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.‘ EEL 4744

* Introduction to C for Atmel XMega

Menu

See Examples or Classes on web-site:

See Software/Docs:
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* Motivation

* Overview of C Basics

* Variables, Types, and Definitions
* Conditionals

* Ports and Registers

* Interrupts

* Pointers

« C Example

* NOT covered, but possibly useful info after 4744
>Using C with Assembly: slides 42-...
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rEEL 4744 Introduction to C & other
High-level Languages

* Source Languages (e.g., C, C++, Java)

> Most modern programs are written in high-level
languages (such as C), because it is generally easier
than Assembly.

> A compiler is used to convert a source language into a
target language (e.g., Assembly), resulting in object
code (just as an assembler converts Assembly to
object/machine code).

> A compiler is given limited time to “optimize” the
object code in terms of speed, memory usage, etc.

> The resulting object code is not guaranteed to be as fast
or efficient as can be done with Assembly code.
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r EEL 4744 |
Mixed C/Assembly

* Why Mixed Coding?
> (Qccasionally a programmer may want to take advantage
of the increased specificity in Assembly to improve the
resulting object code (usually for increased speed).
> When programming in high-level language, there may

be limitations due to processor specific features.
— Memory Mapping
— External Bus Control
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rEEL 4744 Costs/Benefits of Mixed
C/Assembly versus C or Assembly

 Benefits of either C or Assembly (but not both)
> ...of C

— Power of a high-level source language such as C
O Libraries (Graphical, Math, etc.), String-processing functions, etc.

— Use of C structures and layout
> ... of Assembly
— Speed and control of assembler (optimization)
— Direct control of code placement
— Access to processor specific functions

* Drawbacks of mixed C/Assembly
> Assembly coding in mixed coding is slightly different
from standard Assembly
— Naming conventions, function usages
> Code is less portable (i.e., is often specific to the
e IOCESSOD)

sty a,
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rEEL 4744 What is Mixed
C/Assembly Coding?

» Use Assembly code to improve C code or take
advantage of a specific processor’s capabilities

 For our board, mixed coding is handled by the
AVR-GCC toolchain for compiling with the GNU
Assembler (GAS); previously used Eclipse toolchair.

« W/ XMEGA, 2 ways to mix C and Assembly code

> Use separate files for C code and Assembly code, the .¢
extension and .s extension respectively
> Inline Assembly code directly inserted into the C code

> You will NOT be expected to write mixed code
— See the end of this lecture for more mixed C/Assembly info
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r EEL 4744

e Overview

Intro to C for XMEGA

Basic C Structures

—(The primary C structures are also used in Mixed

C/Assembly)
—Preprocessor Directives
—Functions (prototypes)
—Main Function
—Function Calls
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r EEL 4744 _
Basic C Structures

* C (or Mixed C/Assembly)
start with a standard
structure

> Example:

#define F CPU 2000000
#include <avr/io.h>

// function prototype below
int add(int x, int vy);
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© Drs. Eric Schwartz & Joshua Weaver

8

University of Florida, EEL 4744 — File 14
© Drs. Eric Schwartz & Joshua Weaver

// main routine below
int main (void)
{

int x=3, y=7, z;

while (1)

{

z=add (x,Vy);

}
}
// function is below
int add(int x, int vy)
{

return (x+y);

}
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rEEL 4744  Basic C Structures

Preprocessor Directives
* Preprocessor Directives (# sign)
> The #define is an “object-like” macro definition
(similar to .equ or .def)

— Allows us to define a value for a symbolic name that may be
used in our code or the systems code

> The #include is a method used to include other files

that include code (similar to .include)
— If using brackets (< >), the file is expected in standard compiler include
paths
— If using quotation marks (" "), the path for the file will include the current
source directory

> Example:
#define F _CPU 2000000
#include <avr/io.h>
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rEEL 4744 Basic C Structures
Preprocessor Directives

* There are various other types of preprocessor

directives that may be used

>The given example shows
— A defined rate to be used for the clock frequency of the XMEGA
— A definitions file to be used for an AVR processor
> Example:
#define F _CPU 2000000
#include <avr/io.h>
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rEEL 4744 Basic C Structures

Function Prototypes
* Function Prototypes
>Functions may not be called unless they have been
defined with a prototype
— Some compiles do not require this (including ours), but 4744
does!
>Function prototypes allow a function to be partially
defined
— Prototypes are typically found near the top of the file, below
preprocessor directives (or in header files, i.e., .h)
— Defines the function, but does not supply a body of code
— Functions are defined later in the program with its body of code
— Allows the function to be called before its complete definition

