

APPLICATION NOTE

Atmel AVR1304: Using the XMEGA DMA Controller

8-bit AVR Microcontrollers

Features

• Four separate DMA channels

• Flexible channel priority selection

• Trhree addressing modes: static, increment, and decrement

• Source and/or destination address reload capabilities

• Single-shot or repeated block transfers

• Double buffering (chained buffers) for continuos transfer

• Interrupts upon buffer empty and errors

• Large block sizes

• Driver source code included

Introduction

The XMEGA® Direct Memory Access Controller (DMAC) is a highly flexible four-
channel DMA Controller capable of transferring data between memories and
peripherals with minimal CPU intervention. While the CPU spends time in low-power
sleep modes or performs other tasks, the XMEGA DMAC offloads the CPU by taking
care of mere data copying from one area to another.

Flexible channel priority selection, several addressing modes, double buffering
capabilities and large block sizes make the XMEGA DMAC a powerful module for all
data oriented applications, such as signal processing and industrial control.

This application note describes the basic functionality of the XMEGA DMAC with
code examples to get up and running quickly. A driver interface written in C is
included as well.

Figure 1. DMA controller example case.

Internal
EEPROM Internal SRAM Internal

Peripherals
External
Memory

DMAC
Channel 2

DMAC
Channel 3

DMAC
Channel 0

DMAC
Channel 1

8046D−AVR−05/2013

Atmel AVR1304: Using the XMEGA DMA Controller [APPLICATION NOTE]
8046D−AVR−05/2013

2

Table of Contents

1. Module overview .. 3
1.1 DMA channels ... 3
1.2 Data transfer ... 3
1.3 Block transfer and repeat mode .. 3
1.4 DMA transaction .. 3
1.5 Addressing modes .. 4
1.6 Address reload .. 5
1.7 Transfer triggers and single-shot mode ... 5
1.8 Interrupt handling .. 5
1.9 Accessing multi-byte DMAC registers ... 6

2. Getting started ... 6
2.1 Memory block copy ... 6
2.2 Copy single-byte data from SRAM array to peripheral 7
2.3 Copy four-byte results from peripheral to SRAM array 7

3. Advanced features ... 8
3.1 Double buffering .. 8
3.2 Channel priority ... 8

4. Driver implementation .. 8
4.1 Files … ... 9
4.2 Doxygen documentation ... 9

5. Revision History ... 10

Atmel AVR1304: Using the XMEGA DMA Controller [APPLICATION NOTE]
8046D−AVR−05/2013

3

1. Module overview
This section provides an overview of the basic configuration options and functionality of the DMAC. Chapter 2 then
walks you through the basic steps to get up and running, with register descriptions and configuration details.

1.1 DMA channels
In addition to common registers, the DMAC has four independent channels with separate sets of control and status
registers. Each channel holds the necessary control and state information for one DMA transaction, with source and
destination addresses, byte count and status. When a transaction is finished, the channel can either be left unused,
reconfigured for a different transaction, or triggered to repeat the previous transaction.

DMA transactions are covered in more detail in Section 1.4.

1.2 Data transfer
The concept of a Data Transfer in this context refers to the operation where the DMAC channel copies one, two, four, or
eight bytes from the source to the destination address in one Burst Transfer.

When the channel is configured to transfer two, four, or eight bytes at a time, the controller holds the bus for the
duration of two, four, or eight byte transfers, respectively, once the DMAC acquires the bus.

Multi-byte bursts are useful for transferring multi-byte register data from e.g. an ADC without risking that the CPU or
other DMA channels access multi-byte registers, which could cause the data in the multi-byte temporary registers to be
corrupted.

The transfer mode is configured with the burst length setting in the Channel Transfer Mode bitfield (BURSTLEN) in each
channel’s Control register (CTRL).

Figure 1-1 in Section 1.4 illustrates data transfers and burst mode.

1.3 Block transfer and repeat mode
The concept of a Block Transfer in this context refers to the operation of performing all data transfers necessary to
transfer the number of bytes given by the block size. The block size is configured with the channel’s 16-bit Block
Transfer Count register (TRFCNT), which allows for block sizes up to 64K bytes. A value of zero means 64K bytes.

Block size do not have to be a multiple of the burst mode byte count, the data transfer stops when all bytes in the block
are transferred. For instance, using four-byte burst mode with a block size of ten bytes results in two full data transfers
and one final two-byte data transfer.

