
University of Florida EEL 3744 – Summer 2016 Dr. Eric M. Schwartz
Electrical and Computer Engineering Dept. Revision 3 10-Jul-16

Page 1/5 Lab 5: LCD and A/D: Digital Voltmeter

YOU WILL NOT BE ALLOWED INTO YOUR LAB

SECTION WITHOUT THE REQUIRED PRE-LAB.

OBJECTIVES
 Learn how to use C (as an alternative to Assembly) in

your programs.

 Learn how to control and interface an LCD panel to a

microprocessor.

 Learn how to use analog-to-digital conversion (ADC)
system on a microcontroller.

 Use the ADC on your XMEGA to sample an analog

input, convert the binary value to decimal, and display

the value on an LCD. (You are creating a simple voltage

meter.)

REQUIRED MATERIALS
 uPAD and Proto Base kit and tools

 NAD/DAD (NI/Diligent Analog Discovery) kit

 1 – Female Header(16-pins) for LCD mounting

 1 – Male Header (16-pins) for LCD mounting

 1 – LCD with 8-bit data (16-pins)

 2– Potentiometers (pots)

 1- CdS cell

 1 10k resistor

 Spec sheet for Level Shifter (for 5V LCD)
o Link on website

 You WILL need the following documentation:
o LCD Panel Notes (8-bit data)

o Spec sheet for a Orient LCD panel

 XMEGA documents

o doc8331: XMEGA Manual

o doc8032: Analog to Digital (ADC)

o doc8075: Writing C-code for XMEGA

 Lecture 13 notes for A-to-D pertaining to uPAD
o uPAD documentation

PRELAB REQUIREMENTS
You must adhere to the Lab Rules and Policies document for

every lab.

NOTE: It is assumed you have already soldered your

potentiometers and LCD to the board. If you haven’t, refer to

the board assembly instructions.

You must also solder the CdS cell and a 10k resistor to the
board along with headers. Please see circuit diagram in Part

C of this lab.

NOTE: All software in this lab should be written in C. If you

cannot get your programs working in C, you can write it in

Assembly for partial credit.

NOTE: Although the C language has a multitude of built-in

functions, you are NOT permitted to use any of them in EEL

3744. For example, you are NOT allowed to use the

_delay_ms or _delay_us functions. Also, do not use

sprint or any similar functions for this lab.

PART A: LCD DISPLAY

In this section you will add an LCD display to your uPAD

Proto Base and send your name to the LCD. The filename

should be Lab5_lcd_name.c. The LCD module included

in your kit can display 2 lines with up to 16 characters on

each line (2x16), has an 8-bit data bus, and can operate in 4-

and 8-bit modes. The LCD has 2 registers, command and

data, that are used for issuing commands/writing (or reading)

characters respectively. Refer to the LCD Panel Notes (8-bit

data) document or device datasheet for pin-out and command

information.

From a previous lab, you already configured CS0 to 0x8000

to oxBFFF. For this lab, configure CS1 to enable on

addresses 0x42 0000 to 0x42 FFFF, but use additional address

decoding to place an LCD at addresses 0x42 2000 to

0x42 7FFF. (We could then use addresses 0x42 0000 to

0x42 1FFF and 0x42 8000 to 0x42 FFFF for other purposes.)

1. Consult the LCD datasheet for pin-out information and

an example circuit. You will interface the LCD to the

XMEGA pins as follows.

uPAD Proto Base Pins LCD Pins

RS (A0) RS

E (CPLD Pin) E

D7:0 DB7:0

R/~W R/~W

C (to middle pin on

potentiometer)
Vo

You may have a 3.3V LCD or a 5V LCD. (This is old

inventory and future kits, and many this semester, will

have a 3.3V LCD.) The 5V LCD PCBs have two rows of

headers on opposite edges of the LDC PCB; the 3.3V

LCD has only one row of headers. Fortunately, you can

still interface the 5V LCD to XMEGA’s 3.3V logic using

the provided logic level shifter.

