4-Mar-24—11:26 AM Intro to C for XMEGA

.‘ EEL 4744

* Introduction to C for Atmel XMega

Menu

See Examples or Classes on web-site:

See Software/Docs:

University of Florida, EEL 4744 — File 14
© Drs. Eric Schwartz & Joshua Weaver 1

* Motivation

* Overview of C Basics

* Variables, Types, and Definitions
* Conditionals

* Ports and Registers

* Interrupts

* Pointers

« C Example

* NOT covered, but possibly useful info after 4744
>Using C with Assembly: slides 42-...

University of Florida, EEL 4744 — File 14
© Drs. Eric Schwartz & Joshua Weaver 2

2

University of Florida, EEL 4744 — File 14 1
© Drs. Eric Schwartz & Joshua Weaver

4-Mar-24—11:26 AM Intro to C for XMEGA

rEEL 4744 Introduction to C & other
High-level Languages

* Source Languages (e.g., C, C++, Java)

> Most modern programs are written in high-level
languages (such as C), because it is generally easier
than Assembly.

> A compiler is used to convert a source language into a
target language (e.g., Assembly), resulting in object
code (just as an assembler converts Assembly to
object/machine code).

> A compiler is given limited time to “optimize” the
object code in terms of speed, memory usage, etc.

> The resulting object code is not guaranteed to be as fast
or efficient as can be done with Assembly code.

University of Florida, EEL 4744 - File 14
© Drs. Eric Schwartz & Joshua Weaver 3

r EEL 4744 |
Mixed C/Assembly

* Why Mixed Coding?
> (Qccasionally a programmer may want to take advantage
of the increased specificity in Assembly to improve the
resulting object code (usually for increased speed).
> When programming in high-level language, there may

be limitations due to processor specific features.
— Memory Mapping
— External Bus Control

University of Florida, EEL 4744 — File 14
© Drs. Eric Schwartz & Joshua Weaver 4

4

University of Florida, EEL 4744 — File 14 2
© Drs. Eric Schwartz & Joshua Weaver

4-Mar-24—11:26 AM Intro to C for XMEGA

rEEL 4744 Costs/Benefits of Mixed
C/Assembly versus C or Assembly

 Benefits of either C or Assembly (but not both)
> ...of C

— Power of a high-level source language such as C
O Libraries (Graphical, Math, etc.), String-processing functions, etc.

— Use of C structures and layout
> ... of Assembly
— Speed and control of assembler (optimization)
— Direct control of code placement
— Access to processor specific functions

* Drawbacks of mixed C/Assembly
> Assembly coding in mixed coding is slightly different
from standard Assembly
— Naming conventions, function usages
> Code is less portable (i.e., is often specific to the
e IOCESSOD)

sty a,
© Drs. Eric Schwartz & Joshua Weaver 5

rEEL 4744 What is Mixed
C/Assembly Coding?

» Use Assembly code to improve C code or take
advantage of a specific processor’s capabilities

 For our board, mixed coding is handled by the
AVR-GCC toolchain for compiling with the GNU
Assembler (GAS); previously used Eclipse toolchair.

« W/ XMEGA, 2 ways to mix C and Assembly code

> Use separate files for C code and Assembly code, the .¢
extension and .s extension respectively
> Inline Assembly code directly inserted into the C code

> You will NOT be expected to write mixed code
— See the end of this lecture for more mixed C/Assembly info

University of Florida, EEL 4744 — File 14
© Drs. Eric Schwartz & Joshua Weaver 6

6

University of Florida, EEL 4744 — File 14 3
© Drs. Eric Schwartz & Joshua Weaver

4-Mar-24—11:26 AM

r EEL 4744

e Overview

Intro to C for XMEGA

Basic C Structures

—(The primary C structures are also used in Mixed

C/Assembly)
—Preprocessor Directives
—Functions (prototypes)
—Main Function
—Function Calls

University of Florida, EEL 4744 - File 14
© Drs. Eric Schwartz & Joshua Weaver

7

r EEL 4744 _
Basic C Structures

* C (or Mixed C/Assembly)
start with a standard
structure

> Example:

#define F CPU 2000000
#include <avr/io.h>

// function prototype below
int add(int x, int vy);

University of Florida, EEL 4744 - File 14
© Drs. Eric Schwartz & Joshua Weaver

8

University of Florida, EEL 4744 — File 14
© Drs. Eric Schwartz & Joshua Weaver

// main routine below
int main (void)
{

int x=3, y=7, z;

while (1)

