragma to Map a Register-File Structure to Memory

The compiler produces relocatable blocks of code and data. These blocks, called sections, are allocated
in memory in a variety of ways to conform to different system configurations. The section to memory block
assignments are defined in the linker command file.

By default, the compiler assigns global and static variables like SciaRegs and ScibRegs to the .ebss or
.bss section. In the case of the abstraction layer, however, the register-file variables are instead allocated
to the same memory as the peripheral's register file. Each variable is assigned to a specific data section
outside of .bss/ebss by using the compiler's DATA_SECTION pragma.

6 Programming TMS320x28xx and 28xxx Peripherals in C/C++ «SPRAA85B–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=�SPRAA85B

www.ti.com Bit Field and Register-File Structure Approach

The syntax for the DATA_SECTION pragma in C is:

#pragma DATA_SECTION (symbol,"section name")

The syntax for the DATA_SECTION pragma in C++ is:

#pragma DATA_SECTION ("section name")

The DATA_SECTION pragma allocates space for the symbol in the section called section name. In
Example 5, the DATA_SECTION pragma is used to assign the variable SciaRegs and ScibRegs to data
sections named SciaRegsFile and ScibRegsFile. The data sections are then directly mapped to the same
memory block occupied by the respective SCI registers.

Example 5. Assigning Variables to Data Sections

/**
* Assign variables to data sections using the #pragma compiler statement
* C and C++ use different forms of the #pragma statement
* When compiling a C++ program, the compiler will define __cplusplus automatically
**/
//--
#ifdef __cplusplus
#pragma DATA_SECTION("SciaRegsFile")
#else
#pragma DATA_SECTION(SciaRegs,"SciaRegsFile");
#endif
volatile struct SCI_REGS SciaRegs;

//--
#ifdef __cplusplus
#pragma DATA_SECTION("ScibRegsFile")
#else
#pragma DATA_SECTION(ScibRegs,"ScibRegsFile");
#endif
volatile struct SCI_REGS ScibRegs;

This data section assignment is repeated for each peripheral. The linker command file is then modified to
map each data section directly to the memory space where the registers are mapped. For example,
Table 1 indicates that the SCI-A registers are memory mapped starting at address 0x7050. Using the
assigned data section, the variable SciaRegs is allocated to a memory block starting at address 0x7050.
The memory allocation is defined in the linker command file (.cmd) as shown in Example 6. For more
information on using the C28x linker and linker command files, see the TMS320C28x Assembly Language
Tools User's Guide (SPRU513).

Example 6. Mapping Data Sections to Register Memory Locations

/**
* Memory linker .cmd file
* Assign the SCI register-file structures to the corresponding memory
**/

MEMORY
{
...

PAGE 1:
SCIA : origin = 0x007050, length = 0x000010 /* SCI-A registers */
SCIB : origin = 0x007750, length = 0x000010 /* SCI-B registers */

...
}

SECTIONS
{
...

SciaRegsFile : > SCIA, PAGE = 1
ScibRegsFile : > SCIB, PAGE = 1

...
}

7«SPRAA85B–September 2009 Programming TMS320x28xx and 28xxx Peripherals in C/C++
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/spru513
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=�SPRAA85B

Bit Field and Register-File Structure Approach www.ti.com

By mapping the register-file structure variable directly to the memory address of the peripheral's registers,
you can access the registers directly in C/C++ code by simply modifying the required member of the
structure. Each member of a structure can be used just like a normal variable, but its name will be a bit
longer. For example, to write to the SCI-A Control Register (SCICCR), access the SCICCR member of
SciaRegs as shown in Example 7. Here the dot is an operator in C that selects a member from a
structure.

Example 7. Accessing a Member of the SCI Register-File Structure

/**
* User's source file
**/
...
SciaRegs.SCICCR = SCICCRA_MASK;
ScibRegs.SCICCR = SCICCRB_MASK;
...

3.3 Adding Bit-Field Definitions

Accessing specific bits within the register is often useful; bit-field definitions provide this flexibility. Bit fields
are defined within a C/C++ structure by providing a list of bit-field names. each followed by colon and the
number of bits the field occupies.

Bit fields are a convenient way to express many difficult operations in C or C++. Bit fields do, however,
suffer from a lack of portability between hardware platforms. On the C28x devices, the following rules
apply to bit fields:

• Bit field members are stored from right to left in memory. That is, the least significant bit, or bit zero, of
the register corresponds to the first bit field.

• The C28x compiler limits the maximum number of bits within a bit field to the size of an integer; no bit
field can be greater than 16 bits in length.

• If the total number of bits defined by bit fields within a structure grows above 16 bits, then the next bit
field is stored consecutively in the next word of memory.

The SCICCR and SCICTL1 registers in Figure 1 and Figure 2 translate into the C/C++ bit-field definitions
in Example 8. Reserved locations within the register are held with bit fields that are not used except as
place holders, i.e., rsvd, rsvd1, rsvd2, et cetera. As with other structures, each member is accessed using
the dot operator in C or C++.