5V LCD instructions:

If you have a 5V LCD, then you should also have

received a level shifter chip. Review this specification

sheet, especially Figure 1. This is a bi-directional device

that will allow the 5V LCD to work with the 3.3V

XMEGA bus.

Connect the LCD’s VSS to GND and VDD to 5V. Use the

provided logic level shifter to interface this LCD to
XMEGA’s 3.3V. The LCD’s VO (labeled C [for contrast]

on the bottom of the uPAD Proto Base) should be

connected to a 5V potentiometer (pot) for contrast

adjustment, as shown below:

University of Florida EEL 3744 – Summer 2016 Dr. Eric M. Schwartz
Electrical and Computer Engineering Dept. Revision 3 10-Jul-16

Page 2/5 Lab 5: LCD and A/D: Digital Voltmeter

3.3V LCD instructions:

If you have a 3.3V LCD, then no level shifter is

necessary. Connect VSS to GND and VDD to 3.3V. Vo

(labeled C – for contrast – on the bottom of the uPAD

Proto Base) should be connected to a 3.3V potentiometer

(pot) for contrast adjustment, as shown below:

2. Unlike the 4-bit LCD modules used in the past, the 8-bit

LCD’s timing characteristics are compatible XMEGA’s

external data bus (EBI). Aside from CS and address lines,

your LCD enable signal (E) also needs to include the

/WE and /RE signals from your processor. If you are

confused about how to configure the LCD enable signal,

look at the reading/writing diagrams for the processor

(Appendix A in doc8331, i.e., Figure 36-1) along with

the reading/writing diagrams for the LCD (datasheet).

3. RS signal is used to distinguish between LCD commands

and characters sent to the LCD. Since RS is attached to

the XMEGA’s A0 pin, you can use any even address

to set RS to 0 and any odd address to set RS to 1. All

addresses must be within LCD enable range.

4. Your LCD runs much slower than the XMEGA. As a

result sending instructions too quickly will cause the

LCD to malfunction. Poll the LCD’s Busy Flag (BF on

DB7) to avoid interfering with the LCD as it processes

instructions. After writing a command or character, read

the BF using LCD command address (not LCD data)

to determine whether the LCD is still processing your last

transmission. When the BF becomes false (low), the

LCD is ready for the next character/command. Make

sure you wait at least two cycles after a write before

reading so the LCD has time to turn on its busy flag. The

fastest that the (E) signal can be toggled, according the

LCD documents, is 1 MHz. Since our board runs at

approximately 2 MHz, this constraint is violated. We

therefore need a two cycle delay. (One cycle should also

work, but we use two cycles just to be sure.) You may

insert NOP instructions between a write and read to

implement the delay. You can insert a NOP in C with the

following instruction.

asm volatile ("nop");

5. As a simple first test for writing to the LCD, write code

to send out your name to the LCD. There is a character

output function supplied to you on the examples page of

our class website called

__far_mem_write(address,data). To access this

function you need to include the "ebi_driver.h"
header file at the top of your code. Save the above file

and place it in the same folder as your program. You will

then be able to use the #include to have access to it in

the program.

NOTE: It’s STRONGLY suggested that you write

functions like subroutines OUT_CHAR and

OUT_STRING. The proposed OUT_STRING function

should take in as a parameter any string and send it to the

LCD, making sure all LCD timing requirements are

satisfied. This is almost ESSENTIAL to complete this

lab on time. You must initialize your LCD to 8-bit

mode first before you can use the BF.

The syntax for prototypes of the two functions discussed

above are as follows:

void OUT_CHAR(char character)

void OUT_STRING(char *string)

PART B: SAMPLING AN ANALOG SIGNAL
In this part of the lab, you will use XMEGA’s ADC to display

the voltage from center tap of a second potentiometer on the

LCD. The filename should be Lab5_lcd_voltage.c.