{

z=add (x,Vy);

}
}
// function is below
int add(int x, int vy)
{

return (x+y);

}

4-Mar-24—11:26 AM Intro to C for XMEGA

rEEL 4744 Basic C Structures

Preprocessor Directives
* Preprocessor Directives (# sign)
> The #define is an “object-like” macro definition
(similar to .equ or .def)

— Allows us to define a value for a symbolic name that may be
used in our code or the systems code

> The #include is a method used to include other files

that include code (similar to .include)
— If using brackets (< >), the file is expected in standard compiler include
paths
— If using quotation marks (" "), the path for the file will include the current
source directory

> Example:
#define F _CPU 2000000
#include <avr/io.h>

University of Florida, EEL 4744 - File 14
© Drs. Eric Schwartz & Joshua Weaver 9

9

rEEL 4744 Basic C Structures
Preprocessor Directives

* There are various other types of preprocessor

directives that may be used

>The given example shows
— A defined rate to be used for the clock frequency of the XMEGA
— A definitions file to be used for an AVR processor
> Example:
#define F _CPU 2000000
#include <avr/io.h>

University of Florida, EEL 4744 — File 14
© Drs. Eric Schwartz & Joshua Weaver 10

10

University of Florida, EEL 4744 — File 14 5
© Drs. Eric Schwartz & Joshua Weaver

4-Mar-24—11:26 AM Intro to C for XMEGA

rEEL 4744 Basic C Structures

Function Prototypes
* Function Prototypes
>Functions may not be called unless they have been
defined with a prototype
— Some compiles do not require this (including ours), but 4744
does!
>Function prototypes allow a function to be partially
defined
— Prototypes are typically found near the top of the file, below
preprocessor directives (or in header files, i.e., .h)
— Defines the function, but does not supply a body of code
— Functions are defined later in the program with its body of code
— Allows the function to be called before its complete definition

— Example:
int add(int x, int y);

s Florida, EEL 4744 — File 14 1

rEEL 4744 | .
Overview of C Basics

* Main Functions
> One in every program, starting point for all code

* Functions

> Similar to subroutines in Assembly

> Organized scheme for holding code

> Allows passing of parameters and returning results

> Use of prototypes for organizing code

— Prototypes should ALWAYS be used; they are NOT optional, even if
Microchip/Atmel Studio does not require them in the present version

* Preprocessor Directives

> Defining names (or variables) as values

> Including extra files detailing code

> Creating Macros to detail functions or values

e o B S & o Wetwer 12
12
University of Florida, EEL 4744 — File 14 6

© Drs. Eric Schwartz & Joshua Weaver

4-Mar-24—11:26 AM Intro to C for XMEGA

rEEL 4744 Basic C Structures
Main Function

e Main Function

> A few properties of the main function
— Resembles a standard function
— A single main function is required for each project
— Starting point for the project

> Example:

int main (void)

{
while (1)
{

z = add (x,V);

}

}

University of Florida, EEL 4744 - File 14
©Drs. hwartz & Joshua Weaver 13

13

rEEL 4744 Basic C Structures
Main Function

>When the main function ends, the program ends
— A while loop may be used to run a block of code “forever”
O Like the “dog chasing its tail” loop used at the end of Assembly programs
>The example also shows how a function may be called
— The name of the function to be called is used
— If the function requires arguments, they may be passed within
parenthesis (x and y in the below example)
> Example:
int main(void)
{ ..
while (1)
{
add (x,y);
}

University of Florida, EEL 4744 — File 14
© Drs. Eric Schwartz & Joshua Weaver 14

14

University of Florida, EEL 4744 — File 14 7
© Drs. Eric Schwartz & Joshua Weaver

4-Mar-24—11:26 AM Intro to C for XMEGA

rEEL 4744 Basic C Structures
Function Prototypes

* Function Prototype
> Example:
int add(int x, int y); // this is the prototype

int main (void)

{

while (1)
{
add(x,vy); // this is the function call
}
}
int add(int x, int y) // this is the function

{

return (x+y);

}

University of Florida, EEL 4744 - File 14
© Drs. Eric Schwartz & Joshua Weaver 15