— Example:
int add(int x, int y);

s Florida, EEL 4744 — File 14 1

rEEL 4744 | .
Overview of C Basics

* Main Functions
> One in every program, starting point for all code

* Functions

> Similar to subroutines in Assembly

> Organized scheme for holding code

> Allows passing of parameters and returning results

> Use of prototypes for organizing code

— Prototypes should ALWAYS be used; they are NOT optional, even if
Microchip/Atmel Studio does not require them in the present version

* Preprocessor Directives

> Defining names (or variables) as values

> Including extra files detailing code

> Creating Macros to detail functions or values

e o B S & o Wetwer 12
12
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rEEL 4744 Basic C Structures
Main Function

e Main Function

> A few properties of the main function
— Resembles a standard function
— A single main function is required for each project
— Starting point for the project

> Example:

int main (void)

{
while (1)
{

z = add (x,V);

}

}
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rEEL 4744  Basic C Structures
Main Function

>When the main function ends, the program ends
— A while loop may be used to run a block of code “forever”
O Like the “dog chasing its tail” loop used at the end of Assembly programs
>The example also shows how a function may be called
— The name of the function to be called is used
— If the function requires arguments, they may be passed within
parenthesis (x and y in the below example)
> Example:
int main(void)
{ ..
while (1)
{
add (x,y);
}
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rEEL 4744 Basic C Structures
Function Prototypes

* Function Prototype
> Example:
int add(int x, int y); // this is the prototype

int main (void)

{

while (1)
{
add(x,vy); // this is the function call
}
}
int add(int x, int y) // this is the function

{

return (x+y);

}
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EEL 4744 . )
r Overview of C Basics

* We can (and will) write programs entirely in C
* Values are defined using variables (not registers)
>No registers are directly referenced (although they will
be used “underneath the hood,” i.e., after compilation)
* High-level conditional structures are available for
flow control
>Easier use of comparisons
>No branch functions (used in Assembly) available (or
necessary)
* Cleaner way of looking at port usage and
interrupts
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rEEL 4744 Variables

* Variables
>Type
— Standard: int, char, float, double, etc.
— Special: uint8_t, uintl6 t, int8 t, intl6 t, etc.
>Scope of Variables
— Local: Declare at the beginning of a function in which it is to be
used
— Global: Declare outside of any function, typically at the top of
the c file
>Modifiers: causes variable to use more or less memory

The following are typical examples

— short (works on int)

—long: 4 to 8 bytes (depending on the compiler/processor)
— signed, unsigned, long, long long (twice as long as long)

of Florida, EEL 4744 - File 14
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rEEL 4744 .
How to use Variables

* When defining variables, there are many types available

Example:
char charl = '"3"';
char char?2 = 0x6A
j' char str([7] = "microp"
106, Ox6A char str[] = "4744 #1"
"microp" char *str = "Hil!"
int x = 37;
37 int y = 0x37;
0x37 float = 0.00037;
0b110111 doubl?': 37.000001; )
0.00037 * When quotes (") are used, the string
3'7 T terminates with a null (0) character
* When arrays uses brackets ([ ]), then the
size depends on the number of elements
e il in the brackets; if empty, then “unlimited”g
18
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r EEL 4744

Pointers and Addresses

* When there is an * in a declaration, then it means
that it is a pointer variable
>*x means that X is a pointer variable
>char *x = "Hi!"//x1isapointer variable
>*x = "Bye" //value, starting at address x is now “Bye”
* &x means “address of x”’
>&x [ 0] means address of x or the address of x[0]

>&x [ 2] means address of x, plus 2; which is the address of
x[2]

of Florida, EEL 4744 - File 14

r EEL 4744 Atrays

» An Array is a method of grouping a series of same
type elements in a single variable located in
contiguous memory locations

>Syntax: type name [elements] = {initialized value list};
— Type may be any variable type
— Elements states the size or number of variables in the array
— The initialized value list represents the initial values populating
the array
O If defining an initial list, the value of elements may be omitted
> Examples:
uint8 t buffer[2

; // unsigned character (8 bits)
char messagel(] !