You will add to this program in Part C and use it again in Part

E. Carefully read sections 28.1 - 28.6, 28.8, 28.16 - 28.17 in

XMEGA doc8331 manual.

1. Connect a potentiometer (as shown below) to any of the

open ADC channels (labeled Analog at jumper J4) on

your Proto Base. Note that the channels on J4 of your

Proto Base are not conditioned to accept 5V input. In

order to reduce noise in the system, place the

potentiometer as close to the analog input as possible.

Also, locate the 3-by-4 header under the uPAD. Be sure

to place a jumper between the center pins and the pins

labeled AFE4-7. Those pins connect Port B to the Analog

Front End described later.

Vo 10k (pot included
in your parts kit)

+5V

ADC
Input 10k (pot included

in your parts kit)

+5V

University of Florida EEL 3744 – Summer 2016 Dr. Eric M. Schwartz
Electrical and Computer Engineering Dept. Revision 3 10-Jul-16

Page 3/5 Lab 5: LCD and A/D: Digital Voltmeter

2. Use the external reference of AREFB in your ADC

register initializations. This will set your ADC voltage

span to be from 0V to 2.5V. (There is op-amp circuitry

on your board to divide the 0 to 5V potentiometer voltage

to meet this constraint.)

3. There are several ways to configure the ADC system. For

example, you can use 12-bit signed, right adjusted,
single-ended mode with no gain, with continuous

conversion on channel 0. In this case, bit 11 will be zero

and you can use bits 10 to 0 (11 bits) or 10 to 3 (8 bit) for

calculations. It is your choice to use signed or unsigned

mode. (Do not forget to set the direction of the ADC pin

you are using to input and enable the ADC module.)

If you used 12-bit unsigned mode, when the input is

ground (0V), the digital value will be approximately 200.

(See doc8032, Figure 3-2.)

4. Test the voltage at the ADC input with your voltmeter (or

NAD/DAD) and then compare it with the values that you

get with your ADC system. For example, if the voltage

at the XMEGA ADC pin is 2.5V (5V at the output of the

potentiometer) and you configured the ADC for 8-bit

signed mode, then you should read approximately 0x7F

with your ADC. If the ADC pin voltage is 1.25V (2.5V

at the output of the potentiometer), you should read

approximately 0x40.

PART C: USING AN A/D TO SENSE LIGHT

In this part of the lab, you will use XMEGA’s ADC to detect

light conditions using a CdS cell. CdS (Cadmium Sulfide)

cells are a type of photoresistors, electronic components

sensitive to incident light. The filename should be

Lab5_lcd_cds.c.

1. As a CdS sensor is exposed to more light, the resistance

decreases. You can use a voltage divider to change the

voltage based on light conditions. Build the circuit

pictured below using your CdS cell and a 10k resistor.

2. Use any of the remaining open ADC channels (labeled

Analog at jumper J4) channels to measure the voltage

obtained by your circuit and display it on your LCD in

the same format as your voltage display.

3. Observe the voltage change (ADC value) as you change

the light conditions (moving your hand over the CdS cell

or shining a light on the sensor).

4. Pick an LED and turn it on if the CdS cell detects low

light and turn it off otherwise. Low light can be defined

as when the cell is partially covered with your hand.

PART D: CREATING A VOLTMETER

1. In this part of the lab you will take the ADC value from

Part B into a voltmeter. (Add to the program that you

started in Part B called Lab5_lcd_voltage.c). You

need to be convert the ADC value into the decimal value

voltage that it represents. You will use an algorithmic

conversion (arithmetic calculations) to find the decimal

value from the analog voltage. The alternative (not to be

used in this lab) is to use a lookup table (LUT), as

discussed in the Appendix.

2. You must display the voltage of an ADC input pin as

both a decimal number, e.g., 4.37 V, and as a hex

number, e.g., 0xDE (if you use unsigned, 8-bit). For

example, the LCD might display 2.50V (0x7F) for

unsigned, 8-bit. The hex value and its corresponding

voltage will vary depending on your implementation. I

suggest that you use signed mode for reasons apparent in

Figure 3-2 of doc8032.

