
University of Florida EEL 4744 Drs. E M. Schwartz & K. Gugel

Department of Electrical & Computer Engineering TAs: W. Goh & Colin Watson
Page 1/8 Revision 2 15-Jun-12

 Creating and Simulate an ASM Project in CCS

Introduction
The purpose of this document is to enable a student to quickly create a project under CCS for

assembling, and linking an assembly file, and then to simulate the file. To complete this tutorial you

will need two additional files: ex0.asm and KG_RAM_Link1.cmd. After obtaining them from our

class web page, copy the KG_RAM_Link1.cmd file into a folder called c:\

4744\ccs\projects\example0 and put the ex0.asm file on your desktop (or in the same folder).

The file ex0.asm is an assembly file that illustrates various assembler directives and TMS320F28335

DSP assembly code. KG_RAM_Link1.cmd is a linker command file that is required to set the proper

addresses for each code section and to instruct the linker how to build the final machine code output.

This linker command file is an adaptation of Texas Instrument’s linker command file

“28335_RAM_lnk.cmd.”

Procedure
1. This tutorial assumes that you already have Code Composer Studio installed and have set your

workspace folder location on your hard disk. For more information on this topic see the tutorial

CCS_Installation_Instructions.pdf (at http://mil.ufl.edu/4744/docs/CCS_Installation_Instructions.pdf).

2. Open CCS and create a new project via the following commands (as shown below): File  New 

CCS Project.

http://mil.ufl.edu/4744/docs/CCS_Installation_Instructions.pdf

University of Florida EEL 4744 Drs. E M. Schwartz & K. Gugel

Department of Electrical & Computer Engineering TAs: W. Goh & Colin Watson
Page 2/8 Revision 2 15-Jun-12

 Creating and Simulate an ASM Project in CCS

3. Type in your Project Name, e.g., example0. Next, un-check the

box “Use default location” to place the project in another

location other than your workspace folder. It is recommended

that you create a new folder called projects underneath the

folder you created in the CCS installation tutorial,

CCS_Installation_Instructions.pdf. In this folder you should then

create a new folder for every project, e.g., c:\

4744\ccs\projects\example0. Note: CCS does not create a

specific file to contain the project information but instead looks

for files under a particular name in a given folder. This will be

discussed further later; the important rule is to create a folder for

every new project (examples, lab code, experimentation, etc.).

See the screen snapshot to the right. Select “Next >”.

4. Select the ‘Advanced settings’ tab. This should drop down a

new menu for you to select options. Click the drop down box

for the Linker command file. Point to the KG_RAM_Link1.cmd file. This file is located on the

website and in the example0.zip file. You will use this linker file for the entire semester. Next, select

the ‘Project templates and examples’ tab and then highlight the Empty Assembly-only Project. Click

finish. See the screenshots below.

University of Florida EEL 4744 Drs. E M. Schwartz & K. Gugel

Department of Electrical & Computer Engineering TAs: W. Goh & Colin Watson
Page 3/8 Revision 2 15-Jun-12

 Creating and Simulate an ASM Project in CCS

We now have created the project dependencies (libraries to be used

for assembly and memory map for the machine code output) and

will now create the actual assembly file.

5. To create a new ASM file press: Right click the project in the

Project Explorer window and then go to New  File. This can also

be done by selecting File  New  Other  General and then

selecting File. For this example, I used the filename example0.asm.

Note: Make sure to write the .asm extension following your file

name. Failure to do this will generate an error when trying to

compile your code. If you type the .asm extension correctly, a line

number “1” will appear next to the cursor in the new file (window)

as show below.

6. You should now see this created project. Note the included files in the left most window. The new

asm window has a “1” indicating line number. At this point you can type in new ASM code in the

center window. However, since you probably are not proficient at writing F28335 DSP assembly

yet, you should copy

in the assembly code

from our example

code file that you

previously copied to

your desktop:

ex0.asm. To do this

press File  Open

File  and then select

ex0.asm from the

directory where you

originally placed the

file. When ex0.asm is open, copy the contents using Edit  Select All and then Edit  Copy in

the ex0.asm window to copy the code to your new ex0.asm window with Edit  Paste

7. To generate a list file (a file with a .lst extension, which will appear in the Debug folder) contains

both the assembly language file, as well as machine

codes, line numbers, and other useful information) open

the .asm file and then go to File  Properties and then

select Assembler Options. Then select (i.e., check)

“Generate listing file (--asm_listing, -al)”. While there,

also select “Generate asm extended warnings (--

asm_remarks, -mw)”.

