
4-Mar-24—11:26 AM

1University of Florida, EEL 4744 – File 14
© Drs. Eric Schwartz & Joshua Weaver

Intro to C for XMEGA

EEL 4744

1
University of Florida, EEL 4744 – File 14

© Drs. Eric Schwartz & Joshua Weaver

Menu
• Introduction to C for Atmel XMega

Look into my ...

See Examples or Classes on web-site:
Usage of simple …, usart_serial.c, ebi.c, ebi_driver.h

See Software/Docs:
Getting Started Writing C …,

Info on C for the Atmel XMEGA, Tips to Optimize C Code
For mixed C/Assembly:
• “Mixed C and Assembly (for Atmel XMEGA)”,
• VectorAdd_Mixed_ASM.s, VectorAdd_Mixed.c,
• VectorADD_Casm.c, Input_Port_C.c

EEL 4744

2
University of Florida, EEL 4744 – File 14

© Drs. Eric Schwartz & Joshua Weaver

Menu
• Motivation
• Overview of C Basics
• Variables, Types, and Definitions
• Conditionals
• Ports and Registers
• Interrupts
• Pointers
• C Example
• NOT covered, but possibly useful info after 4744

>Using C with Assembly: slides 42-…

1

2

4-Mar-24—11:26 AM

2University of Florida, EEL 4744 – File 14
© Drs. Eric Schwartz & Joshua Weaver

Intro to C for XMEGA

EEL 4744

3
University of Florida, EEL 4744 – File 14

© Drs. Eric Schwartz & Joshua Weaver

Introduction to C & other
High-level Languages

• Source Languages (e.g., C, C++, Java)
> Most modern programs are written in high-level

languages (such as C), because it is generally easier
than Assembly.

> A compiler is used to convert a source language into a
target language (e.g., Assembly), resulting in object
code (just as an assembler converts Assembly to
object/machine code).

> A compiler is given limited time to “optimize” the
object code in terms of speed, memory usage, etc.

> The resulting object code is not guaranteed to be as fast
or efficient as can be done with Assembly code.

EEL 4744

4
University of Florida, EEL 4744 – File 14

© Drs. Eric Schwartz & Joshua Weaver

Mixed C/Assembly

• Why Mixed Coding?
> Occasionally a programmer may want to take advantage

of the increased specificity in Assembly to improve the
resulting object code (usually for increased speed).

> When programming in high-level language, there may
be limitations due to processor specific features.

– Memory Mapping
– External Bus Control

3

4

4-Mar-24—11:26 AM

3University of Florida, EEL 4744 – File 14
© Drs. Eric Schwartz & Joshua Weaver

Intro to C for XMEGA

EEL 4744

5
University of Florida, EEL 4744 – File 14

© Drs. Eric Schwartz & Joshua Weaver

Costs/Benefits of Mixed
C/Assembly versus C or Assembly

• Benefits of either C or Assembly (but not both)
> … of C

– Power of a high-level source language such as C
� Libraries (Graphical, Math, etc.), String-processing functions, etc.

– Use of C structures and layout
> … of Assembly

– Speed and control of assembler (optimization)
– Direct control of code placement
– Access to processor specific functions

• Drawbacks of mixed C/Assembly
> Assembly coding in mixed coding is slightly different

from standard Assembly
– Naming conventions, function usages

> Code is less portable (i.e., is often specific to the
processor)

EEL 4744

6
University of Florida, EEL 4744 – File 14

© Drs. Eric Schwartz & Joshua Weaver

What is Mixed
C/Assembly Coding?

• Use Assembly code to improve C code or take
advantage of a specific processor’s capabilities

• For our board, mixed coding is handled by the
AVR-GCC toolchain for compiling with the GNU
Assembler (GAS); previously used Eclipse toolchair.

• W/ XMEGA, 2 ways to mix C and Assembly code
> Use separate files for C code and Assembly code, the .c

extension and .s extension respectively
> Inline Assembly code directly inserted into the C code
> You will NOT be expected to write mixed code

– See the end of this lecture for more mixed C/Assembly info

5

6

4-Mar-24—11:26 AM

4University of Florida, EEL 4744 – File 14
© Drs. Eric Schwartz & Joshua Weaver

Intro to C for XMEGA

EEL 4744

7
University of Florida, EEL 4744 – File 14

© Drs. Eric Schwartz & Joshua Weaver

Basic C Structures

• Overview
– (The primary C structures are also used in Mixed

C/Assembly)
– Preprocessor Directives
– Functions (prototypes)
– Main Function
– Function Calls

EEL 4744

8
University of Florida, EEL 4744 – File 14

© Drs. Eric Schwartz & Joshua Weaver

Basic C Structures
• C (or Mixed C/Assembly)

start with a standard
structure

> Example:

#define F_CPU 2000000
#include <avr/io.h>

// function prototype below
int add(int x, int y);

// main routine below
int main(void)
{

int x=3, y=7, z;
while(1)
{

z=add(x,y);
}

}
// function is below
int add(int x, int y)
{

return (x+y);
}

7

8

4-Mar-24—11:26 AM

5University of Florida, EEL 4744 – File 14
© Drs. Eric Schwartz & Joshua Weaver

Intro to C for XMEGA

EEL 4744

9
University of Florida, EEL 4744 – File 14

© Drs. Eric Schwartz & Joshua Weaver

Basic C Structures
Preprocessor Directives

• Preprocessor Directives (# sign)
> The #define is an “object-like” macro definition

(similar to .equ or .def)
– Allows us to define a value for a symbolic name that may be

used in our code or the systems code
> The #include is a method used to include other files

that include code (similar to .include)
– If using brackets (< >), the file is expected in standard compiler include

paths
– If using quotation marks (" "), the path for the file will include the current

source directory

> Example:
#define F_CPU 2000000
#include <avr/io.h>

EEL 4744

10
University of Florida, EEL 4744 – File 14

© Drs. Eric Schwartz & Joshua Weaver

Basic C Structures
Preprocessor Directives

• There are various other types of preprocessor
directives that may be used

>The given example shows
– A defined rate to be used for the clock frequency of the XMEGA
– A definitions file to be used for an AVR processor

> Example:
#define F_CPU 2000000
#include <avr/io.h>

9

10

4-Mar-24—11:26 AM

6University of Florida, EEL 4744 – File 14
© Drs. Eric Schwartz & Joshua Weaver

Intro to C for XMEGA

EEL 4744

11
University of Florida, EEL 4744 – File 14

© Drs. Eric Schwartz & Joshua Weaver

Basic C Structures
Function Prototypes

• Function Prototypes
>Functions may not be called unless they have been

defined with a prototype
– Some compiles do not require this (including ours), but 4744

does!
>Function prototypes allow a function to be partially

defined
– Prototypes are typically found near the top of the file, below

preprocessor directives (or in header files, i.e., .h)
– Defines the function, but does not supply a body of code
– Functions are defined later in the program with its body of code
– Allows the function to be called before its complete definition
– Example:
int add(int x, int y);

EEL 4744

12
University of Florida, EEL 4744 – File 14

© Drs. Eric Schwartz & Joshua Weaver

Overview of C Basics

• Main Functions
> One in every program, starting point for all code

• Functions
> Similar to subroutines in Assembly
> Organized scheme for holding code
> Allows passing of parameters and returning results
> Use of prototypes for organizing code

– Prototypes should ALWAYS be used; they are NOT optional, even if
Microchip/Atmel Studio does not require them in the present version

• Preprocessor Directives
> Defining names (or variables) as values
> Including extra files detailing code
> Creating Macros to detail functions or values

11

12

4-Mar-24—11:26 AM

7University of Florida, EEL 4744 – File 14
© Drs. Eric Schwartz & Joshua Weaver

Intro to C for XMEGA

EEL 4744

13
University of Florida, EEL 4744 – File 14

© Drs. Eric Schwartz & Joshua Weaver

Basic C Structures
Main Function

• Main Function
>A few properties of the main function

– Resembles a standard function
– A single main function is required for each project
– Starting point for the project

> Example:
int main(void)
{

while(1)
{

z = add(x,y);
}

}

EEL 4744

14
University of Florida, EEL 4744 – File 14

© Drs. Eric Schwartz & Joshua Weaver

Basic C Structures
Main Function

>When the main function ends, the program ends
– A while loop may be used to run a block of code “forever”
� Like the “dog chasing its tail” loop used at the end of Assembly programs

>The example also shows how a function may be called
– The name of the function to be called is used
– If the function requires arguments, they may be passed within

parenthesis (x and y in the below example)

> Example:
int main(void)
{ …..

while(1)
{

add(x,y);
}

}

13

14

4-Mar-24—11:26 AM

8University of Florida, EEL 4744 – File 14
© Drs. Eric Schwartz & Joshua Weaver

Intro to C for XMEGA

EEL 4744

15
University of Florida, EEL 4744 – File 14

© Drs. Eric Schwartz & Joshua Weaver

Basic C Structures
Function Prototypes

• Function Prototype
> Example:

int add(int x, int y); // this is the prototype

int main(void)
{

while(1)
{

add(x,y); // this is the function call
}

}
int add(int x, int y) // this is the function
{

return (x+y);
}

EEL 4744

16
University of Florida, EEL 4744 – File 14

© Drs. Eric Schwartz & Joshua Weaver

Overview of C Basics
• We can (and will) write programs entirely in C
• Values are defined using variables (not registers)