15

EEL 4744 .)
r Overview of C Basics

* We can (and will) write programs entirely in C
* Values are defined using variables (not registers)
>No registers are directly referenced (although they will
be used “underneath the hood,” i.e., after compilation)
* High-level conditional structures are available for
flow control
>Easier use of comparisons
>No branch functions (used in Assembly) available (or
necessary)
* Cleaner way of looking at port usage and
interrupts

University of Florida, EEL 4744 — File 14
© Drs. Eric Schwartz & Joshua Weaver 16

16

University of Florida, EEL 4744 — File 14 8
© Drs. Eric Schwartz & Joshua Weaver

4-Mar-24—11:26 AM Intro to C for XMEGA

rEEL 4744 Variables

* Variables
>Type
— Standard: int, char, float, double, etc.
— Special: uint8_t, uintl6 t, int8 t, intl6 t, etc.
>Scope of Variables
— Local: Declare at the beginning of a function in which it is to be
used
— Global: Declare outside of any function, typically at the top of
the c file
>Modifiers: causes variable to use more or less memory

The following are typical examples

— short (works on int)

—long: 4 to 8 bytes (depending on the compiler/processor)
— signed, unsigned, long, long long (twice as long as long)

of Florida, EEL 4744 - File 14
Schy

rEEL 4744 .
How to use Variables

* When defining variables, there are many types available

Example:
char charl = '"3"';
char char?2 = 0x6A
j' char str([7] = "microp"
106, Ox6A char str[] = "4744 #1"
"microp" char *str = "Hil!"
int x = 37;
37 int y = 0x37;
0x37 float = 0.00037;
0b110111 doubl?': 37.000001;)
0.00037 * When quotes (") are used, the string
3'7 T terminates with a null (0) character
* When arrays uses brackets ([]), then the
size depends on the number of elements
e il in the brackets; if empty, then “unlimited”g
18
University of Florida, EEL 4744 — File 14 9
© Drs. Eric Schwartz & Joshua Weaver

4-Mar-24—11:26 AM Intro to C for XMEGA

r EEL 4744

Pointers and Addresses

* When there is an * in a declaration, then it means
that it is a pointer variable
>*x means that X is a pointer variable
>char *x = "Hi!"//x1isapointer variable
>*x = "Bye" //value, starting at address x is now “Bye”
* &x means “address of x”’
>&x [0] means address of x or the address of x[0]

>&x [2] means address of x, plus 2; which is the address of
x[2]

of Florida, EEL 4744 - File 14

r EEL 4744 Atrays

» An Array is a method of grouping a series of same
type elements in a single variable located in
contiguous memory locations

>Syntax: type name [elements] = {initialized value list};
— Type may be any variable type
— Elements states the size or number of variables in the array
— The initialized value list represents the initial values populating
the array
O If defining an initial list, the value of elements may be omitted
> Examples:
uint8 t buffer[2

; // unsigned character (8 bits)
char messagel(] !

017
{'m, 'i', 'c', 'r', 'o', 'p'}
// no 0x0 appended
char string[] = "microp"; // an 0x0 is appended

University of Florida, EEL 4744 - File 14
© Drs. Eric Schwartz & Joshua Weaver

20

University of Florida, EEL 4744 — File 14 1 O
© Drs. Eric Schwartz & Joshua Weaver

20

4-Mar-24—11:26 AM Intro to C for XMEGA

rEEL 4744 -
Conditionals

* Conditionals controls flow of code given
programmer defined conditions

* Handles the concept of comparisons and branches
(that were used in Assembly)

University of Florida, EEL 4744 - File 14
© Drs. Eric Schwartz & Joshua Weaver 21

21

rEEL 4744
If, Else If, Else

* Check conditional statements for truth values
>1if conditional
— If expression is true, execute expressions within conditional
block
— If expression is false, check any following conditionals tied to if
conditional
>else if conditional (may be omitted)
— Follows same concept as if conditional, giving more conditional
checks
>else conditional (may be omitted)
— If all other conditionals fail, this block is executed

University of Florida, EEL 4744 — File 14 S lmp 1 e_i f_ statements.c

© Drs. Eric Schwartz & Joshua Weaver

22
22
University of Florida, EEL 4744 — File 14 1 1
© Drs. Eric Schwartz & Joshua Weaver

4-Mar-24—11:26 AM Intro to C for XMEGA

rEEL 4744
If, Else If, Else

>Syntax:
if (expression) {
<statements>
} else 1f (expression) {
<statements>
} else {
<statements>