017
{'m, 'i', 'c', 'r', 'o', 'p'}
// no 0x0 appended
char string[] = "microp"; // an 0x0 is appended

University of Florida, EEL 4744 - File 14
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rEEL 4744 -
Conditionals

* Conditionals controls flow of code given
programmer defined conditions

* Handles the concept of comparisons and branches
(that were used in Assembly)

University of Florida, EEL 4744 - File 14
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rEEL 4744
If, Else If, Else

* Check conditional statements for truth values
>1if conditional
— If expression is true, execute expressions within conditional
block
— If expression is false, check any following conditionals tied to if
conditional
>else if conditional (may be omitted)
— Follows same concept as if conditional, giving more conditional
checks
>else conditional (may be omitted)
— If all other conditionals fail, this block is executed

University of Florida, EEL 4744 — File 14 S lmp 1 e_i f_ statements.c
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rEEL 4744
If, Else If, Else

>Syntax:
if (expression) {
<statements>
} else 1f (expression) {
<statements>
} else {
<statements>

}

University of Florida, EEL 4744 — File 14 s1imp 1 e 1 f_S tatements.c
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r EEL 4744 .
Relational Operators

* To create a conditional expression, utilize one of
relational operators

> Greater than 47 > 37
>= Greater than or equal to 47 >=47
< Less than 37 <47
<= Less than or equal to 37 <=47
== Equal to 47 ==47
J= Not equal to 37 1=47
o B Semars & o Wt 24
24
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r EEL 4744
Boolean Operators

* To create more complex conditional expressions,
Boolean operators may be used

&& AND two expressions ((47>=47) && (47>37))
|| OR two expressions ((37!=47)|1(37>47))

! Complement expression 1(37>47)

University of Florida, EEL 4744 - File 14
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BT EEL4T4 (o and Do While

* While loops allow for repetition
>1If expression is true, execute expressions within
conditional block and continue to execute until false
>1If expression is false, exit conditional block and continue
with code following the while block
* Do While loops allow for repetition
>Follows same concept as While loop, except condition
expression happens at the end of the code
>Will execute code block at least once

* Syntax: simple whiles loops.c
yntax. multiple whiles loops.c
while (expression) f{ do {
<statements> <statements>
Unive v of Florida, EEL 4744 — File 14 } While (expreSSion)
:“ ;::sz ?c Sc(l:r\:/a';z & Joshuai\’v’e‘:\ er 26
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rEEL 4744 For Loop

* For loops allow for repetition while also iterating
>Has a start value, e.g., int i = 0
>Loops until an end condition has been met, e.g., i < 10
>Every loop, the start value will either be increase or
decrease, e.g., i++ or i—--

>Syntax:
for (start value; end condition,; inc/dec value) {
<statements>

}
>Example:
for (int 1 = 0; 1 < 10; i++) {
<statements>

if and for loops.c

27

EEL 4744 )
r / Switch Statements

» Switch statements acts as selection control,

changing the code flow through a multi-way branch

>Multi conditional system such as a large if conditional
structure

>May also be used to create a state machine

>Has a single variable that compared to multiple values,
executing different code for potentially each value.

>Syntax:
switch ( case valuel:
variable ) <statements>
{ break;
case valuel: default:
<statements> <statements>
break; break; switchistaféments.c
T T J 2
28
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r EEL 4744
Break

* While running loops, it is possible to break out of

the code at anytime using the break expression
>If using nested loops, the break expression will break out
of all loops
>(Can use labels to jump to the outer loop
» Example:
outer loop:
for (int 1 = 0; 1
for (int 3 = 0; J < 10; j++) |
if ( (i * j) == 37 ) // Won’t happen!
break outer loop;

< 10; i++) |

}

of Florida, EEL 4744 - File 14
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™ EEL47M4 |
Volatile

asm volatile ("nop"):;

void RoughDelaylsec (void)

{
volatile uint32 t ticks;

//Volatile prevents compiler optimization
for (ticks=0;ticks<=F CPU;ticks++);

//increment 2e6 times -> ~ 1 sec
University of Florida, EEL 4744 — File 14 i f_a n d_ fo r_l oops.cC
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rEEL 4744
PORT / Modules

* May access Ports similarly to Assembly, use the
header file
#include <avr/io.h>
>HINT: Right mouse click on variable name and choose
goto implementation
* When programming, make use of intelli-sense
* Naming follows the AVR Manuals
* Access PORTS (or modules) by name directly

>Examples:
PORTA DIRCLR = OxFF I
USARTCO CTRLA = OxFF simple whiles loops.c

R . multiple whiles loops.c
University of Florida, EEL 4744 - File 14 p— J—
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r EEL 4744 |
Registers

« It is possible to use C syntax and structures to
access registers of various modules in a cleaner
manner