>No registers are directly referenced (although they will
be used “underneath the hood,” i.e., after compilation)

• High-level conditional structures are available for
flow control
>Easier use of comparisons
>No branch functions (used in Assembly) available (or

necessary)
• Cleaner way of looking at port usage and

interrupts

15

16

4-Mar-24—11:26 AM

9University of Florida, EEL 4744 – File 14
© Drs. Eric Schwartz & Joshua Weaver

Intro to C for XMEGA

EEL 4744

17
University of Florida, EEL 4744 – File 14

© Drs. Eric Schwartz & Joshua Weaver

Variables
• Variables

>Type
– Standard: int, char, float, double, etc.
– Special: uint8_t, uint16_t, int8_t, int16_t, etc.

>Scope of Variables
– Local: Declare at the beginning of a function in which it is to be

used
– Global: Declare outside of any function, typically at the top of

the c file
>Modifiers: causes variable to use more or less memory

The following are typical examples
– short (works on int)
– long: 4 to 8 bytes (depending on the compiler/processor)
– signed, unsigned, long, long long (twice as long as long)

EEL 4744

18
University of Florida, EEL 4744 – File 14

© Drs. Eric Schwartz & Joshua Weaver

How to use Variables

• When defining variables, there are many types available

ExpressionType
char

standard
ascii

'j'

106, 0x6A

"microp"string
int

decimal

hex

binary

37

0x37

0b110111

0.00037float

37.000001double

Example:
char char1 = 'j';
char char2 = 0x6A
char str[7] = "microp"
char str[] = "4744 #1"
char *str = "Hi!"
int x = 37;
int y = 0x37;
float = 0.00037;
double = 37.000001;

• When quotes (") are used, the string
terminates with a null (0) character

• When arrays uses brackets ([]), then the
size depends on the number of elements
in the brackets; if empty, then “unlimited”

‘j’ = 0x6A

17

18

4-Mar-24—11:26 AM

10University of Florida, EEL 4744 – File 14
© Drs. Eric Schwartz & Joshua Weaver

Intro to C for XMEGA

EEL 4744

19
University of Florida, EEL 4744 – File 14

© Drs. Eric Schwartz & Joshua Weaver

Pointers and Addresses
• When there is an * in a declaration, then it means

that it is a pointer variable
>*x means that x is a pointer variable
>char *x = "Hi!" // x is a pointer variable
>*x = "Bye" // value, starting at address x is now “Bye”
•&x means “address of x”
>&x[0] means address of x or the address of x[0]
>&x[2] means address of x, plus 2; which is the address of

x[2]

EEL 4744

20
University of Florida, EEL 4744 – File 14

© Drs. Eric Schwartz & Joshua Weaver

Arrays

• An Array is a method of grouping a series of same
type elements in a single variable located in
contiguous memory locations
>Syntax: type name [elements] = {initialized value list};

– Type may be any variable type
– Elements states the size or number of variables in the array
– The initialized value list represents the initial values populating

the array
� If defining an initial list, the value of elements may be omitted

> Examples:
uint8_t buffer[20]; // unsigned character (8 bits)
char message[] = {'m', 'i', 'c', 'r', 'o', 'p'}

// no 0x0 appended
char string[] = "microp"; // an 0x0 is appended

19

20

4-Mar-24—11:26 AM

11University of Florida, EEL 4744 – File 14
© Drs. Eric Schwartz & Joshua Weaver

Intro to C for XMEGA

EEL 4744

21
University of Florida, EEL 4744 – File 14

© Drs. Eric Schwartz & Joshua Weaver

Conditionals

• Conditionals controls flow of code given
programmer defined conditions

• Handles the concept of comparisons and branches
(that were used in Assembly)

EEL 4744

22
University of Florida, EEL 4744 – File 14

© Drs. Eric Schwartz & Joshua Weaver

If, Else If, Else
• Check conditional statements for truth values
>if conditional

– If expression is true, execute expressions within conditional
block

– If expression is false, check any following conditionals tied to if
conditional

>else if conditional (may be omitted)
– Follows same concept as if conditional, giving more conditional

checks
>else conditional (may be omitted)