3. Determine a formula that converts the ADC value

(unsigned 8-bit: 0 to 255, unsigned 12-bit: 0 to 4095,

signed: 8-bit: -128 to 127, or singed 12-bit: -2048 to
2047). Note that our circuit will only allow positive

input values. Essentially, you are just finding the

equation of a line (with the ADC value on the horizontal

access and the corresponding voltage on the vertical

axis). Output 3 digits to the LCD for your decimal

voltage, e.g., 3.14 V.

4. The hex values for the ASCII characters for the digits 0

through 9 are 0x30 through 0x39, i.e., just add 0x30 to

the digit to find the ASCII representation of a digit. You

will also need the hex values for the ASCII equivalents of

the decimal point, a space, the letters “V” and “x,” and

both the left and right parenthesis.

5. If we assume that the input voltage calculated in part 2

was 3.14V, the below algorithm describes how to send

that value to the LCD, one character at a time. Note that

using the type casting operation in C is very helpful for

this algorithm. Type casting converts a value of one type

to a value in another type. For example, if I is an integer

equal to 3 and F is a floating point number, then F =

(float) 3; will result in F = 3.0. Similarly, if Pi =

3.14159265 (approximately), then I = (int) Pi, with result

in I = 3.

 Pi = 3.14159… //variable holds original value

 Int1 = (int) Pi = 3  3 is the first digit of Pi

 Send this Int1 digit to the LCD, then send “.”

 Pi2 = 10*(Pi - Int1) = 1.4159…

 Int2 = (int) Pi2 = 1  1 is the second digit of Pi

 Send this Int2 digit to the LCD

University of Florida EEL 3744 – Summer 2016 Dr. Eric M. Schwartz
Electrical and Computer Engineering Dept. Revision 3 10-Jul-16

Page 4/5 Lab 5: LCD and A/D: Digital Voltmeter

 Pi3 = 10*(Pi2 – Int2) = 4.159…

 Int3 = (int) Pi3 = 4  4 is the third digit of Pi

 Send this Int2 digit to the LCD

 …

Send a space, then a “V (” to the LCD. Then send the

two or three hex digits corresponding to the ADC value

to the LCD, i.e., 2 hex digits if you use 8-bit mode and 3

hex digits if you use 12-bit mode. Finally send a “)” to

the LCD, resulting in something like 3.14 V (0xA0),

for an unsigned, 8-bit.

6. Testing: Use your DAD and multimeter to verify that you

XMEGA-based voltmeter is functioning properly. Set the

potentiometer at five different positions across the entire

range of voltages and record the readings from your

DAD, your XMEGA-based voltmeter, and your

multimeter. The values will not agree perfectly, and may

be as much as (5-10%) different.

PART E: SELECTING LCD FUNCTION USING A

KEYPAD

In this part of the lab you will use your keypad to select

different functions for displaying on your LCD, utilizing parts

of each of the previous programs that you have written. The

filename should be Lab5_lcd_keypad.c. You will demo

only this part to your TA in lab. The functions are described

as follows:

Function

Keypad

Keys LCD Function

1 0,1 Display your name on LCD.

2 2,3

Display the following on 2 lines:
May the Schwartz

be with you!

3 4,5
Continuously display the pot tap

voltage, e.g., 2.37 V (0x79)

4 6,7

Clear LCD and blink cursor at home

and control an LED with the CdS

sensor circuit

5 *,# Toggle display on or off

6 Others

Create your own. Be creative!

(worth +3 extra credit points added

to this lab’s grade)

 If any key from function 1 is pressed, the LCD should

display your name, just like in part A of this lab.

 If a key from function 2 is pressed, the string “May the

Schwartz be with you!” should be displayed on

the LCD.