* Instead of typing the entire name, you can
>Enter the module name
>Enter a period
>Enter the register name (with autocomplete)

>Example:
PORTA.DIRCLR = OxFF
USARTCO.CTRLA = OxFF :
simple whiles loops.c
Univeriy of Florda BEL 4744 14 multiple whiles loops.c

© Drs. Eric Schwartz & Joshua Weaver 32
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rEEL 4744 Bitwise and

Compound Operators
* When modifying ports and registers, bitwise
operators are often used.
*&, |, and ~ may be tied

s . AND
to equal sign to snnp y | OR
AND or OR the variable R .
1th another variable pusie O
with ano << Left Shift
* Examples. >> Right Shift
PORTB DIRCLR |= 0xFO;

~ One’s Complement

X <<= 2;// X=X<L2

 Can also do this with +, -, *, /, etc.
>Example:
varl += 37; // Varl = Varl + 37

University of Florida, EEL 474 i
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r EEL 4744 |
Bitmasks

* Programming in C allows a user to use various
defined enumerations or structures when working
with PORTs and control registers

« Standard bitmasks allow a user to change only
specific bits in a register when desired (noted by
bm)

>Example:
PORTB_DIRCLR
PORTB.DIRCLR

PIN2 bm | PIN4 bm;
PIN2 bm | PIN4 bm;

usart serial.c

University of Florida, EEL 4744 — File 14
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r EEL 4744 |
Bitmasks

» Group Configuration Bitmasks allow a user to
change only multiple bits representing aspects of a

control register

>Example
USARTCO.CTRLC = USART CMODE ASYNCHRONOUS gc |
USART PMODE DISABLED gc |
USART CHSIZE 8BIT gc;

usart serial.c

University of Florida, EEL 4744 - File 14
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r EEL 4744
Interrupts

* First must include the interrupt header file
>#include <avr/interrupt.h>

« After defining interrupts use module registers,

enable or clear the global interrupts as needed
>sei ()
>cli();

* Finally, write the interrupt service routine for the

required interrupt vector
ISR (USARTCO RXC vect)

{

usart serial.c

USARTCO.DATA = USARTCO.DATA;
}

University of Florida, EEL 4744 — File 14
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r EEL 4744
Interrupts

* Occasionally clearing the interrupts is necessary, but
preserving the status register is ALMOST
ALWAYS required (and always, in Assembly, but
NOT in C)

* In the XMEGA (and likely most processors) the
below is automatically done (so UNNECESSARY)
in C; but if it isn’t, this could be done

>Example:
uint8 t sreg = SREG; // save status reg
cli();
<statements>
SREG = sreg; // restore status reg
© D B S oo Mot 37
37

rEEL 4744 .
Using C with Assembly

« It is possible to use C and Assembly more
seamlessly by creating variables and functions in C

and using them in various ways with Assembly

>This puts less emphasis on the Assembly code, using it
only as needed to improve code

>When using more of C’s capabilities, some extra
considerations must be placed on the choice of Registers
in Assembly (as described in the lecture Intro to Mixed
C and Assembly)

o 38
38
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rEEL 4744 Using C with Assembly
Passing Arguments

» Arguments are passed to Assembly functions in
register pairs or via the stack if more than 9

arguments
>Word Data takes both registers
>Byte Data takes the lower register

1 125:124
2 123:122
121:120
9 19:r8
W 39
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rEEL 4744 Using C with Assembly
Returning Values

» Return values always use the following convention

Lot G r s
32 bit data r25:122
64 bit data r25:r18
o 40
40
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r EEL 4744

* Pointers may be used to contain the address of a

variable. You create pointers using the * symbol
>int value = 5; //' A variable holding a value of type int
>int *valuePtr; //' A pointer to a value of type int

* To reference the address of the pointer you use the
& symbol
>valuePtr = &value; // Place address of value in pointer

* To get the data that the pointer points to, you can
“dereference it” by using the * symbol on the
pointer
>int data = *valuePtr; //Getdata pointed to by pointer

University of Florida, EEL 4744 - File 14
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r EEL 4744

* External Bus Interface (EBI) example:

Pointers

Examples

ebi.c
ebi driver.h

« Asynchronous Serial example:

usart serial.c

University of Florida, EEL 4744 — File 14
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r EEL 4744

Mixed C/Assembly

You are not responsible for the
following pages

University of Florida, EEL 4744 - File 14
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rEEL 4744 C Projects and Inline
Assembly