}

University of Florida, EEL 4744 — File 14 s1imp 1 e 1 f_S tatements.c

© Drs. Eric Schwartz & Joshua Weaver 23

23

r EEL 4744 .
Relational Operators

* To create a conditional expression, utilize one of
relational operators

> Greater than 47 > 37
>= Greater than or equal to 47 >=47
< Less than 37 <47
<= Less than or equal to 37 <=47
== Equal to 47 ==47
J= Not equal to 37 1=47
o B Semars & o Wt 24
24
University of Florida, EEL 4744 — File 14 1 2
© Drs. Eric Schwartz & Joshua Weaver

4-Mar-24—11:26 AM Intro to C for XMEGA

r EEL 4744
Boolean Operators

* To create more complex conditional expressions,
Boolean operators may be used

&& AND two expressions ((47>=47) && (47>37))
|| OR two expressions ((37!=47)|1(37>47))

! Complement expression 1(37>47)

University of Florida, EEL 4744 - File 14
© Drs. Eric Schwartz & Joshua Weaver 25

25

BT EEL4T4 (o and Do While

* While loops allow for repetition
>1If expression is true, execute expressions within
conditional block and continue to execute until false
>1If expression is false, exit conditional block and continue
with code following the while block
* Do While loops allow for repetition
>Follows same concept as While loop, except condition
expression happens at the end of the code
>Will execute code block at least once

* Syntax: simple whiles loops.c
yntax. multiple whiles loops.c
while (expression) f{ do {
<statements> <statements>
Unive v of Florida, EEL 4744 — File 14 } While (expreSSion)
:“ ;::sz ?c Sc(l:r\:/a';z & Joshuai\’v’e‘:\ er 26
26
University of Florida, EEL 4744 — File 14 1 3
© Drs. Eric Schwartz & Joshua Weaver

4-Mar-24—11:26 AM Intro to C for XMEGA

rEEL 4744 For Loop

* For loops allow for repetition while also iterating
>Has a start value, e.g., int i = 0
>Loops until an end condition has been met, e.g., i < 10
>Every loop, the start value will either be increase or
decrease, e.g., i++ or i—--

>Syntax:
for (start value; end condition,; inc/dec value) {
<statements>

}
>Example:
for (int 1 = 0; 1 < 10; i++) {
<statements>

if and for loops.c

27

EEL 4744)
r / Switch Statements

» Switch statements acts as selection control,

changing the code flow through a multi-way branch

>Multi conditional system such as a large if conditional
structure

>May also be used to create a state machine

>Has a single variable that compared to multiple values,
executing different code for potentially each value.

>Syntax:
switch (case valuel:
variable) <statements>
{ break;
case valuel: default:
<statements> <statements>
break; break; switchistaféments.c
T T J 2
28
University of Florida, EEL 4744 — File 14 1 4

© Drs. Eric Schwartz & Joshua Weaver

4-Mar-24—11:26 AM Intro to C for XMEGA

r EEL 4744
Break

* While running loops, it is possible to break out of

the code at anytime using the break expression
>If using nested loops, the break expression will break out
of all loops
>(Can use labels to jump to the outer loop
» Example:
outer loop:
for (int 1 = 0; 1
for (int 3 = 0; J < 10; j++) |
if ((i * j) == 37) // Won’t happen!
break outer loop;

< 10; i++) |

}

of Florida, EEL 4744 - File 14

29

™ EEL47M4 |
Volatile

asm volatile ("nop"):;

void RoughDelaylsec (void)

{
volatile uint32 t ticks;

//Volatile prevents compiler optimization
for (ticks=0;ticks<=F CPU;ticks++);

//increment 2e6 times -> ~ 1 sec
University of Florida, EEL 4744 — File 14 i f_a n d_ fo r_l oops.cC
© Drs. Eric Schwartz & Joshua Weaver 30

30

University of Florida, EEL 4744 — File 14 1 5
© Drs. Eric Schwartz & Joshua Weaver

4-Mar-24—11:26 AM Intro to C for XMEGA

rEEL 4744
PORT / Modules

* May access Ports similarly to Assembly, use the
header file
#include <avr/io.h>
>HINT: Right mouse click on variable name and choose
goto implementation
* When programming, make use of intelli-sense
* Naming follows the AVR Manuals
* Access PORTS (or modules) by name directly

