
University of Florida EEL3744C Dr. Eric M. Schwartz
Electrical & Computer Engineering Dept. C-callable Clock Configuration Wesley Piard, Asst. Lecturer
Page 1/2 Revision 0 Christopher Crary, Asst. Lecturer

OBJECTIVES
• Learn how to configure the ATXMEGA128A1U system clock frequency in AVR assembly

INTRODUCTION
Timing is critical in most embedded systems, no matter how simple or complex they may be. The clock is the basis of all synchronous
operations in the ATXMEGA128A1U.

In most computer systems, it is preferred that a microcontroller operate at a specific clock frequency. For example, if power consumption
is a main concern, a low clock frequency is usually chosen; if execution time is a major factor, a higher frequency might instead be chosen.
In this homework, you will learn how to program your microcontroller to execute at any of its allowable clock frequencies.

REQUIRED MATERIALS
• Atmel ATXMEGA128A1U AU Manual (doc8331)
• Atmel ATXMEGA128A1U Manual (doc8385)
• OOTB µPAD v2.0 with USB A/B cable
• Digilent Analog Discovery (DAD)
• WaveForms software
• clock.s (C-callable assembly file)

o Rename the file to clock.s (from clock.s.txt)

SUPPLEMENTAL MATERIALS
• Atmel ATXMEGA128A1U Manual (doc8385)
• AVR Instruction Set (doc0856)
• DMA videos on our website

1. SYSTEM CLOCK CONFIGURATION
(NOTE: The solution to the below procedure is available on the
lab page of our course website, clock.s.txt. After downloading
the file, rename the file to clock.s.)

The below procedure will step your through the design of a C-
callable assembly subroutine (clock_init) that adjusts the
frequency of the ATXMEGA128A1U system clock. Use the
template assembly file, clock.s, as an outline for your
subroutine. (After downloading this template file, clock.s.txt,
rename the file to clock.s.) Make sure you add this file to your
Atmel Studio C project by right clicking on your project within
the Solution Explorer, then choosing Add | Existing Item. Then,
navigate to the directory at which you saved the clock.s file
and add it to the project.

NOTE: The main difference between a C-callable assembly subroutine
and a normal subroutine is the use of new assembler directives that are
used to help link all the files together. The “.global” directive is used to
tell the compiler that this subroutine should be able to be accessed by
other files. If you want to know more about how files are linked, see the
following article: https://www.lurklurk.org/linkers/linkers.html

In your main source file, where you will call the clock_init
subroutine, you will need to add an “extern” prototype to declare
the subroutine. Somewhere above your main function, add the
following line:

extern void clock_init(void);

1.1. Read § 7 (System Clock and Clock Options) of the 8331
manual.

The OSC_CTRL register (§ 7.10.1) enables any of the available
clock oscillators. You must first enable an oscillator before you
can select it as the new clock source. After the desired oscillator
is enabled, you must give it time to stabilize. The OSC_STATUS
register (§ 7.10.2) contains useful flags that are set only when
the oscillator is stable and ready for use.

After the oscillator has stabilized, you must select it as the new
clock source. See the CLK_CTRL register (§ 7.9.1).

After the new system clock source has been selected, you have
the option to utilize a clock prescaler. See the CLK_PSCTRL
(§ 7.9.2) register, as well as § 7.5 (System Clock Selection and
Prescalers).

NOTE: Some of the aforementioned registers are protected. See § 3.12
(Configuration Change Protection) for more details.

To analyze the ATXMEGA128A1U’s clock, you need to make
the clock signal output to an I/O pin. There are several ways to
do this, but the most straightforward technique is to use the
CLKEVOUT register (§ 13.14.4). This is the method that you
must use for this homework.