Figure 1. SCI SCICCR Register
15 14 13 12 11 10 9 8

Reserved

R-0

7 6 5 4 3 2 0

STOPBITS EVEN/ODD PRIORITY LOOPBACK ADDR/IDLE SCICHAR
PARITY ENABLE ENA Mode

R-0 R/W-0 R/W-0 R-0 R/W-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

Figure 2. SCI SCICTL1 Register
15 8

Reserved

R-0

7 6 5 4 3 2 1 0

Reserved RXERRINTENA SWRESET Reserved TXWAKE SLEEP TXENA RXENA

R-0 R/W-0 R/W-0 R-0 R/W-0 R/W-0 R/W-0 R/W-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

8 Programming TMS320x28xx and 28xxx Peripherals in C/C++ «SPRAA85B–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=�SPRAA85B

www.ti.com Bit Field and Register-File Structure Approach

Example 8. SCI Control Registers Defined Using Bit Fields

/**
* SCI header file
**/
//--
// SCICCR communication control register bit definitions:
//
struct SCICCR_BITS { // bit description

Uint16 SCICHAR:3; // 2:0 Character length control
Uint16 ADDRIDLE_MODE:1; // 3 ADDR/IDLE Mode control
Uint16 LOOPBKENA:1; // 4 Loop Back enable
Uint16 PARITYENA:1; // 5 Parity enable
Uint16 PARITY:1; // 6 Even or Odd Parity
Uint16 STOPBITS:1; // 7 Number of Stop Bits
Uint16 rsvd1:8; // 15:8 reserved

};
//---
// SCICTL1 control register 1 bit definitions:
//
struct SCICTL1_BITS { // bit description

Uint16 RXENA:1; // 0 SCI receiver enable
Uint16 TXENA:1; // 1 SCI transmitter enable
Uint16 SLEEP:1; // 2 SCI sleep
Uint16 TXWAKE:1; // 3 Transmitter wakeup method
Uint16 rsvd:1; // 4 reserved
Uint16 SWRESET:1; // 5 Software reset
Uint16 RXERRINTENA:1; // 6 Receive interrupt enable
Uint16 rsvd1:9; // 15:7 reserved

};

3.4 Using Unions

While bit fields provide access to individual bits, you may still want to access the register as a single
value. To provide this option, a union declaration is created to allow the register to be accessed in terms
of the defined bit fields or as a whole. The union definitions for the SCI communications control register
and control register 1 are shown in Example 9.

Example 9. Union Definition to Provide Access to Bit Fields and the Whole Register

/**
* SCI header file
**/

union SCICCR_REG {
Uint16 all;
struct SCICCR_BITS bit;

};

union SCICTL1_REG {
Uint16 all;
struct SCICTL1_BITS bit;

};

9«SPRAA85B–September 2009 Programming TMS320x28xx and 28xxx Peripherals in C/C++
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=�SPRAA85B

Bit Field and Register-File Structure Approach www.ti.com

Once bit-field and union definitions are established for specific registers, the SCI register-file structure is
rewritten in terms of the union definitions as shown in Example 10. Note that not all registers have bit field
definitions; some registers, such as SCITXBUF, will always be accessed as a whole and a bit field
definition is not necessary.

Example 10. SCI Register-File Structure Using Unions

/**
* SCI header file
**/

//---
// SCI Register File:
//
struct SCI_REGS {

union SCICCR_REG SCICCR; // Communications control register
union SCICTL1_REG SCICTL1; // Control register 1
Uint16 SCIHBAUD; // Baud rate (high) register
Uint16 SCILBAUD; // Baud rate (low) register
union SCICTL2_REG SCICTL2; // Control register 2
union SCIRXST_REG SCIRXST; // Receive status register
Uint16 SCIRXEMU; // Receive emulation buffer register
union SCIRXBUF_REG SCIRXBUF; // Receive data buffer
Uint16 rsvd1; // reserved
Uint16 SCITXBUF; // Transmit data buffer
union SCIFFTX_REG SCIFFTX; // FIFO transmit register
union SCIFFRX_REG SCIFFRX; // FIFO receive register
union SCIFFCT_REG SCIFFCT; // FIFO control register
Uint16 rsvd2; // reserved
Uint16 rsvd3; // reserved
union SCIPRI_REG SCIPRI; // FIFO Priority control

};

As with other structures, each member (.all or .bit) is accessed using the dot operator in C/C++ as shown
in Example 11. When the .all member is specified, the entire register is accessed. When the .bit member
is specified, then the defined bit fields can be directly accessed.

NOTE: Writing to a bit field has the appearance of writing to only the specified field. In reality,
however, the CPU performs what is called a read-modify-write operation; the entire register
is read, its contents are modified and the entire value is written back. Possible side effects of
read-modify-write instructions are discussed in Section 6.

Example 11. Accessing Bit Fields in C/C++

/**
* User's source file
**/

// Access registers without a bit field definition (.all, .bit not used)
SciaRegs.SCIHBAUD = 0;
SciaRegs.SCILBAUD = 1;

// Write to bit fields in SCI-A SCICTL1
SciaRegs.SCICTL1.bit.SWRESET = 0;
SciaRegs.SCICTL1.bit.SWRESET = 1;
SciaRegs.SCIFFCT.bit.ABDCLR = 1;
SciaRegs.SCIFFCT.bit.CDC = 1;

// Poll (i.e., read) a bit
while(SciaRegs.SCIFFCT.bit.CDC == 1) { }

// Write to the whole SCI-B SCICTL1/2 registers (use .all)
ScibRegs.SCICTL1.all = 0x0003;
ScibRegs.SCICTL2.all = 0x0000;

10 Programming TMS320x28xx and 28xxx Peripherals in C/C++ «SPRAA85B–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=�SPRAA85B

www.ti.com Bit Field and Register-File Structure Advantages

4 Bit Field and Register-File Structure Advantages

The bit field and register-file structure approach has many advantages that include:

• Register-file structures and bit fields are already available from Texas Instruments.
In the C/C++ Header Files and Peripheral Examples, the register-file structures and bit fields have
been implemented for all peripherals on the TMS320x28xx and TMS320x28xxx devices. The included
header files can be used as-is or extended to suit your particular needs.
The complete implementation is available in the software downloads from TI's website as shown in
Section 1.

• Using bit fields produces code that is easy-to-write, easy-to-read, easy-to-update, and efficient.
Bit fields can be manipulated quickly without the need to determine a register mask value. In addition,
you have the flexibility to access registers either by bit field or as a single quantity as shown in
Example 11. Code written using the register file structures also generates very efficient code. Code
efficiency will be discussed in Section 5.