 If the user presses any key from function 3, the LCD

should display the voltmeter reading in the same format

as described in Part D of this lab; the LCD should

constantly update the voltmeter reading until a different

key is pressed.

 If any key from function 4 is pressed, clear the LCD,
return the cursor to home (the top left element of the

LCD) and make it blink. The function 4 should also

utilize the CdS sensor circuit to control an LED (as

described in Part C).

 If the user presses a key from function 5, the LCD’s

display should turn on or off. You should check the LCD

data sheet for a helpful function to do this! The function

5 should also utilize the CdS sensor circuit to control an
LED (as described in Part C).

 If any key from function 6 is pressed, the LCD should

display anything you want. Note that the better and more

original function you create for function 6, the more

points you will get (up to 3% of the lab).

Until a new key is pressed, the last function pressed should

determine what is shown on the LCD. For instance, if a 3 is

pressed, the Spaceballs quote (May the Schwartz …) should

be displayed on the LCD until a different function is selected

on the keypad.

PRE-LAB QUESTIONS
1. What is the difference in conversion ranges between 12-

bit unsigned and signed conversion modes? List both

ranges.

2. Assume you wanted a voltage reference range from -2 V

to 1 V, with a signed 12-bit ADC. What are the voltages

if the ADC output is 0xA25 and 0xB42?

3. If you were working on another microcontroller and you

wanted to add an 8-bit LCD to it, what is the minimum

amount of signals required from the microcontroller to

get it working?

4. In this lab our reference range is ideally from 0V to 5V.

If the range was 0 to 2.0625V (a possible internal

reference) and 12-bit unsigned mode was used, what is

the resolution (volts/bit) and what is the digital value for

a voltage of 0.73 V.

PRE-LAB REQUIREMENTS
1. Answer all pre-lab questions

2. Add an LCD panel to your uPAD Proto Base.

3. Use the ADC to sample the CdS circuit output and the

potentiometer circuit outputs. Turn on/off an LED based

on the ADC value of the CdS circuit and display the

analog voltage of the potentiometer circuit on the LCD

panel.
4. Write an interactive menu, using your keypad, LCD, and

ADC. You may use your computer keyboard and your

serial port in lieu of your keypad.

IN-LAB REQUIREMENTS

1. Demonstrate Part E.
2. If Part E does not work, demonstrate as much

as you can from Parts A, B, C, and D.

APPENDIX
Part B, number 4 could be accomplished using a Table Look

Up (LUT) technique, described below. If there is no division

http://en.wikipedia.org/wiki/Spaceballs

University of Florida EEL 3744 – Summer 2016 Dr. Eric M. Schwartz
Electrical and Computer Engineering Dept. Revision 3 10-Jul-16

Page 5/5 Lab 5: LCD and A/D: Digital Voltmeter

available, then this is a good technique. Since there is no

division instruction in assembly language, than this technique

would be necessary if you were writing this program in

Assembly, unless a division subroutine was created. In C,

division is accomplished with the appropriate library

included.

4. The ADC value will need to be converted into the
decimal value voltage that it represents. You could use

algorithmic conversion, however your processor does not

have a divide instruction, and you cannot use C-

generated division routines. The alternative is to use a

lookup table (LUT). An example lookup table (LUT)

may look like the following at successive memory

locations, where the values are in stored in ASCII:

0.00V (0x00), 0.02V (0x01), 0.04V (0x02),

0.06V (0x03), 0.08V (0x04), 0.10V (0x05), …

Note that the actual value corresponding to 0x01 for 8-bit

unsigned is 0.0196V. But it is a waste to store the ASCII

for the decimal point, the parentheses, and the 0x, since

those will always need to be displayed.

A table with the above structure would simplify the

lookup process. One only has to calculate the address by

using the ADC’s hex value to retrieve the voltage

equivalent. There are multiplication assembly

instructions which should be used for the lookup process:

Addr = SizeOfText*ADC_value + TableAddr