1.2. Remove any backpacks from the µPAD. (The memory
base can remain attached.)

1.3. Create a C program, clock_test.c. In the same
project, add the clock.s file as instructed above. Within
the assembly file, fill in the provided subroutine (e.g.,
clock_init) so that it configures the system clock for
32 MHz, initializing everything described above. The
subroutine should also allow the programmer to easily
(manually) scale the system clock with any of the available
prescalers, if desired.

1.4. Within the main routine, use the subroutine created above
to configure the clock speed for 4 MHz. Then, configure
the CLKEVOUT register to output the system clock
(4 MHz) to PORTC pin 7; remember to configure this pin
as an output. You will submit clock_test.c and
clock.s with the configuration for a clock speed of 4
MHz.

The clock should now be outputting from PORTC pin 7. You
will now measure the clock frequency with the Scope feature in

https://mil.ufl.edu/3744/docs/XMEGA/doc8331_%20XMEGA_AU_Manual.pdf
https://mil.ufl.edu/3744/docs/XMEGA/doc8385_ATxmega128A1U_Manual.pdf
https://mil.ufl.edu/3744/docs/XMEGA/doc8385_ATxmega128A1U_Manual.pdf
https://mil.ufl.edu/3744/hw/clock.s.txt
https://mil.ufl.edu/3744/docs/XMEGA/doc8385_ATxmega128A1U_Manual.pdf
https://mil.ufl.edu/3744/docs/XMEGA/doc0856_AVR_Instruction_Set.pdf
https://mil.ufl.edu/3744/videos.html
https://mil.ufl.edu/3744/labs/clock.s.txt
https://mil.ufl.edu/3744/hw/clock.s.txt
https://www.lurklurk.org/linkers/linkers.html

University of Florida EEL3744C Dr. Eric M. Schwartz
Electrical & Computer Engineering Dept. C-callable Clock Configuration Wesley Piard, Asst. Lecturer
Page 2/2 Revision 0 Christopher Crary, Asst. Lecturer

WaveForms. With no backpacks connected to the µPAD, you
can access PORTC pin 7 via a female header on the top of the
board.

1.5. Use the Scope feature in WaveForms to measure the clock
signal and display the waveform frequency. Within the
Scope window, display the frequency by selecting View |
Measurements, and then within the Measurements
window, navigate to Add | Defined Measurement |
Horizontal | Frequency. To yield an accurate frequency
measurement, set your time base to an appropriate value,
like 20ns/div as shown in Figure 1 below.

NOTE: In general, an appropriate time base for a periodic function is
one that displays two periods of the given waveform.

Figure 1: Appropriate time base for 4 MHz periodic function

Repeat this process for a system clock frequency of 32 MHz.

NOTE: The solution to this exercise is available on the lab page
of our course website, clock.s.txt. After downloading the file,
rename the file to clock.s.

NOTE: Due to the maximum sampling frequency of 100 MHz for the
analog-to-digital converter (ADC) within the DAD, there will only be
a few samples taken per period of the required clock waveforms.

https://mil.ufl.edu/3744/labs/clock.s.txt

	Objectives
	Introduction
	REQUIRED MATERIALS
	SUPPLEMENTAL MATERIALS
	1. sysTem clock configuration
	1.1. Read § 7 (System Clock and Clock Options) of the 8331 manual.
	1.2. Remove any backpacks from the µPAD. (The memory base can remain attached.)
	1.3. Create a C program, clock_test.c. In the same project, add the clock.s file as instructed above. Within the assembly file, fill in the provided subroutine (e.g., clock_init) so that it configures the system clock for 32 MHz, initializing everythi...
	1.4. Within the main routine, use the subroutine created above to configure the clock speed for 4 MHz. Then, configure the CLKEVOUT register to output the system clock (4 MHz) to PORTC pin 7; remember to configure this pin as an output. You will submi...
	1.5. Use the Scope feature in WaveForms to measure the clock signal and display the waveform frequency. Within the Scope window, display the frequency by selecting View | Measurements, and then within the Measurements window, navigate to Add | Defined...