– If all other conditionals fail, this block is executed

simple_if_statements.c

21

22

4-Mar-24—11:26 AM

12University of Florida, EEL 4744 – File 14
© Drs. Eric Schwartz & Joshua Weaver

Intro to C for XMEGA

EEL 4744

23
University of Florida, EEL 4744 – File 14

© Drs. Eric Schwartz & Joshua Weaver

If, Else If, Else
>Syntax:

if (expression) {
<statements>

} else if (expression) {
<statements>

} else {
<statements>

}

simple_if_statements.c

EEL 4744

24
University of Florida, EEL 4744 – File 14

© Drs. Eric Schwartz & Joshua Weaver

Relational Operators
• To create a conditional expression, utilize one of

relational operators

Example
(True results)Definition

Relational
Operator

47 > 37Greater than>

47 >= 47Greater than or equal to>=

37 < 47Less than<

37 <= 47Less than or equal to<=

47 == 47Equal to==

37 != 47Not equal to!=

23

24

4-Mar-24—11:26 AM

13University of Florida, EEL 4744 – File 14
© Drs. Eric Schwartz & Joshua Weaver

Intro to C for XMEGA

EEL 4744

25
University of Florida, EEL 4744 – File 14

© Drs. Eric Schwartz & Joshua Weaver

Boolean Operators

• To create more complex conditional expressions,
Boolean operators may be used

Example (True results)Definition
Boolean
Operator

((47 >= 47) && (47 > 37))AND two expressions&&

((37 != 47) || (37 > 47))OR two expressions||

!(37 > 47)Complement expression!

EEL 4744

26
University of Florida, EEL 4744 – File 14

© Drs. Eric Schwartz & Joshua Weaver

While and Do While
• While loops allow for repetition

>If expression is true, execute expressions within
conditional block and continue to execute until false

>If expression is false, exit conditional block and continue
with code following the while block

• Do While loops allow for repetition
>Follows same concept as While loop, except condition

expression happens at the end of the code
>Will execute code block at least once

• Syntax:
while (expression) {

<statements>
}

do {
<statements>

} while (expression)

simple_whiles_loops.c
multiple_whiles_loops.c

25

26

4-Mar-24—11:26 AM

14University of Florida, EEL 4744 – File 14
© Drs. Eric Schwartz & Joshua Weaver

Intro to C for XMEGA

EEL 4744

27
University of Florida, EEL 4744 – File 14

© Drs. Eric Schwartz & Joshua Weaver

For Loop

• For loops allow for repetition while also iterating
>Has a start value, e.g., int i = 0
>Loops until an end condition has been met, e.g., i < 10
>Every loop, the start value will either be increase or

decrease, e.g., i++ or i--
>Syntax:

for (start value; end condition; inc/dec value) {
<statements>

}

>Example:
for (int i = 0; i < 10; i++) {

<statements>
}

if_and_for_loops.c

EEL 4744

28
University of Florida, EEL 4744 – File 14

© Drs. Eric Schwartz & Joshua Weaver

Switch Statements
• Switch statements acts as selection control,

changing the code flow through a multi-way branch
>Multi conditional system such as a large if conditional

structure
>May also be used to create a state machine
>Has a single variable that compared to multiple values,

executing different code for potentially each value.
>Syntax:

switch (
variable)
{
case value1:

<statements>
break;

case value2:
<statements>
break;

default:
<statements>
break;

}
switch_statements.c

27

28

4-Mar-24—11:26 AM

15University of Florida, EEL 4744 – File 14
© Drs. Eric Schwartz & Joshua Weaver

Intro to C for XMEGA

EEL 4744

29
University of Florida, EEL 4744 – File 14

© Drs. Eric Schwartz & Joshua Weaver

Break
• While running loops, it is possible to break out of

the code at anytime using the break expression
>If using nested loops, the break expression will break out

of all loops
>Can use labels to jump to the outer loop

• Example:
outer_loop:
for (int i = 0; i < 10; i++) {

for (int j = 0; j < 10; j++) {
if ((i * j) == 37) // Won’t happen!

break outer_loop;
}

}

EEL 4744

30
University of Florida, EEL 4744 – File 14

© Drs. Eric Schwartz & Joshua Weaver

Volatile

asm volatile ("nop");

void RoughDelay1sec(void)
{

volatile uint32_t ticks;
//Volatile prevents compiler optimization

for(ticks=0;ticks<=F_CPU;ticks++);
//increment 2e6 times -> ~ 1 sec
}

if_and_for_loops.c

29

30

4-Mar-24—11:26 AM

16University of Florida, EEL 4744 – File 14
© Drs. Eric Schwartz & Joshua Weaver

Intro to C for XMEGA

EEL 4744

31
University of Florida, EEL 4744 – File 14

© Drs. Eric Schwartz & Joshua Weaver

PORT / Modules

• May access Ports similarly to Assembly, use the
header file
#include <avr/io.h>

>HINT: Right mouse click on variable name and choose
goto implementation

• When programming, make use of intelli-sense
• Naming follows the AVR Manuals
• Access PORTS (or modules) by name directly