>Examples:
PORTA DIRCLR = OxFF I
USARTCO CTRLA = OxFF simple whiles loops.c

R . multiple whiles loops.c
University of Florida, EEL 4744 - File 14 p— J—

ni
© Drs. Eric Schwartz & Joshua Weaver 31

31

r EEL 4744 |
Registers

« It is possible to use C syntax and structures to
access registers of various modules in a cleaner
manner

* Instead of typing the entire name, you can
>Enter the module name
>Enter a period
>Enter the register name (with autocomplete)

>Example:
PORTA.DIRCLR = OxFF
USARTCO.CTRLA = OxFF :
simple whiles loops.c
Univeriy of Florda BEL 4744 14 multiple whiles loops.c

© Drs. Eric Schwartz & Joshua Weaver 32

32

University of Florida, EEL 4744 — File 14 1 6
© Drs. Eric Schwartz & Joshua Weaver

4-Mar-24—11:26 AM Intro to C for XMEGA

rEEL 4744 Bitwise and

Compound Operators
* When modifying ports and registers, bitwise
operators are often used.
*&, |, and ~ may be tied

s . AND
to equal sign to snnp y | OR
AND or OR the variable R .
1th another variable pusie O
with ano << Left Shift
* Examples. >> Right Shift
PORTB DIRCLR |= 0xFO;

~ One’s Complement

X <<= 2;// X=X<L2

 Can also do this with +, -, *, /, etc.
>Example:
varl += 37; // Varl = Varl + 37

University of Florida, EEL 474 i
© Drs. Eric Schwartz & Joshua Weaver 33

33

r EEL 4744 |
Bitmasks

* Programming in C allows a user to use various
defined enumerations or structures when working
with PORTs and control registers

« Standard bitmasks allow a user to change only
specific bits in a register when desired (noted by
bm)

>Example:
PORTB_DIRCLR
PORTB.DIRCLR

PIN2 bm | PIN4 bm;
PIN2 bm | PIN4 bm;

usart serial.c

University of Florida, EEL 4744 — File 14
© Drs. Eric Schwartz & Joshua Weaver 34

34

University of Florida, EEL 4744 — File 14 1 7
© Drs. Eric Schwartz & Joshua Weaver

4-Mar-24—11:26 AM Intro to C for XMEGA

r EEL 4744 |
Bitmasks

» Group Configuration Bitmasks allow a user to
change only multiple bits representing aspects of a

control register

>Example
USARTCO.CTRLC = USART CMODE ASYNCHRONOUS gc |
USART PMODE DISABLED gc |
USART CHSIZE 8BIT gc;

usart serial.c

University of Florida, EEL 4744 - File 14
© Drs. Eric Schwartz & Joshua Weaver 35

35

r EEL 4744
Interrupts

* First must include the interrupt header file
>#include <avr/interrupt.h>

« After defining interrupts use module registers,

enable or clear the global interrupts as needed
>sei ()
>cli();

* Finally, write the interrupt service routine for the

required interrupt vector
ISR (USARTCO RXC vect)

{

usart serial.c

USARTCO.DATA = USARTCO.DATA;
}

University of Florida, EEL 4744 — File 14
© Drs. Eric Schwartz & Joshua Weaver 36

36

University of Florida, EEL 4744 — File 14 1 8
© Drs. Eric Schwartz & Joshua Weaver

4-Mar-24—11:26 AM Intro to C for XMEGA

r EEL 4744
Interrupts

* Occasionally clearing the interrupts is necessary, but
preserving the status register is ALMOST
ALWAYS required (and always, in Assembly, but
NOT in C)

* In the XMEGA (and likely most processors) the
below is automatically done (so UNNECESSARY)
in C; but if it isn’t, this could be done

>Example:
uint8 t sreg = SREG; // save status reg
cli();
<statements>
SREG = sreg; // restore status reg
© D B S oo Mot 37
37

rEEL 4744 .
Using C with Assembly

« It is possible to use C and Assembly more
seamlessly by creating variables and functions in C

and using them in various ways with Assembly

>This puts less emphasis on the Assembly code, using it
only as needed to improve code

>When using more of C’s capabilities, some extra
considerations must be placed on the choice of Registers
in Assembly (as described in the lecture Intro to Mixed
C and Assembly)

o 38
38

University of Florida, EEL 4744 — File 14 1 9
© Drs. Eric Schwartz & Joshua Weaver

