
University of Florida EEL3744C – Summer 2020 Dr. Eric M. Schwartz
Electrical & Computer Engineering Dept. HW4: System Clock Configuration Christopher Crary, Instructor
Page 1/1 Revision 1 Wesley Piard, Instructor

OBJECTIVES
• Learn how to configure the ATxmega128A1U system clock via AVR assembly.
• Understand how to call an assembly routine via the “C” programming language.

INTRODUCTION
For most synchronous digital systems, it is preferred that a clock signal have a specific frequency. For example, if power consumption is
a main concern, a low clock frequency is usually chosen; if execution time is a major factor, a higher frequency might instead be chosen.
In this homework, you will learn how to configure the system clock signal of the ATxmega128A1U.

REQUIRED MATERIALS
• Atmel ATxmega128A1U AU Manual (doc8331)
• Atmel ATxmega128A1U Manual (doc8385)
• OOTB µPAD kit, with accompanying schematic(s)
• Digital Analog Discovery (DAD) kit, with WaveForms
• clock.s.txt (“C”-callable assembly file)

SUPPLEMENTAL MATERIALS

• AVR Instruction Set (doc0856)

HOMEWORK PROCEDURE

1. SYSTEM CLOCK CONFIGURATION
For this homework, you must understand how to design and
utilize a “C”-callable assembly subroutine that adjusts the
frequency of the ATxmega128A1U system clock.

NOTE: The main difference between a “C”-callable assembly
subroutine and a normal assembly subroutine is the use of the
`.global` assembler directive, which is used to help the “linker”
software tool within Atmel Studio properly link all the relevant
files together. If you wish to know more about how files are
linked together with a “linker” tool, see the following article:
https://www.lurklurk.org/linkers/linkers.html

1.1. Download the provided `clock.s.txt` file. Once
downloaded, rename this file to `clock.s`.

1.2. Create a “C” executable project within Atmel Studio. Add
the relevant `clock.s` file to your project by right clicking
on the project name within the Solution Explorer window
and then selecting `Add | Existing Item`.

Now, you will walk through the relevant documentation to
understand the implementation of the `clock_init` routine, given
within the `clock.s` file.

1.3. Carefully read § 7 (System Clock and Clock Options) of the
8331 manual.

The OSC_CTRL register (§ 7.10.1) is used to enable available
clock oscillators. An oscillator must first be enabled before it can
be selected as a source for the system clock signal. After an
oscillator is enabled, it must first be allowed to stabilize before
it can be selected as a system clock source. The OSC_STATUS
register (§ 7.10.2) contains useful flags that are set only when an
oscillator is stable and ready for use.

After an oscillator has stabilized, this oscillator can be selected
as a source for the system clock. The CLK_CTRL register
(§ 7.9.1) is used to select such a source.

After the system clock source has been selected, a clock
prescaler should be configured. The CLK_PSCTRL register
(§ 7.9.2) is used to select such a prescaler.

NOTE: Some of the aforementioned registers are protected. See
§ 3.12 (Configuration Change Protection) for more details.

Sometimes, as in this homework, it will be appropriate to
measure the system clock signal, e.g., to make sure that it is
configured as intended. To be able to measure the clock signal
of our system, this signal needs to be output to a particular I/O
port pin. There are several ways to do this, but the most
straightforward technique is to use the CLKEVOUT register
(§ 13.14.4). This is the method that will be utilized for this
homework.

1.4. Study the provided `clock.s` file. Ensure that you
understand all portions of the given code.

For the remainder of this homework, you will create a “C”
program to [1] configure the system clock of the microcontroller
and [2] output the clock signal to an appropriate I/O port pin.
Then, after executing this program on your hardware, you will
utilize the Scope feature of Waveforms to measure the relevant
clock signal.

1.5. In the relevant project of Atmel Studio, create a “C” file,
`clock_test.c`.

1.5.1. To allow the “C” compiler to be aware of the
`clock_init` function located within the `clock.s`
assembly file, the `clock_init` routine needs to be
“declared” within the scope of the `clock_test.c` file.
To do so, write the following statement somewhere
near the top of the `clock_test.c` file, outside all
routines (if any exist at the moment):

extern void clock_init(void);

https://mil.ufl.edu/3744/docs/XMEGA/doc8331_%20XMEGA_AU_Manual.pdf
https://mil.ufl.edu/3744/docs/XMEGA/doc8385_ATxmega128A1U_Manual.pdf
https://mil.ufl.edu/3744/hw/clock.s.txt
https://mil.ufl.edu/3744/docs/XMEGA/doc0856_AVR_Instruction_Set.pdf
https://www.lurklurk.org/linkers/linkers.html
https://mil.ufl.edu/3744/hw/clock.s.txt

University of Florida EEL3744C – Summer 2020 Dr. Eric M. Schwartz
Electrical & Computer Engineering Dept. HW4: System Clock Configuration Christopher Crary, Instructor
Page 2/2 Revision 1 Wesley Piard, Instructor

1.5.2. Within the `clock_test.c` file, write a main routine that
[1] calls the `clock_init` routine as if it were a “C”
function (i.e., `clock_init();`), [2] configures the
CLKEVOUT register to output the system clock signal
to pin 7 of PORTC, [3] sets pin 7 of PORTC to be an
output, and then [4] enters an empty infinite loop.