 Ifitis only desired to add a few lines of assembly code to
a C Project, it is possible to add assembly “inline”

* Inline assembly uses the asm function with the following
template
asm volatile( asm-template : output-operand-list :

list-input-operand : clobber list )

* When using the asm function, the compiler will have a
harder time optimizing code

* The volatile keyword may be used to prevent the

compiler from attempting to optimize the line
> The keyword volatile may be omitted, but then the compiler
might optimize away your intended structure

University of Florida, EEL 4744 — File 14
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rEEL 4744 Inline Assembly

asm volatile (asm-template : output-operand-list :
list-input-operand : clobber list )
* The asm-template component of the asm function

follows standard Assembly with small changes
> The Mixed C and Assembly (for Atmel XMEGA)
document detail any required changes

— Example:

asm volatile (“STS %0, r18” : “=m” (EBI_CTRL));
O STS command above is used to define EBI CTRL
O The %0 is a place holder showing that the defined operand will come later
in the template
O The output operand section, EBI_CTRL, is defined as an output only
memory (“=m”) location address

University of Florida, EEL 4744 - File 14
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rEEL 4744 Inline Assembly

asm volatile (asm-template : output-operand-list :
list-input-operand : clobber list )
* The asm-template may use “%” expressions to define
placeholders replaced by operands in the output-operand-
list and list-input-operand

% n By argument in operands where n = 0 to 9 for argument
A%n The first register of the argument n (bits 0 to 7)
% Bn The second register of the argument n (bits 8 to 15)

% Cn The third register of the argument n (bits 16 to 23)
% Dn The fourth register of the argument n (bits 24 to 31)
% An The Address register X, Y, or Z

% % The % symbol when needed
\\ The \ symbol when needed

\N A newline to separate multiple asm commands

Univesiy o Floida, B \T A tab used in generated asm

© Drs. Eric Schwartz & Joshua Weaver 46
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rEEL 4744
Inline Assembly

asm volatile (asm-template : output-operand-list :
list-input-operand : clobber list )
* The output-operand-list and list-input-operand
uses various modifiers as needed for the operands
given

Output operand
Not used as input but only an output
Input and Output Operand

+ & |

University of Florida, EEL 4744 - File 14
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r EEL 4744
Examples

* Vector Add Mixed

> .s File Compilation Example ~ ,_ _ torA.crj;lh Mixed. o

> Requires both .c and .s file VectorAdd Mixed.s
* Later N

> Vector Add

— Inline Assembly version % i
> Input Port VectorAdd Casm.c

— Inline Assembly version

Input Port C.c
University of Florida, EEL 4744 - File 14 —_ p—
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r EEL 4744

Mixed C/Assembly

* The slides that follow are NOT covered

this semester, 1.e., you will not write mixed
C/Assembly code, nor will you be responsible to
know this for labs or exams

49

rEEL 4744 C Projects and .s
Assembly Files

* When creating a C project in Microchip/Atmel
Studio, a simple .c file is created with a template
structure

> C code should be restricted to .c files

* When adding Assembly to a C project, a .s file is
used to hold all Assembly code (not a .asm file)

* A .s file will resemble a standard assembly file,
however, there are some considerations that must

be made when in C projects
> Registers are used differently since C also uses them

> Assembly preprocessor directives have different formats
e o B S & o Wetwer 50
50
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rEEL 4744« g” File Compilation
Registers

» When writing assembly in a C project, registers have
different rules

Temporary Save and restore Save and restore

1 Al e Must clear before Must clear before

returning returning
r2-r17
r28 “call-saved”  Save and restore Can freely use
r29
r18-r27
r30 “call-used” Can freely use Save and restore
r31

University of Florida, EEL 4744 — File 14
© Schw 51

rEEL 4744« g” File Compilation
Registers

* r0: defined as a temporary register which may be used
by compiler generated code

* rl: assumed to always be zero by the compiler, so any
assembly code that uses this should clear the register
before calling compiler generated code

* r2—r31I: defined as “call-saved” or “call-used”
> call-saved: registers that a called C function may leave unaltered,
however, assembly functions called from C should save and
restore the contents of the register (using stack)
> call-used: registers available for any code to use, but if calling a C
function, these registers should be saved since compiler generated
code will not attempt to save them

University of Florida, EEL 4744 — File 14
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rEEL 4744 “.s” File Compilation
Syntax