4-Mar-24—11:26 AM Intro to C for XMEGA

rEEL 4744 Using C with Assembly
Passing Arguments

» Arguments are passed to Assembly functions in
register pairs or via the stack if more than 9

arguments
>Word Data takes both registers
>Byte Data takes the lower register

1 125:124
2 123:122
121:120
9 19:r8
W 39

39

rEEL 4744 Using C with Assembly
Returning Values

» Return values always use the following convention

Lot G r s
32 bit data r25:122
64 bit data r25:r18
o 40
40
University of Florida, EEL 4744 — File 14
© Drs. Eric Schwartz & Joshua Weaver 20

4-Mar-24—11:26 AM Intro to C for XMEGA

r EEL 4744

* Pointers may be used to contain the address of a

variable. You create pointers using the * symbol
>int value = 5; //' A variable holding a value of type int
>int *valuePtr; //' A pointer to a value of type int

* To reference the address of the pointer you use the
& symbol
>valuePtr = &value; // Place address of value in pointer

* To get the data that the pointer points to, you can
“dereference it” by using the * symbol on the
pointer
>int data = *valuePtr; //Getdata pointed to by pointer

University of Florida, EEL 4744 - File 14
© Drs. Eric Schwartz & Joshua Weaver 41

41

r EEL 4744

* External Bus Interface (EBI) example:

Pointers

Examples

ebi.c
ebi driver.h

« Asynchronous Serial example:

usart serial.c

University of Florida, EEL 4744 — File 14
© Drs. Eric Schwartz & Joshua Weaver 42

42

University of Florida, EEL 4744 — File 14 2 1
© Drs. Eric Schwartz & Joshua Weaver

4-Mar-24—11:26 AM Intro to C for XMEGA

r EEL 4744

Mixed C/Assembly

You are not responsible for the
following pages

University of Florida, EEL 4744 - File 14
© Drs. Eric Schwartz & Joshua Weaver 43

43

rEEL 4744 C Projects and Inline
Assembly

 Ifitis only desired to add a few lines of assembly code to
a C Project, it is possible to add assembly “inline”

* Inline assembly uses the asm function with the following
template
asm volatile(asm-template : output-operand-list :

list-input-operand : clobber list)

* When using the asm function, the compiler will have a
harder time optimizing code

* The volatile keyword may be used to prevent the

compiler from attempting to optimize the line
> The keyword volatile may be omitted, but then the compiler
might optimize away your intended structure

University of Florida, EEL 4744 — File 14
© Drs. Eric Schwartz & Joshua Weaver 44

44

University of Florida, EEL 4744 — File 14 2 2
© Drs. Eric Schwartz & Joshua Weaver

4-Mar-24—11:26 AM Intro to C for XMEGA

rEEL 4744 Inline Assembly

asm volatile (asm-template : output-operand-list :
list-input-operand : clobber list)
* The asm-template component of the asm function

follows standard Assembly with small changes
> The Mixed C and Assembly (for Atmel XMEGA)
document detail any required changes

— Example:

asm volatile (“STS %0, r18” : “=m” (EBI_CTRL));
O STS command above is used to define EBI CTRL
O The %0 is a place holder showing that the defined operand will come later
in the template
O The output operand section, EBI_CTRL, is defined as an output only
memory (“=m”) location address

University of Florida, EEL 4744 - File 14
© Drs. Eric Schwartz & Joshua Weaver 45

45

rEEL 4744 Inline Assembly

asm volatile (asm-template : output-operand-list :
list-input-operand : clobber list)
* The asm-template may use “%” expressions to define
placeholders replaced by operands in the output-operand-
list and list-input-operand

% n By argument in operands where n = 0 to 9 for argument
A%n The first register of the argument n (bits 0 to 7)
% Bn The second register of the argument n (bits 8 to 15)

% Cn The third register of the argument n (bits 16 to 23)
% Dn The fourth register of the argument n (bits 24 to 31)
% An The Address register X, Y, or Z

% % The % symbol when needed
\\ The \ symbol when needed

\N A newline to separate multiple asm commands

Univesiy o Floida, B \T A tab used in generated asm

© Drs. Eric Schwartz & Joshua Weaver 46
46
University of Florida, EEL 4744 — File 14 2 3
© Drs. Eric Schwartz & Joshua Weaver

4-Mar-24—11:26 AM Intro to C for XMEGA

rEEL 4744
Inline Assembly

asm volatile (asm-template : output-operand-list :
list-input-operand : clobber list)
* The output-operand-list and list-input-operand
uses various modifiers as needed for the operands
given