>Examples:
PORTA_DIRCLR = 0xFF
USARTC0_CTRLA = 0xFF simple_whiles_loops.c

multiple_whiles_loops.c

EEL 4744

32
University of Florida, EEL 4744 – File 14

© Drs. Eric Schwartz & Joshua Weaver

Registers

• It is possible to use C syntax and structures to
access registers of various modules in a cleaner
manner

• Instead of typing the entire name, you can
>Enter the module name
>Enter a period
>Enter the register name (with autocomplete)
>Example:
PORTA.DIRCLR = 0xFF
USARTC0.CTRLA = 0xFF

simple_whiles_loops.c
multiple_whiles_loops.c

31

32

4-Mar-24—11:26 AM

17University of Florida, EEL 4744 – File 14
© Drs. Eric Schwartz & Joshua Weaver

Intro to C for XMEGA

EEL 4744

33
University of Florida, EEL 4744 – File 14

© Drs. Eric Schwartz & Joshua Weaver

Bitwise and
Compound Operators

• When modifying ports and registers, bitwise
operators are often used.
•&, |, and ^ may be tied

to equal sign to simply
AND or OR the variable
with another variable

• Examples:
PORTB_DIRCLR |= 0xF0;
X <<= 2;// X=X<<2

• Can also do this with +, -, *, /, etc.
>Example:
Var1 += 37; // Var1 = Var1 + 37

Bitwise OperationSymbol
AND&

OR|

Exclusive OR^

Left Shift<<

Right Shift>>

One’s Complement~

EEL 4744

34
University of Florida, EEL 4744 – File 14

© Drs. Eric Schwartz & Joshua Weaver

Bitmasks

• Programming in C allows a user to use various
defined enumerations or structures when working
with PORTs and control registers

• Standard bitmasks allow a user to change only
specific bits in a register when desired (noted by
bm)
>Example:
PORTB_DIRCLR = PIN2_bm | PIN4_bm;
PORTB.DIRCLR = PIN2_bm | PIN4_bm;

usart_serial.c

33

34

4-Mar-24—11:26 AM

18University of Florida, EEL 4744 – File 14
© Drs. Eric Schwartz & Joshua Weaver

Intro to C for XMEGA

EEL 4744

35
University of Florida, EEL 4744 – File 14

© Drs. Eric Schwartz & Joshua Weaver

Bitmasks

• Group Configuration Bitmasks allow a user to
change only multiple bits representing aspects of a
control register
>Example
USARTC0.CTRLC = USART_CMODE_ASYNCHRONOUS_gc |

USART_PMODE_DISABLED_gc |
USART_CHSIZE_8BIT_gc;

usart_serial.c

EEL 4744

36
University of Florida, EEL 4744 – File 14

© Drs. Eric Schwartz & Joshua Weaver

Interrupts
• First must include the interrupt header file
>#include <avr/interrupt.h>

• After defining interrupts use module registers,
enable or clear the global interrupts as needed
>sei();
>cli();

• Finally, write the interrupt service routine for the
required interrupt vector
ISR(USARTC0_RXC_vect)
{

USARTC0.DATA = USARTC0.DATA;
}

usart_serial.c

35

36

4-Mar-24—11:26 AM

19University of Florida, EEL 4744 – File 14
© Drs. Eric Schwartz & Joshua Weaver

Intro to C for XMEGA

EEL 4744

37
University of Florida, EEL 4744 – File 14

© Drs. Eric Schwartz & Joshua Weaver

Interrupts
• Occasionally clearing the interrupts is necessary, but

preserving the status register is ALMOST
ALWAYS required (and always, in Assembly, but
NOT in C)

• In the XMEGA (and likely most processors) the
below is automatically done (so UNNECESSARY)
in C; but if it isn’t, this could be done
>Example:

uint8_t sreg = SREG; // save status reg
cli();
<statements>
SREG = sreg; // restore status reg

EEL 4744

38
University of Florida, EEL 4744 – File 14

© Drs. Eric Schwartz & Joshua Weaver

Using C with Assembly

• It is possible to use C and Assembly more
seamlessly by creating variables and functions in C
and using them in various ways with Assembly
>This puts less emphasis on the Assembly code, using it

only as needed to improve code
>When using more of C’s capabilities, some extra

considerations must be placed on the choice of Registers
in Assembly (as described in the lecture Intro to Mixed
C and Assembly)

37

38

4-Mar-24—11:26 AM

20University of Florida, EEL 4744 – File 14
© Drs. Eric Schwartz & Joshua Weaver

Intro to C for XMEGA

EEL 4744

39
University of Florida, EEL 4744 – File 14

© Drs. Eric Schwartz & Joshua Weaver

Using C with Assembly
Passing Arguments

• Arguments are passed to Assembly functions in
register pairs or via the stack if more than 9
arguments
>Word Data takes both registers
>Byte Data takes the lower register