• Bit fields take advantage of the Code Composer Studio editors auto complete feature.
At first it may seem that variable names are harder to remember and longer to type when using
register-file structures and bit fields. The Code Composer Studio editor provides a list of possible
structure/bit field elements as you type; this makes it easier to write code without referring to
documentation for register and bit field names. An example of the auto completion feature for the
CPU-Timer TCR register is shown in Figure 3.

Figure 3. Code Composer Studio 3.3 Autocomplete Feature

11«SPRAA85B–September 2009 Programming TMS320x28xx and 28xxx Peripherals in C/C++
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=�SPRAA85B

Code Size and Performance Using Bit Fields www.ti.com

• Increases the effectiveness of the Code Composer Studio Watch Window.
You can add and expand register-file structures in Code Composer Studio's watch window as shown in
Figure 4. Bit field values are read directly without extracting their value by hand.

Figure 4. Code Composer Studio Watch Window

5 Code Size and Performance Using Bit Fields

The bit field and register-file structure approach is very efficient when accessing a single bit within a
register or when polling a bit. As an example, consider code to initialize the PCLKCR0 register on a
TMS320x280x device. PCLKCR0 is described in detail in the TMS320x280x, 2801x, 2804x System
Control and Interrupts Reference Guide (SPRU712). The bit-field definition for this register is shown in
Example 12.

Figure 5. Peripheral Clock Control 0 Register (PCLKCR0)
15 14 13 12 11 10 9 8

ECANBENCLK ECANAENCLK Reserved SCIBENCLK SCIAENCLK SPIBENCLK SPIAENCLK

R/W-0 R/W-0 R-0 R/W-0 R/W-0 R/W-0 R/W-0

7 6 5 4 3 2 1 0

SPIDENCLK SPICENCLK Reserved I2CAENCLK ADCENCLK TBCLKSYNC Reserved

R/W-0 R/W-0 R-0 R/W-0 R/W-0 R/W-0 R-0

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

12 Programming TMS320x28xx and 28xxx Peripherals in C/C++ «SPRAA85B–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/spru712
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=�SPRAA85B

www.ti.com Code Size and Performance Using Bit Fields

Example 12. TMS320x280x PCLKCR0 Bit-Field Definition

// Peripheral clock control register 0 bit definitions:
struct PCLKCR0_BITS { // bits description

Uint16 rsvd1:2; // 1:0 reserved
Uint16 TBCLKSYNC:1; // 2 eWPM Module TBCLK enable/sync
Uint16 ADCENCLK:1; // 3 Enable high speed clk to ADC
Uint16 I2CAENCLK:1; // 4 Enable SYSCLKOUT to I2C-A
Uint16 rsvd2:1; // 5 reserved
Uint16 SPICENCLK:1; // 6 Enable low speed clk to SPI-C
Uint16 SPIDENCLK:1; // 7 Enable low speed clk to SPI-D
Uint16 SPIAENCLK:1; // 8 Enable low speed clk to SPI-A
Uint16 SPIBENCLK:1; // 9 Enable low speed clk to SPI-B
Uint16 SCIAENCLK:1; // 10 Enable low speed clk to SCI-A
Uint16 SCIBENCLK:1; // 11 Enable low speed clk to SCI-B
Uint16 rsvd3:2; // 13:12 reserved
Uint16 ECANAENCLK:1; // 14 Enable SYSCLKOUT to eCAN-A
Uint16 ECANBENCLK:1; // 15 Enable SYSCLKOUT to eCAN-B

};

The code in Example 13 enables the peripheral clocks on a TMS320x2801 device. The C28x compiler
generates one assembly code instruction for each C-code register access. This is very efficient; there is a
one-to-one correlation between the C instructions and the assembly instructions. The only overhead is the
initial instruction to set the data page pointer (DP).

Example 13. Assembly Code Generated by Bit Field Accesses

C-Source Code Generated Assembly
Memory Instruction

// Enable only 2801 Peripheral Clocks
EALLOW; 3F82A7 EALLOW
SysCtrlRegs.PCLKCR0.bit.rsvd1 = 0; 3F82A8 MOVW DP,#0x01C0
SysCtrlRegs.PCLKCR0.bit.TBCLKSYNC = 0; 3F82AA AND @28,#0xFFFC
SysCtrlRegs.PCLKCR0.bit.ADCENCLK = 1; 3F82AC AND @28,#0xFFFB
SysCtrlRegs.PCLKCR0.bit.I2CAENCLK = 1; 3F82AE OR @28,#0x0008
SysCtrlRegs.PCLKCR0.bit.rsvd2 = 0; 3F82B0 OR @28,#0x0010
SysCtrlRegs.PCLKCR0.bit.SPICENCLK = 1; 3F82B2 AND @28,#0xFFDF
SysCtrlRegs.PCLKCR0.bit.SPIDENCLK = 1; 3F82B4 OR @28,#0x0040
SysCtrlRegs.PCLKCR0.bit.SPIAENCLK = 1; 3F82B6 OR @28,#0x0080
SysCtrlRegs.PCLKCR0.bit.SPIBENCLK = 1; 3F82B8 OR @28,#0x0100
SysCtrlRegs.PCLKCR0.bit.SCIAENCLK = 1; 3F82BA OR @28,#0x0200
SysCtrlRegs.PCLKCR0.bit.SCIBENCLK = 0; 3F82BC OR @28,#0x0400
SysCtrlRegs.PCLKCR0.bit.rsvd3 = 0; 3F82BE AND @28,#0xF7FF
SysCtrlRegs.PCLKCR0.bit.ECANAENCLK= 1; 3F82C0 AND @28,#0xCFFF
SysCtrlRegs.PCLKCR0.bit.ECANBENCLK= 0; 3F82C2 OR @28,#0x4000
EDIS; 3F82C4 AND @28,#0x7FFF

3F82C6 EDIS

NOTE: EALLOW and EDIS are macros defined in the C/C++ Header Files and Peripheral
Examples. These macros expand to the EALLOW and EDIS assembly instructions.