Output operand
Not used as input but only an output
Input and Output Operand

+ & |

University of Florida, EEL 4744 - File 14
© Drs. Eric Schwartz & Joshua Weaver 47

47

r EEL 4744
Examples

* Vector Add Mixed

> .s File Compilation Example ~ ,_ _ torA.crj;lh Mixed. o

> Requires both .c and .s file VectorAdd Mixed.s
* Later N

> Vector Add

— Inline Assembly version % i
> Input Port VectorAdd Casm.c

— Inline Assembly version

Input Port C.c
University of Florida, EEL 4744 - File 14 —_ p—

© Drs. Eric Schwartz & Joshua Weaver 48

48

University of Florida, EEL 4744 — File 14 2 4
© Drs. Eric Schwartz & Joshua Weaver

4-Mar-24—11:26 AM Intro to C for XMEGA

r EEL 4744

Mixed C/Assembly

* The slides that follow are NOT covered

this semester, 1.e., you will not write mixed
C/Assembly code, nor will you be responsible to
know this for labs or exams

49

rEEL 4744 C Projects and .s
Assembly Files

* When creating a C project in Microchip/Atmel
Studio, a simple .c file is created with a template
structure

> C code should be restricted to .c files

* When adding Assembly to a C project, a .s file is
used to hold all Assembly code (not a .asm file)

* A .s file will resemble a standard assembly file,
however, there are some considerations that must

be made when in C projects
> Registers are used differently since C also uses them

> Assembly preprocessor directives have different formats
e o B S & o Wetwer 50
50

University of Florida, EEL 4744 — File 14 2
© Drs. Eric Schwartz & Joshua Weaver 5

4-Mar-24—11:26 AM Intro to C for XMEGA

rEEL 4744« g” File Compilation
Registers

» When writing assembly in a C project, registers have
different rules

Temporary Save and restore Save and restore

1 Al e Must clear before Must clear before

returning returning
r2-r17
r28 “call-saved” Save and restore Can freely use
r29
r18-r27
r30 “call-used” Can freely use Save and restore
r31

University of Florida, EEL 4744 — File 14
© Schw 51

rEEL 4744« g” File Compilation
Registers

* r0: defined as a temporary register which may be used
by compiler generated code

* rl: assumed to always be zero by the compiler, so any
assembly code that uses this should clear the register
before calling compiler generated code

* r2—r31I: defined as “call-saved” or “call-used”
> call-saved: registers that a called C function may leave unaltered,
however, assembly functions called from C should save and
restore the contents of the register (using stack)
> call-used: registers available for any code to use, but if calling a C
function, these registers should be saved since compiler generated
code will not attempt to save them

University of Florida, EEL 4744 — File 14
© Drs. Eric Schwartz & Joshua Weaver 52

52

University of Florida, EEL 4744 — File 14 2 6
© Drs. Eric Schwartz & Joshua Weaver

4-Mar-24—11:26 AM Intro to C for XMEGA

rEEL 4744 “.s” File Compilation
Syntax

« Wh . Path for the equivalent file to the ATxmegal28A1Udef.inc is:
en writing C:\Program Files (x86)\Atmel\Atmel Toolchain\AVR8

assembly in a C GCC\Native\3.4.2.1002\avr8-gnu-

pr Oj ect. some toolchain\avr\include\avr\iox128alu.h
5

syntax is

different .include “ATxmegal28A1Udef.inc” #include <avr/io.h>
.dseg .section .data
.cseg .section .text
.db1,2,3,4 Jbyte 1,2,3,4
.db “message” .ascii “message”
.db “message”, 0x00 .asciz “message”’
.byte 37 ;save space for bytes .ds.b 37
dw .word
HIGH(), LOW() hi&(), 108()

of Florida, EEL 4744 - File 14
Schy

53

rEEL 4744« s” File Compilation
.dseg and Data Memory

» Data memory defaults to start at 0x2000
.section .data replaces the use of .dseg to access

the Data Memory space

>Example:
.section .data // old way .dseg
Varl: .ds.b 7 // save 7 bytes
vVar2: .ds.w 3 // save 3 words
Var3: .byte 0x37 // Var3 = 0x37
// Previously, .byte saved space; now value
Text: .asciz "hello world"

.global do copy data // needed for Var3
University of Florida, EEL 4744 — File 14 // and Text