RegistersArgument
r25:r241

r23:r222

r21:r203

….

r9:r89

EEL 4744

40
University of Florida, EEL 4744 – File 14

© Drs. Eric Schwartz & Joshua Weaver

Using C with Assembly
Returning Values

• Return values always use the following convention

RegistersType

r25:r24
8 bit data (sign or
zero extended)

r25:r2232 bit data

r25:r1864 bit data

39

40

4-Mar-24—11:26 AM

21University of Florida, EEL 4744 – File 14
© Drs. Eric Schwartz & Joshua Weaver

Intro to C for XMEGA

EEL 4744

41
University of Florida, EEL 4744 – File 14

© Drs. Eric Schwartz & Joshua Weaver

Pointers

• Pointers may be used to contain the address of a
variable. You create pointers using the * symbol
>int value = 5; // A variable holding a value of type int
>int *valuePtr; // A pointer to a value of type int

• To reference the address of the pointer you use the
& symbol
>valuePtr = &value; // Place address of value in pointer

• To get the data that the pointer points to, you can
“dereference it” by using the * symbol on the
pointer
>int data = *valuePtr; // Get data pointed to by pointer

EEL 4744

42
University of Florida, EEL 4744 – File 14

© Drs. Eric Schwartz & Joshua Weaver

Examples

• External Bus Interface (EBI) example:

• Asynchronous Serial example:

usart_serial.c

ebi.c
ebi_driver.h

41

42

4-Mar-24—11:26 AM

22University of Florida, EEL 4744 – File 14
© Drs. Eric Schwartz & Joshua Weaver

Intro to C for XMEGA

EEL 4744

43
University of Florida, EEL 4744 – File 14

© Drs. Eric Schwartz & Joshua Weaver

Mixed C/Assembly

You are not responsible for the
following pages

EEL 4744

44
University of Florida, EEL 4744 – File 14

© Drs. Eric Schwartz & Joshua Weaver

C Projects and Inline
Assembly

• If it is only desired to add a few lines of assembly code to
a C Project, it is possible to add assembly “inline”

• Inline assembly uses the asm function with the following
template
asm volatile(asm-template : output-operand-list :

list-input-operand : clobber list)
• When using the asm function, the compiler will have a

harder time optimizing code
• The volatile keyword may be used to prevent the

compiler from attempting to optimize the line
> The keyword volatile may be omitted, but then the compiler

might optimize away your intended structure

43

44

4-Mar-24—11:26 AM

23University of Florida, EEL 4744 – File 14
© Drs. Eric Schwartz & Joshua Weaver

Intro to C for XMEGA

EEL 4744

45
University of Florida, EEL 4744 – File 14

© Drs. Eric Schwartz & Joshua Weaver

Inline Assembly

asm volatile (asm-template : output-operand-list :
list-input-operand : clobber list)

• The asm-template component of the asm function
follows standard Assembly with small changes

> The Mixed C and Assembly (for Atmel XMEGA)
document detail any required changes

– Example:
asm volatile (“STS %0, r18” : “=m” (EBI_CTRL));
� STS command above is used to define EBI_CTRL
� The %0 is a place holder showing that the defined operand will come later

in the template
� The output operand section, EBI_CTRL, is defined as an output only

memory (“=m”) location address

EEL 4744

46
University of Florida, EEL 4744 – File 14

© Drs. Eric Schwartz & Joshua Weaver

Inline Assembly
asm volatile (asm-template : output-operand-list :

list-input-operand : clobber list)
• The asm-template may use “%” expressions to define

placeholders replaced by operands in the output-operand-
list and list-input-operand

Replaced byPlaceholder
By argument in operands where n = 0 to 9 for argument% n
The first register of the argument n (bits 0 to 7)A% n
The second register of the argument n (bits 8 to 15)% B n
The third register of the argument n (bits 16 to 23)% C n
The fourth register of the argument n (bits 24 to 31)% D n
The Address register X, Y, or Z% A n
The % symbol when needed% %
The \ symbol when needed\ \
A newline to separate multiple asm commands\ N
A tab used in generated asm\ T

45

46

4-Mar-24—11:26 AM

24University of Florida, EEL 4744 – File 14
© Drs. Eric Schwartz & Joshua Weaver

Intro to C for XMEGA

EEL 4744

47
University of Florida, EEL 4744 – File 14

© Drs. Eric Schwartz & Joshua Weaver

Inline Assembly

asm volatile (asm-template : output-operand-list :
list-input-operand : clobber list)