8. We are now almost ready to compile the code but must

create a target configuration file to tell CCS what

simulator or emulator/programmer you will be using for

the code.

9. Create a new Target Configuration File by pressing File

 New  Target Configuration. The target

University of Florida EEL 4744 Drs. E M. Schwartz & K. Gugel

Department of Electrical & Computer Engineering TAs: W. Goh & Colin Watson
Page 4/8 Revision 2 15-Jun-12

 Creating and Simulate an ASM Project in CCS

configuration file will identify the simulator or type of emulator CCS will use for programming and

emulating the DSP board, i.e., it tells CCS where to load the program. In our case the simulator is in

CCS and the programmer/emulator hardware is actually on our lab board.

Type in a filename NoBoard to remind us this target configuration is for simulation only; the ccxml

file extension is automatically added. Next, un-check the Use shared location box and then press

Workspace to select the current project location. If the current project location shows up in the

“Location:” field (i.e., /example0), you can leave Use shared location checked and just press

Finish. We want to make sure we add the target configuration file to our current project files. Click

Finish after the location and filename have been set.

10. Set Connection to Texas Instruments Simulator and check the Device that says F283x CPU

Cycle Accurate Simulator as shown in the snapshot below. Select Save and then you can close the

file (by selecting the X to the right of the NoBoard.ccxml below the toolbar). NoBoard.ccxml

should appear on the left in the Project Explorer window, at the bottom.

11. Finally we are ready to build (assemble & link) the project. Select the hammer icon , or Project

 Build Project, or right click the project in the Project Explorer window and click Build Project.

You should see zero errors and warnings when you build the project containing ex0.asm (see below)

and you should also see that a machine code output file is generated called example0.out (See

“Finished building target: example0.out” in the console window.)

University of Florida EEL 4744 Drs. E M. Schwartz & K. Gugel

Department of Electrical & Computer Engineering TAs: W. Goh & Colin Watson
Page 5/8 Revision 2 15-Jun-12

 Creating and Simulate an ASM Project in CCS

12. Finally we can start the debugger by pressing the small icon that looks like a six-legged insect

shown to the right (or by selecting Run  Debug or with the F11 key). Do so now.

A new window may pop up that says Variables | Expressions | Registers. If so, select

Registers; if not, go to View to open a window for Registers. Go to View to open

and another window for Memory Browser. Expand the CPU registers icon to see the

cpu registers. i.e., ACC, P, XT, ..., XAR7, PC, IC, etc. Type 0xa000 in the field on the Memory

Browser window and set the pull-down next to this field to program. Select the downward facing

arrow in the Memory Browser window and select Default Rendering  Memory Rendering (not

Traditional).Then select go. You can see the variables that were placed into memory using the

assembler directives in the data section of ex0.asm.

University of Florida EEL 4744 Drs. E M. Schwartz & K. Gugel

Department of Electrical & Computer Engineering TAs: W. Goh & Colin Watson
Page 6/8 Revision 2 15-Jun-12

 Creating and Simulate an ASM Project in CCS

Scroll down to the PC (program counter) in the Registers window and verify that it is set to 0x9000.

This is where our code begins in ex0.asm. Begin stepping through the code by

selecting the step into arrow (circled in green on the right in the Debug window)

that is just to the right of the red Terminate square (used to exit debugging).

Scroll up to ACC, XAR0-XAR2 registers (in the Registers window) and observe

how they change when the code is single stepped. Enter 0xb000 into the memory

browser. You need to also select Enable Continuous Refresh (circled in red in

the right snapshot) in the memory box (near the right edge) to see the memory

changes when you step your code. Step through the first example that adds three

ASCII characters. Notice that 0x00D6 (the sum of the three characters) is written

into 0xb003 (which is the address associated with the sum label) after the MOV *AR1,AL

instruction is run.

13. Single step through the remaining code and again observe the results being written into memory

locations 0xb000-0xb003. This program will be covered in great detail during our class lectures

so it is very important to attend class to learn about the F335 addressing modes and instruction

set.
14. To add a breakpoint, select the line number in the asm file. You can view and delete the break

points by selecting View  Breakpoints. You can now run (the green arrow

circled in red, as shown here) and it will stop at the breakpoint. You can either

run again from there or start single stepping from this point forward.

15. To see the addresses for each of the instructions, View  Disassembly. This is

very useful to confirm that everything is going where you want it to. To see

the actual assembly language including the labels, select the icon in the

disassembly window immediately to the right of the “Enter location

here” box.

