
University of Florida EEL 4744 Dr. Eric M. Schwartz
Dept. of Elec. & Computer Engr. Revision 0

Page 1/2 Software Production Hints: Coding / Debugging 09/15/00 3:07 PM

Written by Ian Troxel, TA

The production of software remains a necessary facilitator
for delving into the focus of this course -- a high level
overview of design concepts and implementations of
microprocessors. All lab assignments, including the
hardware expansion lab, require knowledge of software
production and debugging techniques. In fact, each lab
starting with lab 2 will require the production of software
on your part. Due to the fact that most electrical
engineers have not taken a rigorous software engineering
course by the time they graduate, a sufficient level of
coding proficiency is generally lacking. Poor code
production will lead to hours wasted on incorrect solution
trials or endless debugging. As a point of fact, the use of
proper coding techniques will reduce the time you spend
preparing labs by at least a factor of two. The following
should serve as a quick reference guide as to how to write
code that is efficient, accurate and most importantly
maintainable (including debugging).

Good Code
The focus of software coding is to create software that
does the job correctly and efficiently, but is at the same
time intelligible to a programmer. Software is the human-
machine interface.

Steps / Goals of Good Coding
1) Conceptualize the Problem

a. Spend time brainstorming in order to
gain a full perspective of the problem at
hand before you begin to code.

b. Write out a flow of how the program
should progress including variables
needed, functions called and interface
requirements.

c. This should be considered in a top-
down approach

2) Modularity
a. Build the smallest functional blocks that

were outlined in the above process first.
Prove correctness for each through
rigorous testing BEFORE moving onto
the next component.

b. Integrate each lower level component
into a higher-level component ONE AT
A TIME and test the correctness of
each before adding another.

c. The focus of integration is to be wary of
interfacing between components
because the correctness of each stand-
alone component should have been
proven before integration.

d. This should be performed in a bottom-
up approach

3) Comments and Documentation
a. Comment all lines of the program

describing the function of each.

b. Provide interface information for all
subroutines and main programs.

c. Use meaningful variable / subroutine
names.

Example of a subroutine description:

* Programmer Name:
* Date Created:
* Date Modified:
* Version:

* Subroutine Name:
* Input Variables Required:
* Variables Modified:
* Subroutines Called:

4) Maintainability
a. Write code that will facilitate reuse in

the future.
b. All of the above steps allow for this.

Debugging Tips
The focus of debugging is to isolate the problem.

Common Sources of errors (arranged from most to least
likely)

n Bad Coding
n Poor Interfacing between subroutines
n Compilation Error
n System / Hardware Error

When faced with code that seems to “just sit there” when
it is executed, staring at a blank screen will generally not
solve the problem. You must take a proactive role in
discovering and hopefully eliminating the problem.

Debugging options
n Simulation (may not reflect the true nature

of the system)
n Trace (limited use, especially with jump

subroutine and interrupt driven code)
n Breakpoints (limited in number and not

good for testing interrupt driven code)
n Tags (probably the best solution to the

problem of distributed errors)

Tags are lines of code (generally print statements) that
provide some signal to a human operator to show that the
sequence of a program has executed a certain line of code.
They should be placed at key locations in the code
(beginning of branches, within if statements, etc.) in order
to narrow the focus of debugging.

University of Florida EEL 4744 Dr. Eric M. Schwartz
Dept. of Elec. & Computer Engr. Revision 0

Page 2/2 Software Production Hints: Coding / Debugging 09/15/00 3:07 PM

Written by Ian Troxel, TA

For example, here are the places in a given sequence of
pseudo-code that would be best for tags.

A = B + 1;
<software tag: print(“arrived at 1”);

If (A < C) {
<software tag: print(“arrived in first

A = B +1;
} else {

<software tag: print(“first else taken”);
A = B +D);

}

<software tag: print(“exited first if”);
A = B * 2;
C = B + A;
<software tag: print(“got to subroutine sort”);
Jump Subroutine Sort
<software tag: print(“returned from subroutine

The print statements let you know that the execution of
your program has reached each of the lines of code before
a given print statement. If a print statement is not
generated, it is likely that the problem has occurred after
the last print statement that was observed. In order to
further debug the code, it would be wise to also output
critical variables in the vicinity of the problem once you
have narrowed down the search.

Other Debugging Hints (When debugging remember to
do the following:)

n Initialize variables
n Look at branch criteria
n Look at subroutine interface variables
n Think about stack utilization
n Make sure the proper interrupt subroutines /

mask are used / disabled