• The output-operand-list and list-input-operand
uses various modifiers as needed for the operands
given

MeaningModifier
Output operand=
Not used as input but only an output&
Input and Output Operand+

EEL 4744

48
University of Florida, EEL 4744 – File 14

© Drs. Eric Schwartz & Joshua Weaver

Examples

• Vector Add Mixed
> .s File Compilation Example
> Requires both .c and .s file

• Later
> Vector Add

– Inline Assembly version
> Input Port

– Inline Assembly version

VectorAdd_Mixed.c
VectorAdd_Mixed.s

VectorAdd_Casm.c

Input_Port_C.c

47

48

4-Mar-24—11:26 AM

25University of Florida, EEL 4744 – File 14
© Drs. Eric Schwartz & Joshua Weaver

Intro to C for XMEGA

EEL 4744

49
University of Florida, EEL 4744 – File 14

© Drs. Eric Schwartz & Joshua Weaver

Mixed C/Assembly

• The slides that follow are NOT covered

this semester, i.e., you will not write mixed
C/Assembly code, nor will you be responsible to
know this for labs or exams

EEL 4744

50
University of Florida, EEL 4744 – File 14

© Drs. Eric Schwartz & Joshua Weaver

C Projects and .s
Assembly Files

• When creating a C project in Microchip/Atmel
Studio, a simple .c file is created with a template
structure

> C code should be restricted to .c files
• When adding Assembly to a C project, a .s file is

used to hold all Assembly code (not a .asm file)
• A .s file will resemble a standard assembly file,

however, there are some considerations that must
be made when in C projects

> Registers are used differently since C also uses them
> Assembly preprocessor directives have different formats

49

50

4-Mar-24—11:26 AM

26University of Florida, EEL 4744 – File 14
© Drs. Eric Schwartz & Joshua Weaver

Intro to C for XMEGA

EEL 4744

51
University of Florida, EEL 4744 – File 14

© Drs. Eric Schwartz & Joshua Weaver

“.s” File Compilation
Registers

• When writing assembly in a C project, registers have
different rules

Assembly code that
calls C code

Assembly code
called from CDescriptionRegister

Save and restoreSave and restoreTemporaryr0
Must clear before
returning

Must clear before
returning

Always Zeror1

Can freely useSave and restore“call-saved”
r2-r17

r28
r29

Save and restoreCan freely use“call-used”
r18-r27

r30
r31

EEL 4744

52
University of Florida, EEL 4744 – File 14

© Drs. Eric Schwartz & Joshua Weaver

“.s” File Compilation
Registers

• r0: defined as a temporary register which may be used
by compiler generated code

• r1: assumed to always be zero by the compiler, so any
assembly code that uses this should clear the register
before calling compiler generated code

• r2 – r31: defined as “call-saved” or “call-used”
> call-saved: registers that a called C function may leave unaltered,

however, assembly functions called from C should save and
restore the contents of the register (using stack)

> call-used: registers available for any code to use, but if calling a C
function, these registers should be saved since compiler generated
code will not attempt to save them

51

52

4-Mar-24—11:26 AM

27University of Florida, EEL 4744 – File 14
© Drs. Eric Schwartz & Joshua Weaver

Intro to C for XMEGA

EEL 4744

53
University of Florida, EEL 4744 – File 14

© Drs. Eric Schwartz & Joshua Weaver

“.s” File Compilation
Syntax

• When writing
assembly in a C
project, some
syntax is
different

AVR-GCCAtmel AVR
#include <avr/io.h>.include “ATxmega128A1Udef.inc”

.section .data.dseg

.section .text.cseg

.byte 1,2,3,4.db 1,2,3,4

.ascii “message”.db “message”

.asciz “message”.db “message”, 0x00

.ds.b 37.byte 37 ;save space for bytes

.word.dw
hi8(), lo8()HIGH(), LOW()

Path for the equivalent file to the ATxmega128A1Udef.inc is:
C:\Program Files (x86)\Atmel\Atmel Toolchain\AVR8
GCC\Native\3.4.2.1002\avr8-gnu-
toolchain\avr\include\avr\iox128a1u.h

EEL 4744

54
University of Florida, EEL 4744 – File 14

© Drs. Eric Schwartz & Joshua Weaver

“.s” File Compilation
.dseg and Data Memory

• Data memory defaults to start at 0x2000
• .section .data replaces the use of .dseg to access

the Data Memory space
>Example:
.section .data // old way .dseg
Var1: .ds.b 7 // save 7 bytes
Var2: .ds.w 3 // save 3 words
Var3: .byte 0x37 // Var3 = 0x37
// Previously, .byte saved space; now value
Text: .asciz "hello world"