16. If you would like to run the program again, select the Reset CPU icon

(shown to the right, circled in red) and then press the Restart icon

University of Florida EEL 4744 Drs. E M. Schwartz & K. Gugel

Department of Electrical & Computer Engineering TAs: W. Goh & Colin Watson
Page 7/8 Revision 2 15-Jun-12

 Creating and Simulate an ASM Project in CCS

(immediately to the right that shows a green arrow with a yellow arrow underneath). Check to make

sure the PC is starting again at 0x9000. A Dissassembly window may pop up which blocks the

Registers window you opened earlier. You may close this but first notice that this shows the

associated machine code for our program beginning at 0x9000. A Console window might also pop

up; you can close this as well.

To terminate the debug session, press the red Terminate square. Note: Sometimes it takes a few

seconds to exit debugging (due to CCS variables being removed from operation) so patiently wait

until CCS returns to code assembly/link mode.

17. If you want to also debug WITH your board (i.e., emultate), you will need to make another Target

Configuration. See Emulate_CCS_Project.pdf for details.

This ends the project creation and simulate tutorial. Refer to the emulate tutorial to run & test your code

on the actual hardware. Also, see the Frequently Asked Questions section below for more information

relating to saving time when performing CCS code development.

FAQ Relating to ASM Project Creation & Build
1. Do I always have to save my ASM file every time I make a change before building?

No, every time you press the Build Active Project icon, your ASM file is automatically saved first.

2. I want to start writing & debugging & emulating code right away (on the actual board!). How do I

start the emulator debugger?

See Emulate_CCS_Project.pdf for more information.

3. Do I need to create a new workspace for every lab?

No, you can (and should) create all you projects or labs in the same workspace. You can just hide

the projects you are not using by pressing the “-“ symbol to the left of the project name.

4. Do I need a different Linker Command File for every project?

No, instead point the linker to the same file KG_RAM_Link1.cmd used in your first project. Or

simply copy the KG_RAM_Link1.cmd file into each new project directory and point the linker to it.

5. Can I create two or more projects in the same directory?

No, you need to save each project in a different directory. If you try to save two projects in the same

folder, an error message indicating that your new project overlaps the location of another project

will be shown in the screen. It is recommended that you create a directory for each lab (i.e. labs 0-9)

at the beginning of the semester so that when creating a new project, all you have to do is select the

specific directory created for that project.

6. When I have multiple projects open, how do I choose which project is active?

This is performed by right clicking on the project that you want to make active and select Set as

active project. All other projects will be ignored when you build the active one.

7. When I re-run the debugger to execute my code, I noticed that the XAR0-XAR2 registers already

had non-zero values in them. So I zeroed them out by clicking on them and then ex0.asm did not run

properly. Why is this? What happened?

University of Florida EEL 4744 Drs. E M. Schwartz & K. Gugel

Department of Electrical & Computer Engineering TAs: W. Goh & Colin Watson
Page 8/8 Revision 2 15-Jun-12

 Creating and Simulate an ASM Project in CCS

When you re-run the debugger by pressing Reset CPU and Restart, several instructions are pre-

fetched and executed due to the pipelining architecture of the CPU. Note: CPU pipelining will be

further discussed in class. Instead you should reset & restart and simply leave the registers alone

and step your code as before.

8. When I step through my code, I noticed that it sometimes takes a couple more instructions to execute

before results are actually written to memory. In other words, even though I stepped through an

instruction that moves a register value to SRAM, I don’t see memory change until a couple more

instructions are stepped.

Again I believe that this is due to the pipelining nature of the CPU. Most likely it was using the CPU

address and data bus to pre-fetch new instructions and therefore waited several cycles later to

perform the memory write cycle. This will effect when we view our results, however it is not a

problem once we are running at full speed on our board.

9. I am an engine-erd and I love this new tool. Someday I will create new products with this DSP so

that others will have to work for me. Therefore I would like to know how to debug ex0.asm on my

lab board so that I can begin experimenting with real hardware. How can I do this?

Make sure the debugger is terminated by pressing the red Terminate All icon. Next plug in your lab

board and right-click the example0.ccxml target configuration file and Set as Active Target

Configuration. We are telling the CCS application that we now want to use our lab board as the

target device for download/debug. Now press the debug (insect) icon as was performed earlier in

simulated mode and step code as was done earlier in this tutorial.