« Wh . Path for the equivalent file to the ATxmegal28A1Udef.inc is:
en writing C:\Program Files (x86)\Atmel\Atmel Toolchain\AVR8

assembly in a C GCC\Native\3.4.2.1002\avr8-gnu-

pr Oj ect. some toolchain\avr\include\avr\iox128alu.h
5

syntax is

different .include “ATxmegal28A1Udef.inc” #include <avr/io.h>
.dseg .section .data
.cseg .section .text
.db1,2,3,4 Jbyte 1,2,3,4
.db “message” .ascii “message”
.db “message”, 0x00 .asciz “message”’
.byte 37 ;save space for bytes .ds.b 37
dw .word
HIGH(), LOW() hi&(), 108()

of Florida, EEL 4744 - File 14
Schy
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rEEL 4744« s” File Compilation
.dseg and Data Memory

» Data memory defaults to start at 0x2000
.section .data replaces the use of .dseg to access

the Data Memory space

>Example:
.section .data // old way .dseg
Varl: .ds.b 7 // save 7 bytes
vVar2: .ds.w 3 // save 3 words
Var3: .byte 0x37 // Var3 = 0x37
// Previously, .byte saved space; now value
Text: .asciz "hello world"

.global do copy data // needed for Var3
University of Florida, EEL 4744 — File 14 // and Text
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rEEL 4744« g” File Compilation
.dseg and Data Memory

« .section .data is necessary to begin the Data
Memory (i.e., volatile memory = RAM) segment
* The .asciz command is used to define a specific
null terminated string, a constant
> .ascii is like .asciz, but with no null termination
* The ds.b and ds.w commands are used to define
storage of varying sizes (like .byte in .asm files)
* The .byte command is used to define a specific
byte, i.e., a constant (like .db in .asm files)

55

rEEL 4744« s” File Compilation
.dseg and Data Memory

» Data memory is typically used to create storage of
variables like Varl and Var2

* It is occasionally desired to create memory and
store an initial value in that memory space, as we
did for Var3 and Text
>The initial value is stored in program memory
>The .global _ do_copy_data special command

handles copying the data from program memory to data
memory

c 56
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rEEL 4744 «s” File Compilation

.cseg and Program Memory

* Like Assembly, program memory is used to hold
program constants and assembly code

* .section .text replaces the use of .cseg to access
the Program Memory space

> Example:
.section .text
VA: .byte 1, 2, 3, 4, 5, ©
VB: .byte 0xA0,0xB0,0xC0,0xD0, 0xEQ, O0xFO
.global MAIN ASM //Required for mixed

MATN ASM: B
1di R18, 6 VectorAdd Mixed.s

versity rida, EEL 4744 - Fil . e e
© Drs. Eric Schwartz & Joshua Weaver 57
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rEEL 4744 «s” File Compilation

.cseg and Program Memory

 .section .text is shown to begin the Program
Memory segment
* The .byte command is used just as it was under
the Data Memory section
> May be used to defined multiple bytes in a section
> Saved in Program Memory, not desired to transfer to
Data Memory (no need of .global __do_copy_data)
 The rest of the example follows standard
Assembly

University of Florida, EEL 4744 — File 14
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rEEL 4744 s File Program Memory
& Watch Window

* In a .s file, we do NOT have to do the shifting
that we did in .asm files for reading Program
Memory Section (.dseg in .asm and .section .text
in .s) %
>Example for a s file VectorAdd Mixed.s
1di ZL, 108(VA) // Load the address of program
1di ZH, hi8(VA) // memory for VA
* The watch window can NOT display XL, XH,
YL, YH, ZL, or ZH 1n .s files, nor most other
things (other than registers, Rx)
ST 59
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rEEL 4744 «s” File Compilation

Functions Example

* One of the main aspects of using Assembly ina C
project is to benefit from using Assembly
functions

 Functions must be declared in both C files and

Assembly files
> Function prototypes should be defined in C code for
any function called from Assembly
— extern int funct();
> Functions defined in Assembly code that will be called
from C code should be declared global
— .global funct
© WAy 60
60
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rEEL 4744 «s” File Compilation

Functions in C/Assembly

. > .c file example:
>_c file syntax: extern void MAIN ASM();
extern int funct(); int main (void)
{
int main(void) MAIN ASM() ;
{ _

}
funct () ;

}

> s file syntax: VectorAdd_Mixed. C
.global funct
> s file example:

.global MAIN ASM
1di  R18, 0x47 MAIN_ASM:

1di R18, N

funct:

ret

ret

University of Florida, EEL 4744 - File 14
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