1.6. Slightly alter the `clock_init` routine within the `clock.s`
file such that the system clock frequency would be 4 MHz
after the routine is completely executed. (To do so, only
one or two lines of code should be updated.) If necessary,
refer to information regarding the CLK_PSCTRL register
(§ 7.9.2).

1.7. Ensure that no backpack is connected to the µPAD.

1.8. Build and execute the relevant “C” program on your
hardware. If everything specified above was done
correctly, the clock signal should now be output to pin 7 of
PORTC, which can be readily probed via the J2 header of
the µPAD.

1.9. Use the Scope feature of WaveForms to measure the clock
signal and display a precise measurement of the waveform
frequency. (To yield an accurate frequency measurement,
set your time base to an appropriate value, like “20 ns/div”,
as shown in Figure 1.) Submit a screenshot of the Scope
window, including both the relevant waveform and
frequency measurement.

NOTE: In general, an appropriate time base for a periodic
function is one that displays two to three periods of the given
waveform.

Figure 1. Appropriate time base for 4 MHz square waveform.

1.10. Repeat steps 1.6 through 1.9, but have the system clock
frequency configured to 32 MHz.

NOTE: Due to the maximum sampling frequency of 100 MHz
for the analog-to-digital converter (ADC) within the DAD, there
will only be a few samples taken per period of the required clock
waveforms. Thus, these waveform may not look as “square” as
it should.

HOMEWORK EXERCISES
i. What is the purpose of the Configuration Change Protection

(CCP) register?

ii. What would need to be done for the ATxmega128A1U to
have a system clock frequency of 8 MHz?

iii. The ATxmega128A1U is rated to run at frequencies up to
32 MHz, but some peripherals run up to either 2x or 4x of
this frequency. Describe how the ATxmega128A1U may be
configured to have a system clock frequency of 32 MHz, a
2x peripheral clock frequency of 64 MHz, and a 4x
peripheral clock frequency of 128 MHz, without using any
external clock sources? (There may be multiple solutions.)

HOMEWORK PROCEDURE SUMMARY
1) Answer homework exercises, when appropriate.
2) Read the relevant sections of the 8331 manual to learn how to configure the system clock.
3) Fully understand the provided `clock.s` file.
4) Create a “C” program to utilize the provided `clock.s` file and output the system clock signal to a relevant I/O port pin.
5) Use the DAD and Waveforms software to measure the microcontroller system clock signal twice: once when the system clock signal

has a frequency of 4 MHz, and again when the system clock signal has a frequency of 32 MHz. Take screenshots for each case, as
described above.

	Objectives
	Introduction
	REQUIRED MATERIALS
	homework procedure
	1. sysTem clock configuration
	1.1. Download the provided `clock.s.txt` file. Once downloaded, rename this file to `clock.s`.
	1.2. Create a “C” executable project within Atmel Studio. Add the relevant `clock.s` file to your project by right clicking on the project name within the Solution Explorer window and then selecting `Add | Existing Item`.
	1.3. Carefully read § 7 (System Clock and Clock Options) of the 8331 manual.
	1.4. Study the provided `clock.s` file. Ensure that you understand all portions of the given code.
	1.5. In the relevant project of Atmel Studio, create a “C” file, `clock_test.c`.
	1.5.1. To allow the “C” compiler to be aware of the `clock_init` function located within the `clock.s` assembly file, the `clock_init` routine needs to be “declared” within the scope of the `clock_test.c` file. To do so, write the following statement ...
	extern void clock_init(void);
	1.5.2. Within the `clock_test.c` file, write a main routine that [1] calls the `clock_init` routine as if it were a “C” function (i.e., `clock_init();`), [2] configures the CLKEVOUT register to output the system clock signal to pin 7 of PORTC, [3] set...
	1.6. Slightly alter the `clock_init` routine within the `clock.s` file such that the system clock frequency would be 4 MHz after the routine is completely executed. (To do so, only one or two lines of code should be updated.) If necessary, refer to in...
	1.7. Ensure that no backpack is connected to the µPAD.
	1.8. Build and execute the relevant “C” program on your hardware. If everything specified above was done correctly, the clock signal should now be output to pin 7 of PORTC, which can be readily probed via the J2 header of the µPAD.
	1.9. Use the Scope feature of WaveForms to measure the clock signal and display a precise measurement of the waveform frequency. (To yield an accurate frequency measurement, set your time base to an appropriate value, like “20 ns/div”, as shown in Fig...
	1.10. Repeat steps 1.6 through 1.9, but have the system clock frequency configured to 32 MHz.
	Homework exercises
	homework procedure summary