To extend the number of bytes transferred beyond 64K, a repeat counter can be used to perform the block transfer a
number of times. The total amount of bytes transferred equals the block size times the repeat count. The repeat mode is
enabled with the Repeat Mode bit (REPEAT) in the channel’s Control register (CTRL). The repeat count itself is located
in the channel’s Repeat Count register (REPCNT). With an 8-bit repeat counter, the DMAC is capable of transferring
16M bytes without any CPU intervention.

Note that unlimited repeat count can be achieved by enabling repeat mode and setting the repeat count to zero.

Figure 1-1 in Section 1.4 illustrates block transfers in relation to data transfers and DMA transactions.

1.4 DMA transaction
The concept of a DMA Transaction in this context refers to the whole operation with all data transfers and repeated
block transfers. A DMA transaction starts with the first DMA request after preparing the channel and ends when all block
transfers are finished and the repeat counter is zero.

Atmel AVR1304: Using the XMEGA DMA Controller [APPLICATION NOTE]
8046D−AVR−05/2013

4

Figure 1-1 shows the relation between data transfers, block transfers, and DMA transactions.

Figure 1-1. Data transfer, block transfer, and DMA transactions.

Four-byte burst mode Block size: 12 bytes Repeat count: 2

Data Transfer Block Transfer

DMA Transaction

1.5 Addressing modes
By default the source and destination addresses are fixed during all transfers, which means each data transfer for the
channel copies data to and from the same memory locations. This is useful for e.g. piping data from one peripheral to
another. The burst length decides the number of bytes to copy during each data transfer, but the source and destination
address are still fixed for each access. For instance, four-byte burst mode would copy the same byte four times during
each data transfer.

For applications where data is to be stored in an array, the DMAC can be configured to increase or decrease the
destination address after each byte access. Similarly, when data is to be retrieved from an array, the DMAC can be
configured to increase or decrease the source address after each byte access. Finally, for copying data from one array
to another, both source and destination address can be increased or decreased after each byte access.

Addressing modes are configured with the Source and Destination Address Mode bitfields (SRCDIR and DESTDIR) in
each channel’s Address Control register (ADDRCTRL).

Figure 1-2. Addressing mode examples.

So
ur

ce
 M

em
or

y

DMAC
Channel

D
es

tin
at

io
n

M
em

or
y

So
ur

ce
 M

em
or

y

DMAC
Channel

D
es

tin
at

io
n

M
em

or
y

So
ur

ce
 M

em
or

y

DMAC
Channel

D
es

tin
at

io
n

M
em

or
y

DMAC
Channel

D
es

tin
at

io
n

M
em

or
y

So
ur

ce
 M

em
or

y

Both fixed Destination increasing

Source increasing Separate directions
also possible

Atmel AVR1304: Using the XMEGA DMA Controller [APPLICATION NOTE]
8046D−AVR−05/2013

5

1.6 Address reload
When address increment or decrement is used, the default behavior is to update the address after each access.
However, many applications would reset the source or destination pointers to the start of the array at some point.
During a DMA transaction the original source and destination address are stored by the DMAC, and the addresses can
be individually configured to reload at the following points in time:

• End of each data transfer

• End of each block transfer

• End of transaction

• Never reload

For instance, reload after each data transfer can be used in conjunction with eight-byte burst mode to repeatedly read
all four results of an XMEGA ADC and write the data into an array. The eight-byte burst mode makes sure all four ADC
results are read without CPU access in between and the source address reload positions the source pointer back to the
first ADC result register after the data transfer.

Note that when using reload after a burst and the total byte count is not a multiple of the burst size; the last burst
transfer will stop when the total byte count is reached, and the reload action occurs. For example, using 4-byte bursts
with a 17-byte block, the reload will occur after the 4th, 8th, 16th and 17th byte.

Address reload is configured with the Source and Destination Address Reload bitfields (SRCRELOAD and DESTRELOAD)
in each channel’s Address Control register (ADDRCTRL).

1.7 Transfer triggers and single-shot mode
The available trigger sources vary from device to device, and the user should consult the datasheet of each device for a
complete list of DMA transfer trigger sources.

In addition to the external transfer triggers, it is possible to manually trigger a transfer for a channel by setting the
Transfer Request bit (TRFREQ) in the channel’s Control register (CTRL).

By default, a transfer trigger starts a Block Transfer operation. The transaction continues until one block is transferred.
When the block is transferred, the channel waits for the next trigger to arrive.