The EALLOW protection mechanism prevents spurious CPU writes to several registers.
Executing EALLOW permits the CPU to write freely to protected registers and executing
EDIS protects them once more. For information on EALLOW protection and a list of
protected registers, refer to the System Control and Interrupts reference guide specific to
your device.

13«SPRAA85B–September 2009 Programming TMS320x28xx and 28xxx Peripherals in C/C++
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=�SPRAA85B

Code Size and Performance Using Bit Fields www.ti.com

To calculate how many cycles the code in Example 13 will take, you need to know how many wait states
are required to access the PCLKCR0 register. Wait state information for all memory blocks and peripheral
frames is listed in the device specific data manual. The PCLKCR0 register is in peripheral frame 2; this
frame requires two wait states for a read access and no wait states for a write access. This means a read
from PCLKCR0 takes three cycles total and a write takes one cycle. In addition, a new access to
PCLKCR0 cannot begin until the previous write is complete. This built-in protection mechanism removes
pipeline effects and makes sure operations proceed in the correct order; all of the peripheral registers
have this protection. In Example 13, each access to the PCLKCR0 register will take six cycles; the
pipeline phases are shown in Table 3.

Table 3. CPU-Pipeline Activity For Read-Modify-Write Instructions in Example 13

CPU-Pipeline Phase (1)

Read 1 - Read Begins Read 2 - Data Latched Execute - Value Modified Write - Value written Cycle

1AND @28,#0xFFFC

2AND @28,#0xFFFC

3AND @28,#0xFFFC

4AND @28,#0xFFFC

5AND @28,#0xFFFC

6AND @28,#0xFFFC

7AND @28,#0xFFFB

8AND @28,#0xFFFB

9AND @28,#0xFFFB

10AND @28,#0xFFFB

11AND @28,#0xFFFB

12AND @28,#0xFFFB

13OR @28,#0x0008

14OR @28,#0x0008

15OR @28,#0x0008

16OR @28,#0x0008

17OR @28,#0x0008

18OR @28,#0x0008

OR @28,#0x0010

etc...
(1) For detailed CPU pipeline information, see theTMS320C28x CPU and Instruction Set Reference Guide (SPRU430).

When code size and cycle counts must be kept to a minimum, it is beneficial to reduce the number of
instructions required to initialize a register to as few as possible. Here are some options for reducing code
size:

• Enable the compiler's optimizer:
As mentioned in Section 3.1, register-file variables are declared as volatile. For this reason, enabling
the optimizer alone will not reduce the number of instructions. The keyword volatile alerts the compiler
that the variable's value can change outside of the currently executing code. While removing the
volatile keyword would reduce code size, it is not recommended. Removing volatile must be done with
great care and only where the developer is certain doing so will not yield incorrect results.

14 Programming TMS320x28xx and 28xxx Peripherals in C/C++ «SPRAA85B–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/spru430
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=�SPRAA85B

www.ti.com Code Size and Performance Using Bit Fields

• Write to the complete register (.all union member):
The union definitions discussed in Section 3.4 allow access to either specific bit fields or to the entire
register. When a write is performed to the entire register using the .all member of the union, code size
is reduced. This method creates very efficient code as shown in Example 14. Using .all, however,
makes the code both harder to write and harder to read. It is not immediately evident how different bit
fields in the register are configured.

Example 14. Optimization Using the .all Union Member

C-Source Code Generated Assembly
Memory Instruction

EALLOW; 3F82A7 EALLOW
SysCtrlRegs.PCLKCR0.all = 0x47D8; 3F82A8 MOVW DP,#0x01C0
EDIS; 3F82AA MOV @28,#0x47D8

3F82AC EDIS

• Use a shadow register and enable the compiler's optimizer:
This method is the best compromise. The register's contents are loaded into a shadow register of the
same type as shown in Example 15. The content of the shadow register is then modified using bit
fields. Since shadowPCLKCR0 is not volatile, the compiler will combine the bit field writes when the
optimizer is enabled. Note that all of the reserved locations are also initialized. At the end of the code
the value in the shadow register is written to PCLKCR0. This method retains the advantages of bit field
definitions and results in code that is easy to read. The assembly shown was generated with the
compiler's optimization level -o1 enabled.

Example 15. Optimization Using a Shadow Register

C-Source Code Generated Assembly
Memory Instruction

// Enable only 2801 Peripheral Clocks
union PCLKCR0_REG shadowPCLKCR0;
EALLOW; 3F82A7 EALLOW
shadowPCLKCR0.bit.rsvd1 = 0; 3F82A8 MOV @AL,#0x47D8
shadowPCLKCR0.bit.TBCLKSYNC = 0; 3F82AA MOVW DP,#0x01C0
shadowPCLKCR0.bit.ADCENCLK = 1; // ADC 3F82AC MOV @28,AL
shadowPCLKCR0.bit.I2CAENCLK = 1; // I2C 3F82AD EDIS
shadowPCLKCR0.bit.rsvd2 = 0;
shadowPCLKCR0.bit.SPICENCLK = 1; // SPI-C
shadowPCLKCR0.bit.SPIDENCLK = 1; // SPI-D
shadowPCLKCR0.bit.SPIAENCLK = 1; // SPI-A
shadowPCLKCR0.bit.SPIBENCLK = 1; // SPI-B
shadowPCLKCR0.bit.SCIAENCLK = 1; // SCI-A
shadowPCLKCR0.bit.SCIBENCLK = 0; // SCI-B
shadowPCLKCR0.bit.rsvd3 = 0;
shadowPCLKCR0.bit.ECANAENCLK= 1; // eCAN-A
shadowPCLKCR0.bit.ECANBENCLK= 0; // eCAN-B
SysCtrlRegs.PCLKCR0.all = shadowPCLKCR0.all;
EDIS;

