
Microprocessor
Applications
Direct Memory Access (DMA)

19‐Jul‐21 © Dr. Eric M. Schwartz | Christopher Crary | Wesley Piard

Lecture Outline
The following will be covered in this
lecture:

 Motivation for DMA systems

 A general overview and evaluation of
DMA systems

 A brief discussion of the DMA and other
related systems available within XMEGA
AU microcontrollers

19‐Jul‐21 © Dr. Eric M. Schwartz | Christopher Crary | Wesley Piard

 In general, most computing applications require some transfer
of data.

 If a CPU is handling the data transfer, the relevant
application may not progress until the data transfer is
complete.

 Thus, depending on the amount and frequency of data
transferred, data transmission may easily cause a bottleneck on
program execution.

 In order to solve this, we often wish to perform data transfer
with some system other than a CPU.

Motivation

19‐Jul‐21 © Dr. Eric M. Schwartz | Christopher Crary | Wesley Piard

 Conventionally, a system that is designed for the purposes of
independently transferring data between two sets of memories is
referred to as a Direct Memory Access (DMA) system.

 In this lecture, Direct Memory Access (DMA) will also refer to
the general notion of using a DMA system.

Introducing DMA

19‐Jul‐21 © Dr. Eric M. Schwartz | Christopher Crary | Wesley Piard

 The main goal for a DMA system is to remove the need for a
processing unit to perform data transfer.

 Other important goals are to minimize the amount of time
required for data transfer, maximize the possible amount of
data that can be transferred, and provide a generic,
configurable interface for performing data transfer.

Introducing DMA, cont.

19‐Jul‐21 © Dr. Eric M. Schwartz | Christopher Crary | Wesley Piard

 Fortunately, a generic DMA interface can normally be incorporated
into a computer system while both greatly reducing the amount of
time required to transfer data between memories and increasing the
amount of data that can be transferred.

 Unfortunately, it often turns out that memory components
themselves impose a bottleneck on data transfer, and thus on
program execution.

 Separately, incorporating a DMA also generally increases design
complexity for both hardware and software, although not
necessarily by much.

Evaluating DMA

19‐Jul‐21 © Dr. Eric M. Schwartz | Christopher Crary | Wesley Piard

 To effectively utilize a DMA system within some system, the DMA
should be synchronized with other relevant components.

 For example, it would generally be most appropriate to control
exactly when some data transfer should begin.

 Thus, a DMA is generally not entirely independent from other
systems.

 However, depending on the system, synchronization and control
may not always require a processing unit, e.g., some dedicated
signal such as an interrupt may suffice for initiating a data
transfer.

Evaluating DMA, cont.

19‐Jul‐21 © Dr. Eric M. Schwartz | Christopher Crary | Wesley Piard

 For electronic components that provide configuration capabilities,
there generally exists a separate hardware controller for the
purposes of controlling the relevant device.

 DMA systems generally provide no exception.

 In Atmel XMEGA AU microcontrollers, there exists a robust DMA
system that is controlled by another system known as the Direct
Memory Access Controller (DMAC).

 In this context, the DMAC is the system that provides a
configurable interface for the DMA.

Interfacing with a DMA

19‐Jul‐21 © Dr. Eric M. Schwartz | Christopher Crary | Wesley Piard

 The DMAC system within XMEGA AU microcontrollers provides a
configurable interface for a DMA system with four separate
communication channels.

 Each communication channel within the DMA can act
independently of one another and can transfer any amount of
data between any two sets of (sequential) locations in the data
memory space via the data bus of the microcontroller.

 Since all peripheral systems within the microcontroller are
memory-mapped within the data memory space, each one has the
potential to be accessed via DMA.

The XMEGA AU DMAC

19‐Jul‐21 © Dr. Eric M. Schwartz | Christopher Crary | Wesley Piard

 Since the DMA communication channels are designed to share the
data bus of the microcontroller with the CPU, the CPU may still need
to utilize the data bus during a DMA data transfer.

 In cases where the DMA system has control of the data bus and the
CPU needs to transfer data, it is defined that the CPU has priority
and will stall the DMA transfer after a specified number of bytes
have been transferred.

The XMEGA AU DMAC, cont.

19‐Jul‐21 © Dr. Eric M. Schwartz | Christopher Crary | Wesley Piard

 The number of bytes of data that is guaranteed to be transferred via the
DMA without CPU interruption is referred to as a burst.

 A burst may be configured to consist of either 1, 2, 4, or 8 bytes.

 A burst is considered the fundamental unit of a DMA transfer.

The XMEGA AU DMAC, cont.

19‐Jul‐21 © Dr. Eric M. Schwartz | Christopher Crary | Wesley Piard

 The two additional units of a DMA transfer are a data block and a
transaction.

 A data block is an ordered sequence of some number of bytes
between 1 and 65535.

 A transaction is an ordered sequence of some number of data blocks
between 1 and 255.

 More generally, a DMA transaction can also be thought of as a
complete DMA read and write operation between two sets of
memory locations within the data memory space.

The XMEGA AU DMAC, cont.

19‐Jul‐21 © Dr. Eric M. Schwartz | Christopher Crary | Wesley Piard

The XMEGA AU DMAC, cont.

19‐Jul‐21 © Dr. Eric M. Schwartz | Christopher Crary | Wesley Piard

 The specific address within the data memory space from where data is
to be retrieved is referred to as the source address.

 The specific address within the data memory space to where data is to be
transferred is referred to as the destination address.

 Both the source and destination addresses can either increment,
decrement, or remain constant during a data transfer. Additionally, they
can both be reset to an initial value after either a burst, block, or
transaction.

The XMEGA AU DMAC, cont.

19‐Jul‐21 © Dr. Eric M. Schwartz | Christopher Crary | Wesley Piard

 For each communication channel within the DMA, data transfers
can be requested either by the CPU or by a signal available within a
set of predefined interrupt and event signals.

 For example, an overflow condition for a timer/counter module
could be used to trigger some data transfer at a periodic rate.

The XMEGA AU DMAC, cont.

19‐Jul‐21 © Dr. Eric M. Schwartz | Christopher Crary | Wesley Piard

Some other notable features include:

 Single-shot (i.e., single-burst) data transfer

 Double buffering between DMA channels

 Configurable priority schemes between DMA channels

The XMEGA AU DMAC, cont.

19‐Jul‐21 © Dr. Eric M. Schwartz | Christopher Crary | Wesley Piard

Lecture Review
The following was covered in this lecture:

 A discussion of DMA systems and DMA controllers

 A brief overview of the DMAC and DMA systems
available within XMEGA AU microcontrollers

19‐Jul‐21 © Dr. Eric M. Schwartz | Christopher Crary | Wesley Piard