© Drs. Eric Schwartz & Joshua Weaver 54

54

University of Florida, EEL 4744 — File 14 27
© Drs. Eric Schwartz & Joshua Weaver

4-Mar-24—11:26 AM Intro to C for XMEGA

rEEL 4744« g” File Compilation
.dseg and Data Memory

« .section .data is necessary to begin the Data
Memory (i.e., volatile memory = RAM) segment
* The .asciz command is used to define a specific
null terminated string, a constant
> .ascii is like .asciz, but with no null termination
* The ds.b and ds.w commands are used to define
storage of varying sizes (like .byte in .asm files)
* The .byte command is used to define a specific
byte, i.e., a constant (like .db in .asm files)

55

rEEL 4744« s” File Compilation
.dseg and Data Memory

» Data memory is typically used to create storage of
variables like Varl and Var2

* It is occasionally desired to create memory and
store an initial value in that memory space, as we
did for Var3 and Text
>The initial value is stored in program memory
>The .global _ do_copy_data special command

handles copying the data from program memory to data
memory

c 56
56
University of Florida, EEL 4744 — File 14 2 8
© Drs. Eric Schwartz & Joshua Weaver

4-Mar-24—11:26 AM Intro to C for XMEGA

rEEL 4744 «s” File Compilation

.cseg and Program Memory

* Like Assembly, program memory is used to hold
program constants and assembly code

* .section .text replaces the use of .cseg to access
the Program Memory space

> Example:
.section .text
VA: .byte 1, 2, 3, 4, 5, ©
VB: .byte 0xA0,0xB0,0xC0,0xD0, 0xEQ, O0xFO
.global MAIN ASM //Required for mixed

MATN ASM: B
1di R18, 6 VectorAdd Mixed.s

versity rida, EEL 4744 - Fil . e e
© Drs. Eric Schwartz & Joshua Weaver 57

57

rEEL 4744 «s” File Compilation

.cseg and Program Memory

 .section .text is shown to begin the Program
Memory segment
* The .byte command is used just as it was under
the Data Memory section
> May be used to defined multiple bytes in a section
> Saved in Program Memory, not desired to transfer to
Data Memory (no need of .global __do_copy_data)
 The rest of the example follows standard
Assembly

University of Florida, EEL 4744 — File 14
© Drs. Eric Schwartz & Joshua Weaver 58

58

University of Florida, EEL 4744 — File 14 2 9
© Drs. Eric Schwartz & Joshua Weaver

4-Mar-24—11:26 AM Intro to C for XMEGA

rEEL 4744 s File Program Memory
& Watch Window

* In a .s file, we do NOT have to do the shifting
that we did in .asm files for reading Program
Memory Section (.dseg in .asm and .section .text
in .s) %
>Example for a s file VectorAdd Mixed.s
1di ZL, 108(VA) // Load the address of program
1di ZH, hi8(VA) // memory for VA
* The watch window can NOT display XL, XH,
YL, YH, ZL, or ZH 1n .s files, nor most other
things (other than registers, Rx)
ST 59
59

rEEL 4744 «s” File Compilation

Functions Example

* One of the main aspects of using Assembly ina C
project is to benefit from using Assembly
functions

 Functions must be declared in both C files and

Assembly files
> Function prototypes should be defined in C code for
any function called from Assembly
— extern int funct();
> Functions defined in Assembly code that will be called
from C code should be declared global
— .global funct
© WAy 60
60
University of Florida, EEL 4744 — File 14 3 O
© Drs. Eric Schwartz & Joshua Weaver

4-Mar-24—11:26 AM

Intro to C for XMEGA

rEEL 4744 «s” File Compilation

Functions in C/Assembly

. > .c file example:
>_c file syntax: extern void MAIN ASM();
extern int funct(); int main (void)
{
int main(void) MAIN ASM() ;
{ _

}
funct () ;

}

> s file syntax: VectorAdd_Mixed. C
.global funct
> s file example:

.global MAIN ASM
1di R18, 0x47 MAIN_ASM:

1di R18, N

funct:

ret

ret

University of Florida, EEL 4744 - File 14

© Drs. Eric Schwartz & Joshua Weaver Vecto rAdd_M i xe d .S 61
61

University of Florida, EEL 4744 - File 14
© Drs. Eric Schwartz & Joshua Weaver

62
62

University of Florida, EEL 4744 — File 14 3 1
© Drs. Eric Schwartz & Joshua Weaver