15«SPRAA85B–September 2009 Programming TMS320x28xx and 28xxx Peripherals in C/C++
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=�SPRAA85B

Read-Modify-Write Considerations When Using Bit Fields www.ti.com

6 Read-Modify-Write Considerations When Using Bit Fields

When writing to a bit field, the compiler generates what is called a read-modify-write assembly instruction.
Read-modify-write refers to the technique used to implement bit-wise or byte-wise operations such as
AND, OR and XOR. That is, the location is read, the single bit field is modified, and the result is written
back. Example 16 shows some of the C28x read-modify-write assembly instructions .

Example 16. A Few Read-Modify-Write Operations

AND @Var, #0xFFFC ; Read 16-bit value "Var"
; AND the value with 0xFFFC
; Write the 16-bit result to "Var"
;
;

OR @Var, #0x0010 ; Read 16-bit value "Var"
; OR the value with 0x0010
; Write the 16-bit result to "Var"
;
;

XOR @VarB, AL ; Read 16-bit value "Var"
; XOR with AL
; Write the 16-bit result to "Var"
;
;

MOVB *+XAR2[0], AH.LSB ; Read 16-bit value pointed to by XAR2
; Modify the least significant byte
; Write the 16-bit value back

With a full CPU pipeline, a C28x based device can complete one read-modify-write operation to zero
wait-state SARAM every cycle. When accessing the peripheral registers or external memory, however,
required wait states must be taken into account. In addition, the pipeline protection mechanism can further
stall instructions in the CPU pipeline. This is described in more detail in Section 5 and in the TMS320C28x
CPU and Instruction Set Reference Guide (SPRU430).

Read-modify-write instructions usually have no ill side effects. It is important, however, to realize that
read-modify-write instructions do not limit access to only specific bits in the register; these instructions
write to all of the register's bits. In some cases, the read-modify-write sequence can cause unexpected
results when bits are written to with the value originally read. Registers that are sensitive to
read-modify-write instructions fall into three categories:

• Registers with bits that hardware can change after the read, but before the write
• Registers with write 1-to-clear bits
• Registers that have bits that must be written with a value different from what the bits read back

Registers that fall into these three categories are typically found within older peripherals. To keep register
compatibility, the register files have not been redesigned to avoid this issue. Newer peripherals, such as
the ePWM, eCAP, and eQEP, however, have a register layout specifically designed to avoid these
problems.

This section describes in detail the three categories in which read-modify-write operations should be used
with care. In addition, an example of each type of register is given along with a suggested method for
safely modifying that register. At the end of the section a list of read-modify-write sensitive registers is
provided for reference.

6.1 Registers That Hardware Can Modify During Read-Modify-Write Operations

The device itself can change the state of some bits between the read and the write stages of the CPU
pipeline. For example, the PIE interrupt flag registers (PIEIFRx where x = 1, 2, ... 12) can change due to
an external hardware or peripheral event. The value written back may overwrite a flag, corrupting the
value, and result in missed interrupts.

16 Programming TMS320x28xx and 28xxx Peripherals in C/C++ «SPRAA85B–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/spru430
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=�SPRAA85B

www.ti.com Read-Modify-Write Considerations When Using Bit Fields

6.1.1 PIEIFRx Registers

If there is a need to clear a PIEIFRx bit, then the rule is to always let the CPU take the interrupt to clear
the flag. This is done by re-mapping the interrupt vector to a pseudo interrupt service routine (ISR). The
corresponding PIEIERx bit is then set to allow the CPU to service the interrupt using the pseudo ISR.
Within the pseudo ISR the interrupt vector is re-mapped to the interrupt vector for the true ISR routine as
shown in Example 17.

NOTE: This rule does not apply to the CPU's IFR register. Special instructions are provided to clear
CPU IFR bits and will not result in missing interrupts. Use the OR IFR instruction to set IFR
bits, and use the AND IFR instruction to clear pending interrupts.

Example 17. Clearing PIEIFRx (x = 1, 2...12) Registers

/**
* User's source file
**/

// Pseudo ISR prototype. PTIN = pointer to an interrupt
interrupt void PseudoISR(void);
PINT TempISR;
....
if(PieCtrlRegs.PIEIFR1.bit.INTx4 == 1)
{
// Temp save current vector and remap to pseudo ISR
// Take the interrupt to clear the PIEIFR flag
EALLOW;
TempISR = PieVectTable.XINT1;
PieVectTable.XINT1 = PseudoISR;
PieCtrlRegs.PIEIER1.bit.INTx4 = 1;
EDIS;

}
....

// Pseudo ISR
// Services the interrupt & the hardware clears the PIEIFR flag
// Re-maps the interrupt to the proper ISR
interrupt void PseudoISR(void)
{
EALLOW;
PieVectTable.XINT1 = TempISR;
EDIS;

}

6.1.2 GPxDAT Registers

Another case of bits that can change between a read and a write are the GPIO data registers. Consider
the code shown in Example 18. Except on 281x devices, the GPxDAT registers reflect the state of the pin,
not the output latch. This means the register reflects the actual pin value. However, there is a lag between
when the register is written to when the new pin value is reflected back in the register. This may pose a
problem when this register is used in subsequent program statements to alter the state of GPIO pins. In
Example 18 two program statements attempt to drive two different GPIO pins. The second instruction will
wait for the first to finish its write due to the write-followed-by-read protection on this peripheral frame.
There will be some lag, however, between the write of GPIO16 and the GPxDAT bit reflecting the new
value (1) on the pin. During this lag, the second instruction will read the old value of GPIO16 (0) and write
it back along with the new value of GPIO17 (0). Therefore, the GPIO16 pin stays low.