For some applications it might not be desired to finish one complete block transfer for every trigger. By setting the
Single Shot bit (SINGLE) in a channel’s Control register (CTRL), each trigger will complete one data transfer instead of a
block transfer. The rest of a channel’s settings and operating modes are not affected by enabling the single-shot mode.

Single-shot mode is often used in conjunction with accessing multi-byte peripheral registers where addresses are
reloaded after each data transfer. See the example in Section 2.3.

1.8 Interrupt handling
Each DMA channel can be configured to request interrupts after the following events:

• Transfer Complete

• Transfer Error

By default, the Transfer Complete interrupt is requested after each block transfer. When repeat mode is enabled, the
interrupt is not requested until all block transfers are completed and the repeat counter has reached zero. For the
special case of unlimited repeating, an interrupt is requested after every block transfer.

The Transfer Error interrupt is requested if a transfer operation is aborted for some reason. This happens if for instance
a channel or the whole DMAC module is disabled while transactions are still in progress. The transfer is also aborted by
write attempts to EEPROM space and also by read attempts to EEPROM space if the CPU is in any sleep mode.

Atmel AVR1304: Using the XMEGA DMA Controller [APPLICATION NOTE]
8046D−AVR−05/2013

6

Note: The two interrupts share one common interrupt vector (one vector per DMA channel). Therefore, the interrupt
handler must check the flags, take appropriate action and clear the flags manually.

1.9 Accessing multi-byte DMAC registers
Several registers in the DMAC module are two- or three-byte registers. To ensure that all bytes of a multi-byte register
are read and written simultaneously, always read and write the lowest byte register first.

During read operations, the complete register is latched when the first byte is read and the next one or two bytes are
stored in temporary locations until they are read.

During write operations, the first one or two bytes are stored in temporary locations until the final byte is written, which
triggers a write operation for the whole register.

It is important to note that the temporary storage registers are shared among all the multi-byte registers in the DMAC
module. Therefore it is imperative to complete a read or write operation for such a register before accessing other multi-
byte registers, or else the data will be corrupted. For multithreaded applications or applications that access the DMAC
from interrupt handlers, the user must implement software mechanisms to ensure mutually exclusive access to the
multi-byte registers of the DMAC module.

The registers in question are:

• Block Transfer Count

• Source Address

• Destination Address

2. Getting started
This section walks you through the basic steps for getting up and running with simple transfers and experimenting with
different operating modes. The necessary registers are described along with relevant bit settings.

2.1 Memory block copy
Task: Copy 1K bytes from source to destination array using DMA channel 0 in eight-byte burst mode and manual
transfer trigger.

• Set the Enable bit (ENABLE) in the DMA Control register (CTRL) to enable the DMAC with default settings for
priority

• Set the Transfer Mode bitfield (BURSTLEN) in Channel 0 Control Register (CTRL) equal to 0x03 to select eight-
byte burst mode

• Set the Source Address Mode bitfield (SRCDIR) in Channel 0 Address Control register (ADDRCTRL) equal to
0x01 to make the source address increment after each byte access

• Set the Destination Address Mode bitfield (DESTDIR) in Channel 0 Address Control register (ADDRCTRL) equal
to 0x01 to make the destination address increment after each byte access

• Set the Channel 0 Trigger Source register (TRIGSRC) equal to 0x00 to select manual trigger source

• Set the Channel 0 Block Transfer Count register (TRFCNT) equal to 0x0400 to set the block size to 1K bytes

• Set the Channel 0 Source Address register (SRCADDR) to point to the start of the source array

• Set the Channel 0 Destination Address register (DESTADDR) to point to the start of the destination array

• Set the Enable bit (ENABLE) in Channel 0 Control register (CTRL) to enable DMA channel 0

• Set the Transfer Request bit (TRFREQ) in Channel 0 Control register (CTRL) to start the transaction

Atmel AVR1304: Using the XMEGA DMA Controller [APPLICATION NOTE]
8046D−AVR−05/2013

7

• Wait for the Transaction Complete Interrupt Flag bit for channel 0 (CH0TRNIF) in the Transfer Interrupt Status
register (INTFLAGS) to be set, indicating that the transaction is finished. Clear the flag afterwards by writing
logic one to it

2.2 Copy single-byte data from SRAM array to peripheral
Task: Copy 2K bytes from an array to a peripheral I/O register using DMA channel 2 in cycle stealing mode and manual
transfer trigger for every byte.