.global __do_copy_data // needed for Var3
// and Text

53

54

4-Mar-24—11:26 AM

28University of Florida, EEL 4744 – File 14
© Drs. Eric Schwartz & Joshua Weaver

Intro to C for XMEGA

EEL 4744

55
University of Florida, EEL 4744 – File 14

© Drs. Eric Schwartz & Joshua Weaver

“.s” File Compilation
.dseg and Data Memory

• .section .data is necessary to begin the Data
Memory (i.e., volatile memory = RAM) segment

• The .asciz command is used to define a specific
null terminated string, a constant

> .ascii is like .asciz, but with no null termination
• The ds.b and ds.w commands are used to define

storage of varying sizes (like .byte in .asm files)
• The .byte command is used to define a specific

byte, i.e., a constant (like .db in .asm files)

EEL 4744

56
University of Florida, EEL 4744 – File 14

© Drs. Eric Schwartz & Joshua Weaver

“.s” File Compilation
.dseg and Data Memory

• Data memory is typically used to create storage of
variables like Var1 and Var2

• It is occasionally desired to create memory and
store an initial value in that memory space, as we
did for Var3 and Text
>The initial value is stored in program memory
>The .global __do_copy_data special command

handles copying the data from program memory to data
memory

55

56

4-Mar-24—11:26 AM

29University of Florida, EEL 4744 – File 14
© Drs. Eric Schwartz & Joshua Weaver

Intro to C for XMEGA

EEL 4744

57
University of Florida, EEL 4744 – File 14

© Drs. Eric Schwartz & Joshua Weaver

• Like Assembly, program memory is used to hold
program constants and assembly code

• .section .text replaces the use of .cseg to access
the Program Memory space

> Example:
.section .text
VA: .byte 1, 2, 3, 4, 5, 6
VB: .byte 0xA0,0xB0,0xC0,0xD0,0xE0,0xF0
.global MAIN_ASM //Required for mixed

MAIN_ASM:
ldi R18, 6
...

“.s” File Compilation
.cseg and Program Memory

VectorAdd_Mixed.s

EEL 4744

58
University of Florida, EEL 4744 – File 14

© Drs. Eric Schwartz & Joshua Weaver

“.s” File Compilation
.cseg and Program Memory

• .section .text is shown to begin the Program
Memory segment

• The .byte command is used just as it was under
the Data Memory section

> May be used to defined multiple bytes in a section
> Saved in Program Memory, not desired to transfer to

Data Memory (no need of .global __do_copy_data)
• The rest of the example follows standard

Assembly

57

58

4-Mar-24—11:26 AM

30University of Florida, EEL 4744 – File 14
© Drs. Eric Schwartz & Joshua Weaver

Intro to C for XMEGA

EEL 4744

59
University of Florida, EEL 4744 – File 14

© Drs. Eric Schwartz & Joshua Weaver

.s File Program Memory
& Watch Window

• In a .s file, we do NOT have to do the shifting
that we did in .asm files for reading Program
Memory Section (.dseg in .asm and .section .text
in .s)
>Example for a .s file

ldi ZL, lo8(VA) // Load the address of program
ldi ZH, hi8(VA) // memory for VA

• The watch window can NOT display XL, XH,
YL, YH, ZL, or ZH in .s files, nor most other
things (other than registers, Rx)

VectorAdd_Mixed.s

EEL 4744

60
University of Florida, EEL 4744 – File 14

© Drs. Eric Schwartz & Joshua Weaver

“.s” File Compilation
Functions Example

• One of the main aspects of using Assembly in a C
project is to benefit from using Assembly
functions

• Functions must be declared in both C files and
Assembly files

> Function prototypes should be defined in C code for
any function called from Assembly

– extern int funct();
> Functions defined in Assembly code that will be called

from C code should be declared global
– .global funct

59

60

4-Mar-24—11:26 AM

31University of Florida, EEL 4744 – File 14
© Drs. Eric Schwartz & Joshua Weaver

Intro to C for XMEGA

EEL 4744

61
University of Florida, EEL 4744 – File 14

© Drs. Eric Schwartz & Joshua Weaver

“.s” File Compilation
Functions in C/Assembly

>.c file syntax:
extern int funct();

int main(void)
{

funct();
}

> .s file syntax:
.global funct

funct:
ldi R18, 0x47
...
ret

VectorAdd_Mixed.c

VectorAdd_Mixed.s

> .c file example:
extern void MAIN_ASM();
int main(void)
{

MAIN_ASM();
}

> .s file example:
.global MAIN_ASM
MAIN_ASM:

ldi R18, N
...
ret

EEL 4744

62
University of Florida, EEL 4744 – File 14

© Drs. Eric Schwartz & Joshua Weaver

The End!

61

62