One solution is to put some NOP’s between the read-modify-write instructions. A better solution is to use
the GPxSET/GPxCLEAR/GPxTOGGLE registers instead of the GPxDAT registers. These registers always
read back a 0 and writes of 0 have no effect. Only bits that need to be changed can be specified without
disturbing any other bit(s) that are currently in the process of changing. The same code using GPxSET
and GPxCLEAR registers is shown in Example 19.

17«SPRAA85B–September 2009 Programming TMS320x28xx and 28xxx Peripherals in C/C++
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=�SPRAA85B

Read-Modify-Write Considerations When Using Bit Fields www.ti.com

Example 18. Read-Modify-Write Effects on GPxDAT Registers

/**
* User's source file
**/

for(;;)
{

// Make LED Green
GpioDataRegs.GPADAT.bit.GPIO16 = 1; // (1) RED_LED_OFF;
// Read-modify-write occurs

GpioDataRegs.GPADAT.bit.GPIO17 = 0; // (2) GREEN_LED_ON;
// Read: Because of the delay between output to input
// the old value of GPIO16 (zero) is read
// Modify: Changes GPIO17 to a 0
// Write: Writes back GPADAT with GPIO16 = 0 and GPIO17 = 0
delay_loop();

// Make LED Red
GpioDataRegs.GPADAT.bit.GPIO16 = 0; // (3) RED_LED_ON;
GpioDataRegs.GPADAT.bit.GPIO17 = 1; // (4) GREEN_LED_OFF;
delay_loop();

}

Example 19. Using GPxSET and GPxCLEAR Registers

/**
* User's source file
**/

for(;;)
{

// Make LED Green
GpioDataRegs.GPASET.bit.GPIO16 = 1; // RED_LED_OFF;
GpioDataRegs.GPACLEAR.bit.GPIO17 = 1; // GREEN_LED_ON;
delay_loop();

// Make LED Red
GpioDataRegs.GPACLEAR.bit.GPIO16 = 1; // RED_LED_ON;
GpioDataRegs.GPASET.bit.GPIO17 = 1; // GREEN_LED_OFF;
delay_loop();

}

6.2 Registers With Write 1-to-Clear Bits.

Some registers have what is called write 1-to-clear bits. This means that when the bit is set it can only be
cleared by writing a value of one to the bit. During a read-modify-write operation, if a bit is one when it is
read, then it will also be written as a one unless it is changed during the modify portion of the access. For
this reason, it is likely a read-modify-write instruction will inadvertently clear a write 1-to-clear bit.

The CPU-Timer interrupt flag (TIF) within the TCR register is an example of a write 1-to-clear bit. TIF can
be read to determine if the CPU-Timer has overflowed and flagged an interrupt. Example 20 shows code
that stops the CPU-Timer and then checks to see if the interrupt flag is set.

18 Programming TMS320x28xx and 28xxx Peripherals in C/C++ «SPRAA85B–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=�SPRAA85B

www.ti.com Read-Modify-Write Considerations When Using Bit Fields

Example 20. Read-Modify-Write Operation Inadvertently Modifies Write 1-to-Clear Bits (TCR[TIF])

C-Source Code Generated Assembly
Memory Instruction

// Stop the CPU-Timer
CpuTimer0Regs.TCR.bit.TSS = 1; 3F80C7 MOVW DP,#0x0030

3F80C9 OR @4,#0x0010
// Check to see if TIF is set 3F80CB TBIT @4,#15
if (CpuTimer0Regs.TCR.bit.TIF == 1) 3F80CC SBF L1,NTC
{ 3F80CD NOP

// TIF set, insert action here 3F80CE L1:
// NOP is only a place holder
asm(" NOP");

}

The test for TIF in Example 20 will never be true even if an interrupt has been flagged. The OR assembly
instruction to set the TSS bit performs a read-modify-write operation on the TCR register. If the TIF bit is
set when the read-modify-write operation occurs, then TIF will be read as a 1 and also written back as a 1.
The TIF bit will always be cleared as a result of this write. To avoid this, the write to TIF bit always be 0.
The TIF bit ignores writes of 0, thus, its value will be preserved. One possible implementation that
preserves TIF is shown in Example 21.

Example 21. Using a Shadow Register to Preserve Write 1-to-Clear Bits

C-Source Code Generated Assembly
Memory Instruction

union TCR_REG shadowTCR;
// Use a shadow register to stop the timer
// and preserve TIF (write 1-to-clear bit)
shadowTCR.all = CpuTimer0Regs.TCR.all; 3F80C7 MOVW DP,#0x0030
shadowTCR.bit.TSS = 1; 3F80C9 MOV AL,@4
shadowTCR.bit.TIF = 0; 3F80CA ORB AL,#0x10
CpuTimer0Regs.TCR.all = shadowTCR.all; 3F80CB MOVL XAR5,#0x000C00

3F80CD AND AL,@AL,#0x7FFF
// Check the TIF flag 3F80CF MOV *+XAR5[4],AL
if(CpuTimer0Regs.TCR.bit.TIF == 1) 3F80D0 TBIT *+XAR5[4],#15
{ 3F80D1 SBF L1,NTC

// TIF set, insert action here 3F80D2 NOP
// NOP is only a place holder 3F80D3 L1:
asm(" NOP");

}

The content of the TCR register is copied into a shadow register. Within the shadow register the TSS bit is
set, and the TIF bit is cleared. The shadow register is then written back to TCR; the timer is stopped and
the state of TIF is preserved. The assembly instructions were generated with optimization level -o2
enabled.