• Set the Enable bit (ENABLE) in the DMA Control register (CTRL) to enable the DMAC with default settings for
priority

• Set the Single Shot bit (SINGLE) in Channel 2 Control register (CTRL) to select single-shot mode

• Set the Transfer Mode bitfield (BURSTLEN) in Channel 2 Control register (CTRL) equal to 0x00 to select cycle
stealing mode

• Set the Source Address Mode bitfield (SRCDIR) in Channel 2 Address Control register (ADDRCTRL) equal to
0x01 to make the source address increment after each byte access

• Set the Destination Address Mode bitfield (DESTDIR) in Channel 2 Address Control register (ADDRCTRL) equal
to 0x00 to leave the destination address between byte accesses

• Set the Channel 2 Trigger Source register (TRIGSRC) equal to 0x00 to select manual trigger source

• Set the Channel 2 Block Transfer Count register (TRFCNT) equal to 0x0800 to set the block size to 2K bytes

• Set the Channel 2 Source Address register (SRCADDR) to point to the start of the source array

• Set the Channel 2 Destination Address register (DESTADDR) to point to I/O register of the peripheral

• Set the Enable bit (ENABLE) in Channel 2 Control register (CTRL) to enable DMA channel 2

• Set the Transfer Request bit (TRFREQ) in Channel 2 Control register (CTRL) to transfer one byte from the array
to the peripheral. Repeat until the Transaction Complete Interrupt Flag bit for channel 2 (CH2TRNIF) in the
Transfer Interrupt Status register (INTFLAGS) is set, indicating that the transaction is finished. Clear the flag
afterwards by writing logic one to it

2.3 Copy four-byte results from peripheral to SRAM array
Task: Copy 4K bytes from a peripheral 4-byte result register to an array using DMA channel 1 in four-byte burst mode
and transfer triggered by the peripheral.

• Set the Enable bit (ENABLE) in the DMA Control register (CTRL) to enable the DMAC with default settings for
priority

• Set the Single Shot bit (SINGLE) in Channel 1 Control register (CTRL) to select single-shot mode

• Set the Transfer Mode bitfield (BURSTLEN) in Channel 1 Control register (CTRL) equal to 0x02 to select four-
byte burst mode

• Set the Source Address Reload bitfield (SRCRELOAD) in Channel 1 Address Control register (ADDRCTRL) equal
to 0x02 to make the source address reload after each four-byte data transfer

• Set the Source Address Mode bitfield (SRCDIR) in Channel 1 Address Control register (ADDRCTRL) equal to
0x01 to make the source address increment after each byte access

• Set the Destination Address Mode bitfield (DESTDIR) in Channel 1 Address Control register (ADDRCTRL) equal
to 0x01 to make the destination address increment after each byte access

• Set the Channel 1 Trigger Source register (TRIGSRC) to a suitable trigger source from the peripheral

• Set the Channel 1 Block Transfer Count register (TRFCNT) equal to 0x1000 to set the block size to 4K bytes

• Set the Channel 1 Source Address register (SRCADDR) to point to the first result register of the peripheral

• Set the Channel 1 Destination Address register (DESTADDR) to point to the start of the destination array

Atmel AVR1304: Using the XMEGA DMA Controller [APPLICATION NOTE]
8046D−AVR−05/2013

8

• Set the Enable bit (ENABLE) in Channel 1 Control register (CTRL) to enable DMA channel 1

• Wait for the Transaction Complete Interrupt Flag bit for channel 1 (CH1TRNIF) in the Transfer Interrupt Status
register (INTFLAGS) to be set, indicating that the transaction is finished. Clear the flag afterwards by writing
logic one to it

3. Advanced features
This section introduces more advanced features and possibilities with the DMAC.

3.1 Double buffering
To allow for continuous transfer, two channels can be interlinked so that the second takes over the transfer when the
first is finished and vice versa. This leaves time for the application to process the data transferred by the first channel,
prepare fresh data buffers and set up the channel registers again while the second channel is working. This is referred
to as Double Buffering or Chained Transfers.

When double buffering is enabled for a channel pair, it is important that the two channels are configured with the same
repeat count. The block sizes need not be equal, but for most applications they should be, along with the rest of the
channel’s operation mode settings.

Note that the double buffering channel pairs are limited to channel 0 and 1 as the first pair and channel 2 and 3 as the
second pair. However, it is possible to have one pair operate in double buffered mode while the other is left unused or
operating independently.