6.3 Register Bits Requiring a Specific Value

Some registers have bits that must be written as a specific value. If this value is different from the value
the bits read, then a read-modify-write operation will likely write the incorrect value.

An example is the watchdog check bit field (WDCHK) in the watchdog control register. The watchdog
check bits must be written as 1,0,1; any other value is considered illegal and will reset the device. Since
these bits always read back as 0,0,0, a read-modify-write operation will write 0,0,0 unless WDCHK is
changed during the modify portion of the operation.

19«SPRAA85B–September 2009 Programming TMS320x28xx and 28xxx Peripherals in C/C++
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=�SPRAA85B

Read-Modify-Write Considerations When Using Bit Fields www.ti.com

Another solution is to avoid the read-modify-write operation and instead only write a 16-bit value to the
WDCR register. To remind you of this requirement, a bit field definition is not provided for the WDCR
register in the C/C++ Header Files and Peripheral Examples. Registers that do not have bit-field nor union
definitions are accessed without the .bit or .all designations as shown in Example 22.

Example 22. Watchdog Check Bits (WDCR[WDCHK])

/**
* User's source file
**/

SysCtrlRegs.WDCR = 0x0068;

See the TMS320x280x, 2801x, 2804x DSP System Control and Interrupts Reference Guide (SPRU712)
and TMS320x281x System Control and Interrupts Reference Guide (SPRU078) for more information on
the watchdog module.

6.4 Read-Modify-Write Sensitive Registers

Table 4 lists registers that are sensitive to read-modify-write instructions. Depending on the register and
how the peripheral is used in the application, effects of a read-modify-write operation may or may not be a
concern. This list may not be complete.

Table 4. Read-Modify-Write Sensitive Registers

Module Register(s) Comments

Watchdog SCSR WDOVERRIDE is a write 1-to-clear bit and always
reads back as a 1.

WDCR WDCHK must be written as 1,0,1 and always read
back as 0,0,0.

WDCR WDFLG is a write 1-to-clear bit.

CPU-Timer TCR Timer interrupt flag (TIF) is a write 1-to-clear bit.

GPIO GPxDAT Use this register to read data and instead use the
SET/CLEAR and TOGGLE registers to change the
state of GPIO pins.

PIE PIEIFRx To clear PIEIFR bits, do not write to the PIEIFR
register. Instead map the interrupt to a "pseudo"
interrupt and service it. That is, let the hardware clear
the interrupt flag otherwise interrupts from other
peripherals may be missed.

PIEACKx The PIEACK bits are write 1-to-clear bits.

Event Manager (EV) (1) CAPCONA CAPCONB CAPRES is a write-0-to-reset bit and always reads
back as 0.

CAPFIFOA CAPFIFOB If a write occurs at the same time that a CAPxFIFO
status bit is being updated, the write data takes
precedence. Thus if the bit changes between the
read and the write phase of a read-modify-write
instruction, the new bit value may be lost.

EVAIFRA/B/C EVBIFRA/B/C The EV interrupt flags are all write 1-to-clear bits.

eCAN CANTRS CANTRR The eCAN module can change the state of a bit
between the time the register is read and the time it
is written back.

CANTA CANAA These registers contain one or more write 1-to-clear
CANRMP CANRML bits.
CANRFP CANES
CANGIF0 CANGIF1
CANTOS

SPI SPIST Contains write 1-to-clear bits.

I2C I2CSTR Contains write 1-to-clear bits.

(1) The EV module is available on TMS320x281x devices only.

20 Programming TMS320x28xx and 28xxx Peripherals in C/C++ «SPRAA85B–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/spru712
http://www.ti.com/lit/pdf/spru078
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=�SPRAA85B

www.ti.com A Special Case: eCAN Control Registers

7 A Special Case: eCAN Control Registers

Access to peripherals occur on one of three peripheral frames (or busses). Peripheral registers are
located in the frame capable of accesses that best fit the register set.

• Peripheral frame 0:
Peripherals within this frame are on the device's memory bus. This bus is capable of both 16-bit or
32-bit accesses. For example, CPU-Timers are on the memory bus.

• Peripheral frame 1:
Peripheral frame 1 uses a bus that is capable of both 16-bit and 32-bit accesses. Examples include the
ePWM and eCAN peripherals.

• Peripheral frame 2:
Peripheral frame 2 uses a bus that is capable of only 16-bit accesses. All of the peripheral registers on
frame 2 are only 16-bits in length. Examples include the SCI, SPI, ADC and I2C.

The eCAN control and status registers are limited to 32-bit-wide accesses. Accesses of only 16 bits can
yield unpredictable results. The eCAN control and status registers must be handled as a special case;
they are the only peripheral frame 1 registers limited to 32-bit wide accesses.

Often the compiler will reduce an access to 16-bits if it will save code size or improve performance. Care
must be taken to make sure what appears to be a 32-bit access to the eCAN control and status registers
is not simplified to a 16-bit access by the compiler. For example, the compiler has reduced the access
shown in Example 23 to a 16-bit access to half of the CANMC register.

Example 23. Invalid eCAN Control Register 16-Bit Write

C-Source Code Generated Assembly
Memory Instruction

// The compiler will simplify this to 3F81FA EALLOW
// a 16-bit read-modify-write 3F81FB MOVW DP,#0x0180
EALLOW; 3F81FD OR @20,#0x2000
ECanaRegs.CANMC.bit.SCB = 1; 3F81FF EDIS
EDIS;

To force 32-bit accesses, the bit-field definitions and read-modify-write operations must not be used. The
register must be read and written using the .all member of the union definition and all 32-bits must be read
or written.

Unfortunately, not using bit fields or read-modify-write operations reduces the code readability. One
solution is to read the entire register into a shadow register, manipulate the value, and then write the new
32-bit value to the register using .all. The code in Example 24 uses a shadow register to force a 32-bit
access. If more then one register is going to be accessed, then the whole eCAN register file can be
shadowed (i.e., struct ECAN_REGS shadowECanaRegs;).

Example 24. Using a Shadow Register to Force a 32-Bit Access

C-Source Code Generated Assembly
Memory Instruction

// Use a shadow register to force a
// 32-bit access
union CANMC_REG shadowCANMC;
EALLOW; 3F81FA EALLOW

3F81FB MOVW DP,#0x0180
// 32-bit read of CANMC 3F81FD MOVL ACC,@20
shadowCANMC.all = ECanaRegs.CANMC.all; 3F81FE OR @AL,#0x2000
shadowCANMC.bit.SCB = 1; 3F8200 MOVL @20,ACC

3F8201 EDIS
// 32-bit write of CANMC
ECanaRegs.CANMC.all = shadowCANMC.all;
EDIS;

21«SPRAA85B–September 2009 Programming TMS320x28xx and 28xxx Peripherals in C/C++
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=�SPRAA85B

References www.ti.com

8 References

The following references include additional information on topics found in this application report:

• C281x C/C++ Header Files and Peripheral Examples (SPRC097)
• C2834x C/C++ Header Files and Peripheral Examples (SPRC892)
• C280x, C2801x C/C++ Header Files and Peripheral Examples (SPRC191)
• C2804x C/C++ Header Files and Peripheral Examples (SPRC324)
• C2833x/C2823x C/C++ Header Files and Peripheral Examples (SPRC530)
• 2802x C/C++ Header Files and Peripheral Examples (SPRC832)
• TMS320C28x CPU and Instruction Set Reference Guide (SPRU430)
• TMS320C28x Optimizing C/C++ Compiler User's Guide (SPRU514)
• TMS320C28x Assembly Language Tools User's Guide (SPRU513)
• TMS320x281x System Control and Interrupts Reference Guide (SPRU078)
• TMS320x280x, 2801x, 2804x DSP System Control and Interrupts Reference Guide (SPRU712)
• TMS320x281x Serial Communications Interface (SCI) Reference Guide (SPRU051).

For peripheral guides specific to your device refer to TMS320x28xx, 28xxx DSP Peripherals Reference
Guide (SPRU566)

22 Programming TMS320x28xx and 28xxx Peripherals in C/C++ «SPRAA85B–September 2009
Submit Documentation Feedback

Copyright © 2009, Texas Instruments Incorporated

http://www-s.ti.com/sc/techlit/sprc097.zip
http://www-s.ti.com/sc/techlit/sprc876.zip
http://www-s.ti.com/sc/techlit/sprc191.zip
http://www-s.ti.com/sc/techlit/sprc324.zip
http://www-s.ti.com/sc/techlit/sprc530.zip
http://www-s.ti.com/sc/techlit/sprc832.zip
http://www.ti.com/lit/pdf/spru430
http://www.ti.com/lit/pdf/spru514
http://www.ti.com/lit/pdf/spru513
http://www.ti.com/lit/pdf/spru078
http://www.ti.com/lit/pdf/spru712
http://www.ti.com/lit/pdf/SPRU051
http://www.ti.com/lit/pdf/spru566
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=�SPRAA85B

IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products Applications
Amplifiers amplifier.ti.com Audio www.ti.com/audio
Data Converters dataconverter.ti.com Automotive www.ti.com/automotive
DLP® Products www.dlp.com Broadband www.ti.com/broadband
DSP dsp.ti.com Digital Control www.ti.com/digitalcontrol
Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical
Interface interface.ti.com Military www.ti.com/military
Logic logic.ti.com Optical Networking www.ti.com/opticalnetwork
Power Mgmt power.ti.com Security www.ti.com/security
Microcontrollers microcontroller.ti.com Telephony www.ti.com/telephony
RFID www.ti-rfid.com Video & Imaging www.ti.com/video
RF/IF and ZigBee® Solutions www.ti.com/lprf Wireless www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2009, Texas Instruments Incorporated

http://amplifier.ti.com
http://www.ti.com/audio
http://dataconverter.ti.com
http://www.ti.com/automotive
http://www.dlp.com
http://www.ti.com/broadband
http://dsp.ti.com
http://www.ti.com/digitalcontrol
http://www.ti.com/clocks
http://www.ti.com/medical
http://interface.ti.com
http://www.ti.com/military
http://logic.ti.com
http://www.ti.com/opticalnetwork
http://power.ti.com
http://www.ti.com/security
http://microcontroller.ti.com
http://www.ti.com/telephony
http://www.ti-rfid.com
http://www.ti.com/video
http://www.ti.com/lprf
http://www.ti.com/wireless

	Programming TMS320x28xx and 28xxx Peripherals in C/C++
	1 Introduction
	2 Traditional #define Approach
	3 Bit Field and Register-File Structure Approach
	3.1 Defining A Register-File Structure
	3.2 Using the DATA_SECTION Pragma to Map a Register-File Structure to Memory
	3.3 Adding Bit-Field Definitions
	3.4 Using Unions

	4 Bit Field and Register-File Structure Advantages
	5 Code Size and Performance Using Bit Fields
	6 Read-Modify-Write Considerations When Using Bit Fields
	6.1 Registers That Hardware Can Modify During Read-Modify-Write Operations
	6.1.1 PIEIFRx Registers
	6.1.2 GPxDAT Registers

	6.2 Registers With Write 1-to-Clear Bits.
	6.3 Register Bits Requiring a Specific Value
	6.4 Read-Modify-Write Sensitive Registers

	7 A Special Case: eCAN Control Registers
	8 References