3.2 Channel priority
If more than one channel has pending transactions when the DMAC acquires the data bus, some kind of priority
scheme must be used to ensure correct operation.

The XMEGA DMAC provides the following priority schemes:

• Round robin scheduling for all channels

• Channel 0 highest, with round robin for the rest

• Channel 0 highest, then channel 1, and finally round robin for the rest

• All channels prioritized with channel 0 having the highest priority

For channels with round robin scheduling, the channels take turns with their data transfers every time the DMAC
acquires the data bus. Channels with fixed priority always get to complete a pending data transfer before the channels
with round robin scheduling. However, no data transfer can interrupt another once it has started. Note that only one
data transfer for any channel is allowed each time the DMAC acquires the bus, and not one data transfer for each
channel.

For timing sensitive applications that use the DMAC heavily, it is important to plan and schedule the channel
assignments and priority scheme carefully to achieve sufficient timing accuracy.

4. Driver implementation
This application note includes a source code package with a basic DMAC driver implemented in C. It is written for the
IAR Embedded Workbench® compiler.

Note that this DMAC driver is not intended for use with high-performance code. It is designed as a library to get started
with the DMAC. For timing and code space critical application development, you should access the DMAC registers
directly. Please refer to the driver source code and device datasheet for more details.

Atmel AVR1304: Using the XMEGA DMA Controller [APPLICATION NOTE]
8046D−AVR−05/2013

9

4.1 Files
The source code package consists of three files:

• dma_driver.c – DMAC driver source file

• dma_driver.h – DMAC driver header file

• main.c – Example code using the driver

For a complete overview of the available driver interface functions and their use, please refer to the source code
documentation.

4.2 Doxygen documentation
All source code is prepared for automatic documentation generation using Doxygen. Doxygen is a tool for generating
documentation from source code by analyzing the source code and using special keywords. For more details about
Doxygen please visit http://www.doxygen.org. Precompiled Doxygen documentation is also supplied with the source
code accompanying this application note, available from the readme.html file in the source code folder.

http://www.doxygen.org/�

Atmel AVR1304: Using the XMEGA DMA Controller [APPLICATION NOTE]
8046D−AVR−05/2013

10

5. Revision History
Doc. Rev. Date Comments

8046D 05/2013 The document title is corrected and the Revision History is added

8046C 10/2012 New template

8046B 07/2009 Several bugs fixed

8046A 02/2008 Initial document release

Atmel Corporation
1600 Technology Drive
San Jose, CA 95110
USA
Tel: (+1)(408) 441-0311
Fax: (+1)(408) 487-2600
www.atmel.com

Atmel Asia Limited
Unit 01-5 & 16, 19F
BEA Tower, Millennium City 5
418 Kwun Tong Road
Kwun Tong, Kowloon
HONG KONG
Tel: (+852) 2245-6100
Fax: (+852) 2722-1369

Atmel Munich GmbH
Business Campus
Parkring 4
D-85748 Garching b. Munich
GERMANY
Tel: (+49) 89-31970-0
Fax: (+49) 89-3194621

Atmel Japan G.K.
16F Shin-Osaki Kangyo Bldg.
1-6-4 Osaki, Shinagawa-ku
Tokyo 141-0032
JAPAN
Tel: (+81)(3) 6417-0300
Fax: (+81)(3) 6417-0370

© 2013 Atmel Corporation. All rights reserved. / Rev.: 8046D−AVR−05/2013

Atmel®, Atmel logo and combinations thereof, AVR®, Enabling Unlimited Possibilities®, XMEGA®, and others are registered trademarks or trademarks of Atmel
Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this
document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES
NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF
INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time
without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in,
automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

http://www.atmel.com/�

	1. Module overview
	1.1 DMA channels
	1.2 Data transfer
	1.3 Block transfer and repeat mode
	1.4 DMA transaction
	1.5 Addressing modes
	1.6 Address reload
	1.7 Transfer triggers and single-shot mode
	1.8 Interrupt handling
	1.9 Accessing multi-byte DMAC registers

	2. Getting started
	2.1 Memory block copy
	2.2 Copy single-byte data from SRAM array to peripheral
	2.3 Copy four-byte results from peripheral to SRAM array

	3. Advanced features
	3.1 Double buffering
	3.2 Channel priority

	4. Driver implementation
	4.1 Files
	4.2 Doxygen documentation

	5. Revision History

